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ABSTRACT
Aims  To assess whether incorporating a machine 
learning (ML) method for accurate prediction of 
postoperative anterior chamber depth (ACD) improves 
the refraction prediction performance of existing 
intraocular lens (IOL) calculation formulas.
Methods  A dataset of 4806 patients with cataract 
was gathered at the Kellogg Eye Center, University 
of Michigan, and split into a training set (80% of 
patients, 5761 eyes) and a testing set (20% of patients, 
961 eyes). A previously developed ML-based method 
was used to predict the postoperative ACD based on 
preoperative biometry. This ML-based postoperative 
ACD was integrated into new effective lens position 
(ELP) predictions using regression models to rescale the 
ML output for each of four existing formulas (Haigis, 
Hoffer Q, Holladay and SRK/T). The performance of the 
formulas with ML-modified ELP was compared using a 
testing dataset. Performance was measured by the mean 
absolute error (MAE) in refraction prediction.
Results  When the ELP was replaced with a linear 
combination of the original ELP and the ML-predicted 
ELP, the MAEs±SD (in Diopters) in the testing set were: 
0.356±0.329 for Haigis, 0.352±0.319 for Hoffer Q, 
0.371±0.336 for Holladay, and 0.361±0.331 for 
SRK/T which were significantly lower (p<0.05) than 
those of the original formulas: 0.373±0.328 for Haigis, 
0.408±0.337 for Hoffer Q, 0.384±0.341 for Holladay 
and 0.394±0.351 for SRK/T.
Conclusion  Using a more accurately predicted 
postoperative ACD significantly improves the prediction 
accuracy of four existing IOL power formulas.

INTRODUCTION
The estimation of postoperative intraocular lens 
(IOL) position is essential to IOL power calcula-
tions for cataract surgery. Norrby and Olsen have 
reported that inaccuracy in the prediction of the 
postoperative anterior chamber depth (ACD) is the 
number one source of error for postoperative refrac-
tion prediction.1 2 In addition to its vital role in IOL 
formulas, the postoperative ACD is also a critical 
variable in ray tracing, where the uncertainty in the 
postoperative ACD directly affects the accuracy of 
the results. Methods to improve the accuracy of the 
prediction of postoperative ACD have been studied 
for decades. In first-generation formulas, the lens 
position was represented by a constant. Later, more 
and more preoperative biometric variables such as 
the axial length (AL) and the corneal power were 
added to calculate the postoperative IOL position. 
In 1993, Holladay first proposed the term ‘expected 
lens position’ or ELP to indicate the location of the 

lens as it relates to a given optical model of the 
eye.3 The ELP estimates in SRK/T, Holladay1 and 
Hoffer Q are derived based on theoretical formulas. 
The ELP estimate in the Haigis formula is a simple 
linear combination of the AL and the preoperative 
ACD. Although ELP was initially intended to esti-
mate the position of the IOL, ELPs in the afore-
mentioned formulas were developed to account for 
different formula-specific assumptions and regres-
sion results.1 4 In order to reflect the use of ELP 
to account for these formula-specific assumptions 
and regression results, the term ELP today refers to 
‘effective lens position’ rather than ‘expected lens 
position’. In view of the limitations of the ELP in 
existing formulas, recently, more efforts have been 
devoted to constructing ELPs that better reflect 
the true location of the IOL.5–9 New IOL power 
prediction methods have also been developed based 
on the new-generation ELP prediction methods, 
and they have shown that using a more accurately 
predicted IOL position helps to improve the IOL 
power prediction accuracy.5

It is so far largely unexplored whether inserting 
a more accurately predicted ELP into existing 
formulas improves refraction prediction accu-
racy. This is an important question because: (1) 
it provides a fast and efficient way to modify and 
improve on existing IOL formulas whose reliability 
has been tested extensively; (2) such research can 
provide supports for translating the continued 
improvements in accuracy in postoperative ACD 
prediction into better refraction predictions in 
published formulas. Several previous studies had 
modified the ELPs in existing formulas in order 
to achieve better refraction prediction results in 
certain cataract cases. Modification of ELP calcu-
lation in the Haigis formula for sulcus-implanted 
IOLs was reported to improve performance.10 Kim 
et al adjusted the ELP estimation in SRK/T formulas 
with the corneal height in postrefractive patients 
and achieved satisfactory accuracy.11 It remains to 
be explored whether improvement of ELP estimates 
for in-the-bag IOL placement can improve IOL 
power calculations of existing formulas for general 
cataract patients.

Since most recently published IOL formulas 
(eg, Barrett Universal II,12 13 Holladay 2, Olsen 
formula14) are either not disclosed to the public or 
do not have the option to customise the value of 
ELP during the prediction of postoperative refrac-
tion, here we applied our previously developed 
postoperative ACD prediction methods to a dataset 
of 4806 cataract surgery patients and replaced the 
ELP estimates in 4 existing IOL formulas: Haigis, 
Hoffer Q, Holladay and SRK/T. We combined our 
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machine learning (ML) prediction of true postoperative ACD 
with the original ELP estimated by each formula and substituted 
this updated ELP prediction for each formula. We then compared 
the refraction prediction performance of each formula using its 
original and enhanced ELP estimates. The findings reported here 
demonstrate that existing formulas can benefit from improved 
methods for predicting true postoperative ACD.

MATERIALS AND METHODS
Postoperative ACD prediction ML model
In previous work,15 we developed an ML-based postoperative 
ACD prediction model, which predicts the postoperative ACD 
(in mm) based on preoperative biometry. Here, in the presented 
study, an ACD prediction ML model was trained using the 
method and dataset (847 patients, 1205 eyes, 4137 records) 
described in the previous research. The dataset was composed 
of the preoperative and postoperative biometry measured by 
the Lenstar LS900 optical biometers (Haag-Streit USA, EyeSuite 
software V.i9.1.0.0) at the University of Michigan’s Kellogg Eye 
Center. The postoperative ACD was defined as the distance from 
the front surface of the cornea to the front surface of the IOL. 
The postoperative ACD predicted by the ML model is referred 
to as ‍ELPML‍ in this manuscript.

Data collection
In this study, biometry records were collected using the same 
approach as for the development of the ML postoperative 
ACD prediction model at University of Michigan’s Kellogg Eye 
Center.15

The inclusion criteria were: (1) patients who had cata-
ract surgery (Current Procedural Terminology (CPT) 
code=66 984 or 66 982) but no prior refractive surgery and no 
additional surgical procedures at the time of cataract surgery. 
(2) The implanted lens was an Alcon SN60WF single-piece 
acrylic monofocal lens (Alcon, USA). Each case in the dataset 
corresponds to one operation of a single eye with preopera-
tive and postoperative information. The preoperative informa-
tion includes the measurements of the AL, lens thickness (LT), 
ACD, flat keratometry (K1), steep keratometry (K2), and the 
average keratometry which was calculated as ‍K =

K1+K2
2 ‍. The 

postoperative information includes the postoperative refraction 

(spherical component SC and cylindrical component CC) where 
the time when it was recorded was closest to 1 month (30 days) 
after surgery. Since the patients were measured in a lane of 10 
feet long (3.048 m), which was shorter than the standard length 
of 20 feet (6 m), the SC was adjusted for the vergence distance 
by adding ‍

1
6 − 1

test distance in meters =
1
6 − 1

3.048 = −0.1614‍ 
according to Simpson and Charman’s recommendation.16 The 
spherical equivalent (SE) refraction was therefore calculated 
as ‍SE refraction =

(
SC− 0.1614

)
+ 0.5CC‍. Samples that were 

used to train the postoperative ACD prediction ML model were 
excluded from the dataset so that the dataset better simulates 
unseen samples.

The dataset in total consisted of 4806 patients (figure 1). The 
dataset was split into a training dataset used for the develop-
ment of the methods and a testing dataset used for performance 
comparison. Eighty per cent of the patients were randomly 
assigned to the training set, and the rest of the patients (20%) 
were assigned to the testing set. For patients who had more than 
one associated case in the testing set (ie, patients who had both 
eyes operated on), one case was randomly selected to ensure 
each patient had the same weight when the prediction perfor-
mance was evaluated. At the end of this process, the training 
set had 3845 patients (5761 eyes), and the testing set had 961 
patients (961 eyes).

Linear regression model
We implemented four existing formulas (Haigis, Hoffer Q, Holl-
aday, and SRK/T) in Python based on their publications.17–24 The 
existing formulas calculated the ELP (‍ELPF‍) as a function of the 
preoperative biometry (figure  1): ‍ELPF = f0

(
biometry

)
‍. The 

predicted ELP (‍ELPF‍) was then used to predict the postoperative 
refraction: ‍refraction = f1

(
ELPF, biometry

)
‍. Here, the goal was 

to reduce the refraction prediction error by replacing ‍ELPF‍ with 
a different value, ‍ELP

′

F‍. Our approach involves two steps: (1) 
finding the theoretically most optimal ELP values, (2) modelling 
the most optimal ELP with ‍ELPF‍ and the ML-predicted postop-
erative ACD, denoted ‍ELPML‍.

In the first step, the most optimal ELP (denoted ‍ELPBC‍) was 
found by the standard method of back-calculating the ELP when 
the predicted refraction was set to equal the true refraction (ie, 

Figure 1  The analysis pipeline of the presented study. ‍ELPF‍ = the effective lens position (ELP) estimated by the existing formulas. ‍ELPML‍ = the 
postoperative anterior chamber depth (ACD) predicted by the machine learning method. ‍ELPBC‍ = the back-calculated ELP (see main text). ‍ELP

′
F‍ is a 

term that refers to a new ELP that is used to replace the ‍ELPF‍ in the existing formulas.
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‍f1
(
ELPBC, biometry

)
= true refraction‍). In other words, when 

‍ELP
′
F = ELPBC‍, the refraction prediction errors of all patients 

equal zero. More details on the computation of ‍ELPBC‍ can be 
found in online supplemental materials.

After the computation of ‍ELPF‍, ‍ELPML‍, and ‍ELPBC,‍ we modelled 
‍ELPBC‍ using a linear function of ‍ELPF‍ and/or ‍ELPML‍ so as to obtain 
an approximation of the most optimal ELP using available variables. 
We compared four different approaches of approximating ‍ELPBC‍ 
: (1) original, ‍ELP

′
F = ELPF‍ : using the original ‍ELPF,‍ (2) Formula 

LR, ‍ELP
′
F = c1 · ELPF + c3‍ : using linearly adjusted ‍ELPF,‍ (3) 

ML LR, ‍ELP
′
F = c2 · ELPML + c3‍ : using linearly adjusted ‍ELPML,‍ 

(4) Formula & ML LR, ‍ELP
′
F = c1 · ELPF + c2 · ELPML + c3 :‍ 

using a linear combination of ‍ELPF‍ and ‍ELPML‍. Here, ‍c1,‍ ‍c2
‍, and ‍c3‍ are constants. Outliers with large refraction errors 
(ie, ‍error ≥ mean error+ 2 · standard deviation‍ or 
‍error ≤ mean error− 2 · standard deviation‍) were excluded for 
each formula before establishing the linear regression model, in order 
to obtain better modelling results. The refraction prediction errors 
were calculated as ‍error = predicted refraction− true refraction‍. 
The linear regression was performed using scikit-learn 0.20.3.

On the testing set, ‍ELP
′
F‍ was calculated based on the values of 

‍c1‍, ‍c2‍, and ‍c3‍ obtained through linear regression. The predicted 
refraction was calculated as ‍refraction = f1

(
ELP′F, biometry

)
.‍ 

The mean absolute error (MAE), median absolute error 
(MedAE) and mean error (ME) were calculated for performance 
comparison.

A-constant optimisation
The A-constants for the formulas were optimised based on the 
training dataset so that the ME in refraction prediction was 
closest to zero. The A-constants were optimised separately 
for the unmodified formulas and formulas with a modified 
ELP estimate (see additional details in the A-constant optimi-
sation section and online supplemental figure S1). The opti-
mised A-constants for the original formulas were: a0=−0.733, 
a1=−0.234, a2=0.217 for Haigis, ACD constant=5.724 for 
Hoffer Q, surgeon factor=1.864 for Holladay, and A=119.089 
for SRK/T (online supplemental table S1).

Statistical analysis
Linear regression analysis was used to assess the significance of the 
correlation between ‍ELPF‍, ‍ELPML‍, and ‍ELPBC‍. To test whether the 
MAE and ME of different methods were significantly different, 

a Friedman test followed by a post hoc paired Wilcoxon signed-
rank test with Bonferroni correction was used. Statistical signif-
icance was defined as the p value<0.05. All the above analyses 
were performed with Python V.3.7.3.

RESULTS
Dataset overview
The cases in the training and testing datasets had a similar distri-
bution according to the summary statistics shown in table  1. 
As elaborated in he Materials and methods section, we calcu-
lated ‍ELPF‍, ‍ELPML‍ and ‍ELPBC‍ based on the formulas and their 
optimised A-constants. The mean and SD of the ELPs calcu-
lated based on the original formulas were summarised in online 
supplemental table S2. ‍ELPBC‍ and ‍ELPF‍ had similar mean values 
in contrast to ‍ELPML‍.

The Pearson correlation coefficients (﻿‍R‍) between ‍ELPF,‍ 
‍ELPML,‍ and ‍ELPBC‍ were shown in table  2. Three ELP-related 
variables were positively intercorrelated with each other. The 
correlation coefficients, ﻿‍R‍, between ‍ELPBC‍ and ‍ELPML‍ were the 
weakest among the three pairs of variables across all formulas.

Linear regression results on the training set
Linear regression models were established based on the training 
set and the ‍R2‍ of alternative linear models were shown in table 3. 
The coefficients of the fitted linear regression line are shown in 
online supplemental table S3. The mean and SD of the ‍ELP

′
F‍ 

resulting from different models are shown in online supple-
mental table S4. For ‘Formula LR’, the ﻿‍R2‍ was larger than that of 
‘ML LR’ for all four formulas. For ‘Formula & ML LR’, the ﻿‍R2‍ 
was larger than that when one of ‍ELPF‍ or ‍ELPML‍ was excluded 
from the linear combination for all four formulas.

Refraction prediction performance comparison on the testing 
set
We tested the performance of four scenarios on the testing 
set and summarised the MAE and SD in table 4. The ME and 
MedAE were shown in online supplemental tables S5 and S6. 
Statistical tests were used to compare the difference in the MAEs 
of different models (see the Materials and methods section). 

Table 1  The summary statistics for the patient demographics for 
the training and testing dataset

Characteristic Training set Testing set

Gender Male: 2514 eyes (43.6%),
Female: 3247 eyes (56.4%)

Male: 425 eyes (44.2%),
Female: 536 eyes 
(55.8%)

Age at surgery (years) 70.99±9.61 70.10±10.24

Preoperative K (D) 43.85±1.64 43.90±1.66

Preoperative AL (mm) 24.19±1.40 24.20±1.41

Preoperative LT (mm) 4.54±0.45 4.53±0.45

Preoperative ACD (mm) 3.24±0.41 3.26±0.41

Postoperative refraction (D) −0.53±0.96 −0.57±0.90

For the age at surgery, preoperative biometry, and postoperative refraction, the 
mean±standard deviation (SD) is shown in the table.
ACD, anterior chamber depth; AL, axial length; D, Diopter; K, keratometry; LT, lens 
thickness.

Table 2  The Pearson correlation coefficients (﻿‍R‍) between ‍ELPF‍, 
‍ELPML‍, and‍ELPBC‍
Index Variable pairs Haigis Hoffer Q Holladay1 SRK/T

1 ‍ELPF ‍vs.‍ELPML‍ 0.751 0.676 0.698 0.636

2 ‍ELPBC‍vs.‍ELPF ‍ 0.621 0.730 0.622 0.633

3 ‍ELPBC‍vs.‍ELPML‍ 0.532 0.544 0.534 0.524

The ‍ELPBC‍ and ‍ELPF‍ were calculated using the A constants optimised based on 
the original formulas. P values of all correlations were <0.05. All ﻿‍R‍ were rounded 
to three decimal places.

Table 3  The ﻿‍R2‍ of alternative least-squares linear regression models 
in the training set

Index Methods Haigis Hoffer Q Holladay1 SRK/T

1 Formula LR 0.377 0.541 0.579 0.394

2 ML LR 0.376 0.442 0.426 0.378

3 Formula & ML LR 0.425 0.622 0.605 0.482

The outlier cases were removed before calculating the above values. The largest 

‍R2‍ among three methods is marked in bold for each formula. P-values of all 
correlations were < 0.05.

https://dx.doi.org/10.1136/bjophthalmol-2020-318321
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https://dx.doi.org/10.1136/bjophthalmol-2020-318321
https://dx.doi.org/10.1136/bjophthalmol-2020-318321
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Using a linear combination of ‍ELPF‍ and ‍ELPML‍, the refraction 
prediction results of four existing formulas were significantly 
improved compared with original ‍ELPF‍ (statistical test results 
shown in online supplemental tables S7 and S8).

We further compared the MAEs of ‘Original’ and ‘Formula & 
ML LR’ among patients with short, medium and long AL (online 
supplemental table S9). It was observed that the short and 
medium AL groups had a higher percentage decrease in MAE 
than the long AL group for Hoffer Q and SRK/T. For Haigis, 
the medium AL group achieved higher decrease than the other 
two groups. And for Holladay, the long AL group achieved more 
decrease in MAE than the other two groups.

DISCUSSION
In this study, we applied a previously developed ML method for 
postoperative ACD prediction to an unseen dataset of 4806 cata-
ract surgery patients to assess whether it was possible to improve 
the performance of existing IOL formulas (Haigis, Hoffer Q, 
Holladay, and SRK/T) by replacing each formula’s ELP estimate.

We computed three ELP-related quantities: the ML-predicted 
postoperative ACD (‍ELPML‍), formula-predicted ELP (‍ELPF‍), and 
a back-calculated ELP (‍ELPBC‍) that minimised the refraction 
error for each eye in the dataset. They are strongly correlated 
with each other (table  2), which indicates that (1) ‍ELPF‍ and 
‍ELPML‍ are both predictive of the most optimal ELP ‍ELPBC‍, (2) 
‍ELPF‍ and ‍ELPML‍ contain partially overlapping information, 
which is consistent with our expectation. ‍ELPML‍ is an estimation 
of the value of the true postoperative ACD. On the other hand, 
‍ELPF‍ was designed by the originators of each formula to serve a 
similar purpose but was based on the theoretical assumptions in 
each formula. Our findings are consistent with observations of 
previous studies that the ELP estimates made by IOL formulas 
were numerically different from the true postoperative ACD.9

Using a training dataset of 3845 patients, we sought to eval-
uate whether the machine-predicted postoperative ACD, ‍ELPML‍, 
was able to provide information that could be used to refine each 
formula’s predicted ELP, ‍ELPF‍. We established regression models 
between the ‍ELPML‍, ‍ELPF‍, and ‍ELPBC‍ to evaluate whether a linear 
combination of ‍ELPML‍ and ‍ELPF‍ used in place of the original ‍ELPF‍ 
could lower the refraction prediction error. Using the modified 
ELPs, we obtained significantly lower MAEs in refraction prediction 
compared with the formulas with the original ELPs on the unseen 
testing set (table 4). Notably, the accurately predicted postoperative 
ACD (‍ELPML‍) alone did not outperform the original ELP (‍ELPF‍) 
when it was inserted into the formulas (table 4, row 3 compared 
with row 1). This is likely because the original method of calculating 
ELP in each formula compensates for its particular model of the eye 
and its associated assumptions. Our ‍ELPML‍, however, does not have 
any components that compensate for the assumptions and constants 
in the formulas. On the other hand, ‍ELPML‍ has information about 

the true postoperative ACD, which it appears can beneficially alter 
the original ELP estimate.

In this study, the A-constants were optimised separately when 

‍ELPF‍ was replaced with different ‍ELP
′
F‍. The means of ‍ELP

′
F‍, as 

shown in online supplemental table S4, were numerically close to 
those of ‍ELPF‍ as shown in online supplemental table S2. However, 
in our method, the similarity between ‍ELP

′
F‍ and ‍ELPF‍ was not 

among the restrictions and goals of the optimisation. The reason 
that ‍ELP

′
F‍ and the original ‍ELPF‍ had similar means might be that 

the other parts of each formula put restrictions on the values of ELP 
in order to obtain reasonable results. This could also be the reason 
why ‍ELPBC‍ and ‍ELPF‍ had similar means as shown in online supple-
mental table S2.

Previous studies involving replacement of ELP in existing 
formulas have focused on special cases, such as sulcus implantation 
and postrefractive surgery eyes, where ELP estimates of traditional 
formulas would be expected to be inapplicable.10 11 However, the 
method for replacing ELP estimates presented here provides a 
simple way of improving the refraction prediction performance of 
existing formulas for the general cataract surgery population. While 
it would be ideal to evaluate this method on modern formulas such 
as Barrett Universal II or Holladay 2, the absence of published equa-
tions for these formulas prevents such a study. As such, we studied 
the application of the ML predicted postoperative ACD in four 
existing formulas whose mathematical equations were published. 
Although it awaits to be further validated, similar results can likely 
be transferred to other refraction prediction methods, since many 
modern IOL power formulas use predicted postoperative ACD 
as an intermediate step for predicting postoperative refraction. A 
limitation of the study was the absence of an external validation set, 
despite the use of a large unseen testing dataset (961 eyes). Accord-
ingly, evaluation of the method at additional institutions and the 
extension to additional formulas will be future directions of this 
work.

In summary, the results of this study demonstrate that an ML 
method for postoperative ACD prediction based on postoperative 
optical biometry can be incorporated into a variety of existing IOL 
power formulas to improve their accuracy in refraction prediction.
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