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Achieving accurate predictions of urban NO, concentration is essential for effectively control of air pollution. This paper selected
the concentration of NO, in Tianjin as the research object, concentrating predicting model based on Discrete Wavelet Transform
and Long- and Short-Term Memory network (DWT-LSTM) for predicting daily average NO, concentration. Five major at-
mospheric pollutants, key meteorological data, and historical data were selected as the input indexes, realizing the effective
prediction of NO, concentration in the next day. Firstly, the input data were decomposed by Discrete Wavelet Transform to
increase the data dimension. Furthermore, the LSTM network model was used to learn the features of the decomposed data.
Ultimately, Support Vector Regression (SVR), Gated Regression Unit (GRU), and single LSTM model were selected as com-
parison models, and each performance was evaluated by the Mean Absolute Percentage Error (MAPE). The results show that the
DWT-LSTM model constructed in this paper can improve the accuracy and generalization ability of data mining by decomposing
the input data into multiple components. Compared with the other three methods, the model structure is more suitable for

predicting NO, concentration in Tianjin.

1. Introduction

With the development of urbanization and industrialization,
per capita energy consumption increases year by year. In
addition to natural sources such as dust storms, bush fires,
and volcanic eruptions, increased nitrogen dioxide (NO,)
from vehicle exhaust and boiler exhaust has become one of
the major environmental problems facing most countries in
the world [1]. In China, the number of air quality standards
and the average number of days with good air quality in 338
cities have increased year by year recently. However, in the
Beijing-Tianjin-Hebei region and surrounding areas, the
concentration of six air pollutants (PM2.5, PM10, O3, SO,,
NO,, and CO) decreased the least, except ozone (O3). And,
the same is true for Tianjin. In addition, the annual average
concentration of NO, in Tianjin in 2018 was 47 micrograms
per cubic meter, exceeding the national annual average
concentration standard (40 micrograms per cubic meter).
NO, has become the most important pollutant affecting the

air quality of Tianjin. All of these data above are obtained
from the website http://www.mee.gov.cn/hjzl/zghjzkgb/
Inzghjzkgb/.

In fact, nitrogen dioxide dissolves in water in the air to
form acids, which may lead to the occurrence of acid rain
and react with ultraviolet radiation to form photochemical
smog. In addition, human exposure to NO, of different
concentrations may lead to lung function damage of dif-
ferent degrees, seriously affecting industrial production and
social activities [2]. Therefore, the effective detection and
accurate prediction of NO, and the establishment of a highly
accurate and stable prediction model can provide an early
warning of air pollution emergencies and guide the release of
NO, control measures and public health protection work.

The existing research on the prediction of atmospheric
pollutant concentration can be roughly divided into three
categories. The first category is the deterministic method
based on the physical and chemical change model of the
atmosphere [3-5]. The second category is the use of
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computational methods based on regression and neural
networks. The third category is the optimal combination
model based on the second category. The deterministic
approaches with no need for a large amount of historical
data require a complete knowledge of pollution sources,
timely emission quantities, main chemical reactions of the
gaseous pollutants, and spatiotemporal physical transfor-
mation processes. The second and third types of compu-
tational methods usually require a large amount of historical
measurement data under various meteorological conditions.

Wang et al. [6] used the Weather Research and Fore-
casting model coupled with Chemistry (WRF—Chem) for a
serious pollution incident in Beijing in December 2016. The
accompanying sensitivity analysis in this paper could cap-
ture the influence of emission sources on the concentration
of target pollutants in different regions and different time
periods, which provided a good reference for formulating
effective emission reduction measures and regional air
pollution prevention and control. However, due to the
limitations of the resolution of existing models and other
issues, the pollution events studied cannot be further utilized
for other pollution events of different seasons and types.
Baykara et al. [7] applied CMAQ (5.2), based on the heating
activity data of local residents in Istanbul, to explore the
influence of emissions from the residential heating sector on
the level of environmental particulate matter. They thought
that winter was the time when residential heating sector
mainly affects regional air quality. A possible reason for this
was the increase in coal burning that produces sulfur dioxide
emissions but not for other man-made emissions.

The data-driven model mainly conducts a statistical
analysis of air quality data and related factors to obtain
scientific conclusions. In terms of linear correlation analysis,
scholars have put forward a series of methods, such as
geographic weighted regression (GWR), geographical and
time-weighted regression (GTWR), and land use regression
(LUR). Hinojosa-Balifio et al. [8] used meteorological, de-
mographic, geographical, and social data and mixed geo-
graphic information system (GIS) and LUR to generate the
prediction model and spatial distribution of PM2.5 air
pollution. Alahmadi et al. [9] used a local GWR model in the
GIS environment to describe and quantify the contribution
of transportation sector emissions to the NO, concentration
in the Red Sea, but the limitation is the unavailability of some
data. Further, Mirzaei et al. [10] used the GTWR model to
study the spatial-temporal variability between PM2.5 con-
centration at ground monitoring stations and satellite
aerosol optical depth (AOD) data. However, in warm season,
there were defects in the retrieval algorithm when detecting
the low value of particulate matter, which lead to a decrease
in the prediction accuracy of the model, and thus affected the
simulation output. The application of machine learning
algorithms, such as random forests, support vector machines
(SVMs), and artificial neural networks (ANNSs), takes the
nonlinear relationship into consideration and improves the
accuracy of prediction [11-13]. Masih [14] employed an
integrated data mining tool that used random forests to
predict the concentration of nitrogen dioxide in the at-
mosphere taking the emission inventory and meteorological
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parameter monitoring data set as input prediction factors,
and compared them with M5P and SVM, demonstrating the
superiority of the model. Liu et al. [15] used support vector
regression (SVR) to make a collaborative prediction of the
Chinese urban air quality index (AQI). Experiments showed
that when there was a strong interaction and correlation
between air quality characteristic attributes and the air
quality index, the MAPE (Mean Absolute Percentage Error)
value of the multicity multidimensional regression model
decreased. Cabaneros et al. [16] applied a mixed artificial
neural network to the prediction of urban road NO,. Mishra
and Goyal [17] developed an NO, concentration prediction
model based on an artificial intelligence neuro-fuzzy model.
However, these prediction models cannot capture both long-
term and short-term characteristics, so Long Short-Term
Memory (LSTM) is often used to predict air quality and
pollutant concentration with time series characteristics. Li
etal. [18] used LSTM layers to automatically extract inherent
useful features of atmospheric pollutant data to predict the
PM2.5 concentration in Beijing in the next hour. Following
this, Reddy et al. [19] extended the prediction from a single
time step to the next 5 to 10 hours based on the time series
data of pollution and meteorological information of Beijing.

However, the above model may lead to insufficient ac-
curacy due to its potential convergence to local minima and
overfitting [20]. In recent years, with the development of
artificial intelligence and big data analysis, hybrid methods
based on various information processing methods and deep
learning methods have been widely used [21-26]. Kordestani
and Samadi used distributed neural network and Bayesian
algorithm to predict the remaining service life of Multi-
functional Spoilers (MFS). Taking the data of LJ2000 series
fighter data as samples, the hybrid prediction method was
evaluated with relative accuracy, and it was found that the
prediction effect of distributed structure was better [27].
Rezamand et al. constructed a hybrid prediction method
based on real-time Supervisory Control and Data Acquisi-
tion (SCADA) and vibration signals to predict the
Remaining Useful Life (RUL) of wind turbine bearings,
made an empirical analysis of the hybrid model, and con-
cluded that the prediction accuracy of this method was
higher than that of the Bayesian algorithm [28]. Chen,
Zhang, and Vachtsevanos proposed a prediction method of
machine health condition based on Neural-Fuzzy Systems
(NFSs) and Bayesian algorithm. Two examples of a cracked
bearing plate and a faulty bearing were used to verify the
effectiveness of the hybrid prediction method. The experi-
mental results show that the hybrid method can effectively
predict the running condition of the machine [29]. Bai et al.
[30] proposed a neural network with long- and short-term
memory (E-LSTM) to predict PM2.5 concentration per hour
and added mode decomposition (EMD) to the LSTM
foundation, effectively improving the prediction accuracy.
Zhao et al. [31] proposed a data-driven model called the
LSTM-FC neural network, which uses historical air quality
data, meteorological data, and weather forecast data to
predict PM2.5 pollution over 48 hours at a particular air
quality monitoring station. Other researchers, such as Pak
et al. [32], proposed that a mixed model convolutional
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neural network (CNN) combined with long- and short-term
memory (CNN-LSTM) has better seasonal stability and
prediction performance compared with the single LSTM
model. Wu and Lin [33] developed a hybrid model called
VMD-SE-LSTM which applies VMD (Variational Mode
Decomposition) technique to decompose the AQI data and
employed SE (Sample Entropy) to recombine these com-
ponents and train each recombinant subsequence with an
LSTM neural network. This model not only improves the
precision but also has good generalization ability.

Although the data decomposition and deep learning
model have been combined in existing studies, the combi-
nation model of wavelet transform and deep learning
method has not been applied to the prediction of air pol-
lutant concentration. The novelties of this study is to take
Tianjin as an example and build a DWT-LSTM combined
model to predict the NO, concentration of the city in the
future. In addition, through an empirical analysis of the NO,
concentration in Tianjin, it is concluded that the prediction
effect of the DWT-LSTM model constructed in this paper is
better than that of the SVR, GRU, and single LSTM models.
At the same time, the prediction results can provide early
warning for air pollution emergencies in Tianjin and guide
the introduction of NO, control measures and public health
protection.

The above research is of certain use for the prediction of
NO, concentration in the regional atmosphere. In this study,
a data processing method based on discrete wavelet de-
composition combined with an LSTM deep learning algo-
rithm achieves the purpose of relatively accurate prediction
of NO, concentration in Tianjin. The main contributions of
this study are as follows: (1) the use of wavelet decompo-
sition to carry out dimensional processing of data, optimize
input variables, and improve the prediction accuracy of the
LSTM model; (2) the development of the DWT-LSTM
prediction model; (3) the consideration of the correlation
between traditional LSTM prediction results and wavelet-
LSTM results and actual data, verifying that data can im-
prove the prediction accuracy and stability of the LSTM
model through wavelet decomposition.

2. Research Area and Data

The geographical area of this study is Tianjin, China, located
in the north China plain (117:10¢39:10n, Figure 1). As of July
1, 2019, the Tianjin environmental air quality monitoring
network has been established, covering the central urban
area, the four districts around the city, the new Binhai area
and other districts. Each point has six regular air pollutant
monitoring capabilities, including PM10, PM2.5, SO,, NO,,
CO, and Os. Since 2013, the Tianjin environmental air
quality GIS platform has been used to release environmental
air quality information for all monitoring points in Tianjin
to the public. Now there are 16 national control stations and
11 municipal control stations with a total of 27 testing
stations.

We collected the daily average data of PM2.5, PM10,
NO,, SO,, O3, and CO on January 1, 2014, solstice to June 30,
2019 (2007 days) in Tianjin and used the latest available data

to correct the missing data of each type of air pollutant. In
addition, we also downloaded meteorological observation
data from the Chinese meteorological website platform
established by the China meteorological administration
(CMA), including wind speed, temperature, and weather
conditions.

The output predictor of the experiment is the daily
average concentration of NO, in Tianjin, which is shown in
Figure 2. In Figure 2(e), it can be seen that the NO,
concentration exhibits obvious periodicity, namely, high
concentrations in the winter and summer concentration is
low. Figures 2(a)-2(d) show the graph of the concentra-
tions of PM2.5, PM10, SO,, and CO, respectively, over the
same period. It can be seen that the four kinds of pollutant
and NO, exhibit the same periodic variation. Figure 2(f)
shows the O3 concentration graph, where it can be seen that
O; has periodic changes that are opposite to the other five
pollutants. This may be because low-altitude O3 is usually
prone to produce and exceeds the standard in high tem-
perature seasons [34]. The wind force was quantified
according to the method of Bai et al. [35]. We graded the
weather conditions according to how good or bad they were
and quantified the weather indicators. The data (five pol-
lutants, temperature, weather, wind data, and historical
NO,) from January 2, 2014, to May 26, 2018, were used for
training. The data from May 27, 2018, to June 30, 2019, were
used for testing, also in conjunction with the NO, historical
data.

Statistical descriptions of six pollutants are given in
Table 1, where Oj is the 8-hour average concentration.

3. Methodologies

3.1. Long Short-Term Memory. The LSTM neural network is
a popular recursive neural network algorithm, which was
first proposed by Hochreite and Schmidhuber to improve
the memory of long (static) and short (cyclic) dynamic
features of time series [36]. Similar to the traditional re-
current neural network model, this approach models time
data by mining the circular connections between neurons
and mining the internal connections between time series
data. However, unlike traditional circular neural network
models, it has a unique neuron structure called a “memory
unit.” The hidden layer of an LSTM network constructed by
this approach can store time information of any length to
obtain a more accurate time series model.

The memory unit structure of the LSTM network is
shown in Figure 3 [37]. The fixed length window of the time
series is generated and input into the LSTM network.
Multiple LSTMs can be superimposed to learn more com-
plex patterns of sequential information [38]. The memory
module consists of an input gate, forgetting gate, output
gate, and a loop unit. Its core idea is to control the switch of
each gate by a nonlinear function, to protect and control the
state of the memory unit, so as to control the increase or
decrease of information [39]. Therefore, the key of an LSTM
network is to store data information through the state of the
storage unit for a long time. In general, the output value of
the three gates is 0~1, and the sigmoid function is used to
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TaBLE 1: Statistical descriptions of the main indicators.

PM, 5 PM,o SO, CcO NO, O;
Unit pg/m? pg/m’ pg/m? mg/m? pg/m? pg/m’
Mean 66.49 106.18 23.87 1.33 47.39 93.07
Std. 49.71 65.21 25.53 0.74 21.98 56.67
Min 13 38 6 0.6 19 10
Max 383 483 23 9 176 286
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FiGure 3: Structure of an LSTM neural network.

determine how much information can be input to the
memory location. The main formula is as follows:

i = U(Wixt + R"hH +U oc,_ + bi), (1)
fi= a(fot +Rh,_  +Uoc, | + bf), (2)
¢, = tanh (Wx, + R°h,_; +b°), (3)
¢ = frocy +isoc, (4)
0, =0(W°x, + R°h,_; + U’ o, + 1), (5)
h, = o,tanh (c,), (6)

where o represents the Hadamard product and tanh is used
as the activation function. x;, ¢,, and h, are the input, storage
unit state, and output of the LSTM at time ¢, respectively,
while i,, 0,, and f, are the function values of the input gate,
output gate, and forgetting gate, respectively. c; is the input
modulate gate, which determines how much new infor-
mation can be received. o (-) is the sigmoid function, R, W,
and U are weight matrixes, iis the input, f is the forget, c is
the cell structure, o is the output. W, represents the weight
matrices, and its superscript represents the two variables
connected by the matrix. For example, W' is the weight
matrix between the input and the input gate and b is the
deviation of the gate.

3.2. Discrete Wavelet Transform. Considering that the
concentration of NO, in the atmosphere is related to the
other five major pollutants, wind force, weather condi-
tions, temperature difference, and other factors, the daily
average NO, concentration series is nonstationary, vol-
atile, and time-ordered. The above factors have different
effects on NO, concentration. The input signal contains
various frequency components: the contributions of low-
frequency and high-frequency components to the dy-
namic characteristics of wind power data are different. If
the components of these different frequencies can be
learned by independent LSTMs, it will improve the per-
formance of data mining. Therefore, the divide and
conquer strategy requires that the original wind power
data be decomposed into low-frequency and high-fre-
quency signals through appropriate decomposition al-
gorithms. In this paper, a discrete wavelet transform is
used to decompose the original input data. It makes use of
the time scale function to analyze the data and makes the
wavelet transform have a multiscale resolution and time-
shift characteristics. The scaling operation can observe
signals of different scales. Therefore, a wavelet transform
is very suitable for dealing with nonstationary time series
including air pollutant data.

Assuming that x(t) squared can be integrated, x(t) can be
expanded under the wavelet basis function. This operation is
called the continuous wavelet transform of x(tf). The
mathematical definition of the wavelet basis function is
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The mathematical definition of the x(f) continuous
wavelet transform is given as

W (a,b) = (x (5,7, , (£)) = LJ xt(t)GD(ﬂ)dt.
> la] J r a
(8)

In equations (7) and (8), y () can be considered as the
parent wavelet function. a is the scale parameter and b is the
time center parameter. When a and b change continuously,
the whole transformation process is called a continuous
wavelet transform. However, in practical applications,
continuous transformation greatly increases the computa-
tional complexity, application cost, and implementation
difficulty and is usually replaced by a small step discrete
wavelet (DWT) [40].

A discrete wavelet transform makes the application of a
wavelet transform easy to realize. The exponential dis-
cretization of parameters a and b reduces the computational
complexity and avoids the information redundancy brought
by a continuous wavelet transform. The discrete wavelet
transform of x(t) is defined as

(t-b\
W, (]> k) ={x(t), \Pj,k (1)) = ﬁ ijt (t)q)(ta)dt.
9)

In equation (9), a and b are discrete. a= a{),b =
kalby,aq>1,b,>0,j € Z,k € Z.

The discrete wavelet transform is the Mallat algorithm
proposed in 1988 [41]. This is actually a signal decompo-
sition method. For the multiresolution characteristics of
wavelets, variable j is used to determine the resolution at
different scales. Specifically, the main outline of the original
signal is observed on a large scale, and the detailed infor-
mation of the original signal is observed on a small scale.
Finally, with gradually increasing j the results come out: one
approximation value (i.e., low-frequency component) and »
(which needs to be artificially set) detailed signals (i.e., high-
frequency) d,,, d,,_1, d,—s, - . ., d; [42]. The original signal and
two kinds of subsignals are satisfied by the following
formula:

x(t)=a,+d,+d,_,+---+d,. (10)

The schematic diagram of the discrete wavelet transform
decomposition is shown in Figure 4.

3.3. Overview of DWT-LSTM. The LSTM neural network
model is used to identify data patterns, and wavelet de-
composition is used to decompose the input data. The
prediction model combined with the wavelet transform and
LSTM neural network consists of the following stages:
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FIGURE 4: Three-layer wavelet decomposition.

Step 1: add the original data set {M,,M,,...,M,}
which is normalized, and the experimental data set
{D,,D,,...,D,};

Step 2: set {D,,D,,...,D,} can be decomposed
through m layers to obtain the high-dimensional input

information set (X, X5 ..., Xih where
X;=(ApiDy 5. sDyiy), I1=1,2,...,t. The de-
composition result at time t+1 is
X¢11 = (A Dips - Dy s

Step 3: use the new data set {(X},Y;)}._, to train the
LSTM model. Through repeated data training and data
testing, adjust parameters and get the optimal pre-
diction model f (X;), as shown in Figure 5.

Step 4: the predicted value f (X/,,) of the concentration
of air pollutants in stage ¢ + 1 can be measured by using
the prediction model obtained above and according to
the input vector X,,, obtained in stage t + 1.

Step 5: repeat steps 1-4 to obtain the predicted results
FXD, s f(X)

As the purpose of this study is to predict the Tianjin daily
average concentration of NO,, the input index includes two
kinds of data, pollutant concentration, and meteorological
factors. First, the meteorological factor information is
quantified for further processing. The quantitative data are
used for integration with other numeric data, but due to
abnormal fluctuations, it will seriously affect the prediction
ability. The consolidated data are normalized using Min-
Max methods [43]:

m;; — Min (31, Miz07)

" Max (i1, Min07) — Min (11, My3097)° (11)

i=1,2,...,9j=12,...,2007.

The normalized data are used as the original signal for
wavelet decomposition. As shown in Figure 6, a group of
low-frequency subsignals and three groups of high-fre-
quency subsignals of each original data were selected as
input data and used for training and validation by LSTM
neural networks. The best prediction model is obtained by
adjusting the parameters and the structure of the design
model.

3.4. Model Parameters and Performance Indicator. The
prediction model proposed in this paper was implemented
using Python 2.7 in Matlab 2017a and the Linux system
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FIGURE 5: Prediction experiment process.

environment. The DWT-LSTM model adopts 3-layer
wavelet decomposition and the Daubechies (DB) wavelet
basis function. In network parameter setting, the primary
parameters of LSTM include learning rate, max epochs,
batch size, number of hidden layers, and tine step. In the best
model, learning rate is 0.0001, max epoch is taken as 500,
number of hidden layers is 32, and time step is 3. The se-
lection of the relevant parameters in the model targets mean
absolute percentage error (MAPE) minimization [44], and
this is an important indicator to measure prediction accu-
racy in the statistical field and is also widely used in the
prediction of air pollutant concentrations. The MAPE index
was used to measure the error of the prediction algorithm
and compare it with other algorithms. Not only was the error
between the predicted value and the true value considered
but also the ratio between the error and the true value was
considered [45]. The following equation gives the calculation
of MAPE:

L& yi- 7
MAPE = - ¥y PiZ Vil (12)
”; Yi

where y; is the observed NO, concentration, y; is the
predicted NO, concentration, and n is the number of de-
tected samples.

4. Results and Discussion

4.1. Data Description. This paper selects six air pollutants of
PM2.5, PM10, NO,, SO,, O3, and CO and three meteoro-
logical observation factors of wind speed, maximum

temperature, and minimum temperature, as input indexes.
In order to evaluate the accuracy of the NO, concentration
prediction model, the index data from January 1, 2014 to
June 30, 2019, with a total of 2007 points, were selected in
this paper. The original data sample was divided into two
data sets: 80% of the original data (1606 data points) were
used as the training sample, and the remaining 20% of the
original data (401 data points) were used as the test sample to
evaluate the prediction performance of the model.

4.2. Results of the Wavelet Transform. The LSTM method is
suitable for time series prediction as it has good prediction
performance. Also, the LSTM model can effectively repre-
sent the nonlinear relationship between the input vector and
prediction target through the use of a kernel function.
Appropriate high-dimensional input vectors can describe
the information in features more effectively and accurately
and express the meaning of the data. Therefore, the pre-
diction performance depends largely on the choice of input
vector in model design. In this study, when the LSTM model
is used to predict pollutant concentration, in order to make
the prediction results more accurate and stable, the struc-
tural transformation of the input variables can be deter-
mined to obtain a new set of input variables. By using
wavelet decomposition, the data are promoted from one-
dimensional data to high-dimensional data, which fully
represents the trend of data change and improves the
prediction accuracy. In this study, wavelet decomposition is
based on the wavelet basis function of Daubechies (DB).
Daubechies has low-pass and high-pass filtering
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characteristics and is suitable for feature selection. Due to its
inherent orthogonality, the Daubechies wavelet can be used
widely and shows good performance in analyzing applied
time series data.

Using the Matlab tool, low-frequency approximate in-
formation and high-frequency information obtained by
wavelet decomposition transformation are taken as another
new input vector group of the LSTM model to form a new
prediction data set of the six kinds of air pollutants (PM10,

PM2.5, NO,, SO,, O3, and CO). The transformation results
are provided in Figure 7, which shows the high-frequency
information group and the low-frequency information
group. The set of wavelet decomposition transforms the
density time series data of the three input characteristic
variables to generate high-dimensional input vectors, which
effectively increases the amount of data representation in-
formation and significantly improves the prediction stability
of the model.
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4.3. Result of Prediction. We compared the performance of
the proposed DWT-LSTM model with that of SVR, GRU
and the single LSTM model and trained and tested these
models with the same training and test set applicable to the
DWT-LSTM model. In order to evaluate the effectiveness of
this method, we added two indexes: root mean square error
(RMSE) and average absolute error (MAE). These indicators
can be expressed as follows:

RMSE =

171 *\2
;;(yi_yi)’

(13)

1 ¢ ¥
MAE =~ 3 ]y, - y;.
i=1

Figure 8 intuitively shows the experimental results of the
four prediction models. Through visual analysis, it can be seen
that the prediction curve of the SVR model is relatively flat, it
is difficult to accurately predict the fluctuation of data, and it
presents a fluctuation trend opposite to the target value in
some time periods. GRU, a variant of the LSTM, algorith-
mically combines forgetting and input gates into a single
update gate, as well as a mixture of cellular and hidden states,
and other changes. Although it has better performance in
some experiments [46], its performance in this experiment is
not as good as that of the single traditional LSTM model;
especially it cannot predict outliers well. The LSTM model
performs well regarding outliers (maxima and minima). For
example, the prediction accuracy of a single LSTM model is
better than that of the other three models on the two maxima
of day 185 and day 206 and the two minima of day 155 and
day 259. In order to objectively evaluate the performance of
the four models, we calculated the predicted results according
to the above formula, and the results are shown in Table 2. The
evaluation results show that the performance of the DWT-
LSTM model is better than that of the other three neural
network models. Although the performance of the predicted
outliers is not as good as that of the single LSTM model, the
overall prediction accuracy is the highest.

The value of MAE and RMSE can explain the above
phenomena, and the average absolute error and the average
error of the LSTM model are greater than the DWT-LSTM
model, which shows that the predictive value of the LSTM
model is large, so it is also more likely to approximate the
real value in the case of abnormal values. But the average
absolute error and the average mean and mean error are
relatively small, and the relatively small number of changes is
far from the real value, which is higher than the other models
and can more effectively predict the change of the con-
centration of NO,, which can be more effective in the
prediction of other areas or other pollutants and more ef-
fectively guide the prevention and control of air pollution.

4.4. Analysis of Influencing Factors. In order to explore the
relationship between various factors and NO, concentration,
we changed the input indexes and conducted a series of
experiments:

Computational Intelligence and Neuroscience

(1) To investigate whether the weather conditions, wind
power, and temperature difference are related to the
concentration of NO,, we eliminate the meteoro-
logical index and only used NO, historical data and
other 5 pollutants as input indicators for fitting. The
results showed that the MAPE increased from
11.58% to 13.54%, proving that the meteorological
index correlated with the concentration of air pol-
lutants. Then, on the basis of the above experiments,
we successively added weather condition indicators,
temperature difference, and wind force in the ex-
periments, and the MAPES were 13.63%, 13.61%,
and 11.53%. It is proved that among the three me-
teorological factors, wind power has the largest effect
on NO, concentration; weather condition and
temperature difference do not have much effect.

(2) In order to explore the relationship between pol-
lutant concentration and NO, concentration, we
firstly forecast the historical data of NO, as a single
input, and the MPAE is 16.61%. This proves that the
historical data alone cannot effectively predict the
future NO, concentration. As a result, we will ex-
plore which major air pollutants have the greatest
impact on NO, in the future. On the basis of the
historical data of NO,, we successively add PM2.5,
PM10, SO,, CO, and O; to carry out five groups of
experiments, and the MAPE of the results is 14%,
14.96%, 15.39%, 12.68%, and 16.8%. It is shown that
the effect of CO on NO, concentration is the largest,
followed by PM2.5 and PM10, SO,, and O; having
little effect on NO, concentration.

4.5. Analysis of NO, Concentration Change. From 2014 to
the first half of 2019, the NO, concentration in Tianjin
showed an overall downward trend. The seasonal periodic
change rule remained unchanged, and the peak value in
winter also showed a downward trend every year. This shows
that Tianjin has paid more attention to the ecological en-
vironment during the 13th five-year plan period, and its
specific work has achieved results.

(1) Since 2011, Tianjin has been working in the devel-
opment of new energy vehicles and has issued a
series of related documents. By 2015, energy saving
and new energy vehicles in the city increased to a
total of more than 60000. In 2017 and 2018, this
increased to 79000 vehicles. The promotion of new
energy vehicles resulted in 36% of the total transport
buses being new energy buses, bringing the total that
has been put into operation to 3670. By the end of
April 2019, the number of new energy vehicles in the
city had reached 125,000. As a result, the coal
consumption and oil consumption in Tianjin also
tended to decline, and the concentration of NO, in
the air also decreases accordingly.

(2) During this period, Tianjin carried out the optimi-
zation and upgrading of traditional industries and
forced the closure of a series of enterprises with
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FIGURE 8: The forecasting results of different models.
TaBLE 2: Comparison of forecasting performances using different models.
Method MAPE (%) MAE RMSE
SVR 25.8688 10.1734 13.1987
GRU 18.3897 6.9120 8.8052
LSTM 17.8518 7.0439 9.0199
DWT-LSTM 11.5884 4.3377 5.9291

serious pollution emissions, especially internal
combustion engine production enterprises and
nonferrous and ferrous metal smelters. On the basis
of the traditional manufacturing industry, the in-
dustrial structure has been adjusted, focusing on the
development of high-end equipment, new-genera-
tion information technology, aerospace, new energy
vehicles, new materials, biomedicine, new energy,
energy conservation and environmental protection,
modern petrochemical, modern metallurgy, and ten
other industries, while paying attention to the de-
velopment of the service industry. Therefore, NO,
emissions are reduced by reducing emission sources.

(3) We can clearly find that the concentration of NO, in

spring and winter is higher than that in summer and
autumn in Tianjin. This phenomenon may be caused
by the low temperature in spring and winter, which is
not conducive to the diffusion of NO, and leads to an
increase in concentration. For Tianjin, this may be
related to the cold weather in winter and spring,

which requires a large amount of coal burning and
some natural gas to heat the city. Fossil fuels such as
coal produce a large amount of nitrogen dioxide,
leading to an increase in the total NO, content. In
addition, although fireworks are banned in Tianjin,
fireworks are still set off in rural areas due to in-
sufficient supervision, leading to an increase in the
concentration of NO, in the city.

4.6. Cause of Prediction Deviation. In 2012, the ministry of
environmental protection and the general administration of
quality supervision, inspection, and quarantine jointly
issued the environmental air quality standard (GB 3095-
2012), which has been implemented nationwide since Jan-
uary 1, 2016. The implementation of the new standard is
slightly different from that before in the way pollutants are
counted, so the numerical performance is inconsistent
within the statistical range. In addition, the accumulation of
historical data is insufficient, the high concentration value of
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heavy pollution days is less, and the limited training data
brings great uncertainty to the prediction of high values.

On the other hand, DWT-LSTM is a data-based statistical
model, which mainly relies on the empirical formula of
meteorological parameters and historical monitoring data,
and fails to consider the atmospheric chemical transforma-
tion, pollution source emission change, and regional trans-
mission process. NO, reacts photochemically with O; and
acts as a catalyst in the air to convert O, into O3. Most of the
NO produced by human activities comes from the com-
bustion of fossil fuels, such as automobiles, airplanes, internal
combustion engines, and industrial kilns. It also comes from
the process of producing and using nitric acid, such as ni-
trogenous fertilizer plant, organic intermediate plant, non-
ferrous, and ferrous metal smelting plant. NO reacts with the
oxygen in the air in the atmosphere, generating NO,.
Therefore, NO, is associated with changes of industrial
structure adjustment and pollution emissions. At the same
time, external sources also contribute significantly to pol-
lutant concentration during heavy pollution period.

5. Conclusions

In this study, a combined prediction model was established
based on discrete wavelet decomposition and a neural
network method to predict NO, concentration in Tianjin.
The conclusions are as follows:

(1) The combined prediction model uses wavelets to
decompose the time series data of air pollutant
concentration and takes the low-frequency and high-
frequency data obtained after decomposition as in-
put variables at the same time, thus increasing data
dimensionality. Through the use of information
representation of pollutant concentration time series
data at different frequencies, the characteristics of the
data can be better described.

(2) The prediction model was built using an LSTM
neural network, a high-dimensional nonlinear
learning algorithm. When applied to the prediction
of Tianjin NO, concentration, the performance was
not as good as that of a single LSTM model, but the
overall prediction accuracy was the highest. How-
ever, due to the low dimensionality of pollutant
concentration time series data, the representation of
the information is incomplete, affecting the ability of
the prediction model to generalize.

(3) The DWT-LSTM neural network method can be
used to accurately predict the air pollutant con-
centration. Compared with the single LSTM model,
the MAPE decreased from 17.85% to 11.58%; the
MAE and RMSE increased to 4.3377 and 5.9291,
respectively.

(4) The practical significance of the use of a statistical
prediction method for urban development and social
activities is demonstrated by discussing the reasons
underpinning prediction deviations and NO, con-
centration change.

Computational Intelligence and Neuroscience

In the process of data modeling, because of the limitation
of the hardware used in the experimentation, the data cannot
be fully analyzed, including the exploration of the structure
of the neural network, leading to less complex model design.
Research in the future will increase the dimension of data
collection and carry out further experiments and explora-
tions under the improved hardware environment.
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