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Abstract. Epigallocatechin‑3‑gallate (EGCG), a polyphenol 
present in green tea, exhibits anticancer effects in various types 
of cancer. A number of studies have focused on the effects of 
EGCG on lung cancer, but not ovarian cancer. Previous reports 
have implicated that EGCG suppressed ovarian cancer cell 
proliferation and induced apoptosis, but its potential anticancer 
mechanisms and signaling pathways remain unclear. Thus, it 
is necessary to determine the anti‑ovarian cancer effects of 
EGCG and explore the underlying mechanisms. In the present 
study, EGCG exerted stronger proliferation inhibition on 
SKOV3 cells compared with A549 cells and induced apoptosis 
in SKOV3 cells, as well as upregulated PTEN expression and 
downregulated the expression of phosphoinositide‑dependent 
kinase‑1 (PDK1), phosphor (p)‑AKT and p‑mTOR. These 
effects were reversed by the PTEN inhibitor VO‑Ohpic 
trihydrate. The results of the mouse xenograft experiment 
demonstrated that 50 mg/kg EGCG exhibited increased tumor 
growth inhibition compared with 5 mg/kg paclitaxel. In addi-
tion, PTEN expression was upregulated, whereas the expression 
levels of PDK1, p‑AKT and p‑mTOR were downregulated in 
the EGCG treatment group compared with those in untreated 
mice in vivo. In conclusion, the results of the present study 
provided a new underlying mechanism of the effect of EGCG 
on ovarian cancer and may lead to the development of EGCG 
as a candidate drug for ovarian cancer therapy.

Introduction

Epigallocatechin‑3‑gallate (EGCG) is isolated from green tea, 
which originated in China, and belongs to a class of catechuic 
monomers (1). Numerous studies have reported that EGCG 
exhibits anticancer activity against various types of cancer, 
including cervical, prostate, breast, colorectal, esophageal 
and lung cancer (2‑7). EGCG exerts its anticancer activity by 
suppressing cell proliferation, migration and invasion, and 
by inducing apoptosis in lung cancer cells (8‑11). A number 
of studies on the anticancer activity of EGCG focus on lung 
cancer cells  (12‑16); however, few studies  (17,18) focus on 
ovarian cancer cells.

Ovarian cancer is a prevalent gynecological malignancy, 
which severely threatens women's health (19). Ovarian cancer 
occurs in women with a prevalence ~15,000 per 100,000 
individuals worldwide (20). Due to a lack of specific symp-
toms in the early stages, 60‑70% of patients with ovarian 
cancer are diagnosed at an advanced stage, and their 5‑year 
survival rate is ~40% (21,22). Standard therapy strategies for 
advanced‑stage ovarian cancer are primary debulking surgery 
combined with platinum and paclitaxel chemotherapy (23,24). 
Although chemotherapy can increase the median survival of 
ovarian cancer, the toxicity and drug resistance causes the 
failure of chemotherapy and recurrence of the tumor (25‑27). 
Thus, new drugs with low toxicity and high efficacy to treat 
ovarian cancer are urgently required.

The PTEN/AKT/mTOR pathway is involved in the progres-
sion of ovarian cancer and is activated in <70% of ovarian 
cancer cases, which makes this pathway crucial in ovarian 
cancer therapy (28,29). A previous bioinformatics analysis has 
highlighted the potential use of EGCG in ovarian cancer treat-
ment (30), but these findings lacked experiment data support. 
Thus, the aim of the present study was to investigate the molec-
ular mechanism of EGCG as well as its anticancer activity in 
SKOV3 cells and a xenograft model, and to support clinical 
application of EGCG in the treatment of ovarian cancer.

Materials and methods

Cell culture and treatment. Ovarian cancer cell lines 
SKOV3, CAOV‑3 and NIH‑OVCAR‑3 were obtained from 
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the Kunming Cell Bank, Conservation Genetics, the Chinese 
Academy of Sciences. EGCG was purchased from Dalian 
Meilun Biotechnology Co., Ltd. The lung cancer cell line 
A549 and human retinal pigment epithelium (RPE) cell line 
were obtained from the Shanghai Cell Resource Center, 
the Chinese Academy of Biological Sciences. SKOV3 cells 
were maintained in RPMI‑1640 medium (Gibco; Thermo 
Fisher Scientific, Inc.), whereas the other cell lines were main-
tained in DMEM medium supplemented with 10% fetal bovine 
serum (both Invitrogen; Thermo Fisher Scientific, Inc.) and 1% 
antibiotic solution (100 U/ml penicillin and 100 µg/ml strep-
tomycin) under humidified conditions with 5% CO2 at 37˚C. 
EGCG was dissolved to different concentrations (0, 5, 10, 
20, 40  and  80  µg/ml) in RPMI‑1640 medium; VO‑Ohpic 
trihydrate (VO‑Ohpic; Sigma‑Aldrich; Merck KGaA) was 
dissolved in DMSO (Xilong Chemical Industry, China) and 
diluted to 0.1 µM with RPMI‑1640 medium.

Cell viability assay. The viability of SKOV3, A549, CAOV‑3 
and NIH‑OVCAR‑3 cells was measured by MTT assay. 
First, a total of 3x103  cells were seeded in 96‑well plates 
and treated with different concentrations of EGCG (0, 5, 10, 
20, 40 and 80 µg/ml) for 24, 48, 72 h at 37˚C. Subsequently, 
20 µl MTT solution (5 mg/ml) was added to the cells and 
incubated for another 4 h at 37˚C. Finally, 150 µl DMSO was 
used to dissolve the formazan complex, and the optical density 
was measured at 490 nm using a microplate reader (Tecan 
Group, Ltd.).

Cell colony forming assay. SKOV3 cells (5x102) were 
seeded into 6‑well plates. Following treatment with different 
concentrations of EGCG (0, 5, 10, 20, 40 µg/ml), the cells 
were cultured for another 10‑12 days at 37˚C with 5% CO2. 
Subsequently, the colonies were fixed with absolute methyl 
alcohol at 25˚C for 20 min and stained with Giemsa solution 
at 25˚C for 30 min. Finally, the number of colonies containing 
>50 cells were counted under a light microscope.

Apoptosis analysis by flow cytometry. Following EGCG treat-
ment for 48 h at 37˚C, SKOV3 cells were collected, washed 
twice with ice‑cold PBS and suspended in 100 µl 1X binding 
buffer (BD Biosciences). The cells were stained using an 
Annexin V‑FITC apoptosis detection kit (BD Biosciences) by 
incubation with 5 µl Annexin V‑FITC and propidium iodide 
for 30 min in the dark, followed by the addition of another 
100 µl 1X binding buffer and filtration with 300 mesh. Early 
and late apoptosis was determined using BD Accuri C6 
Plus flow cytometer (BD Biosciences), and the results were 
analyzed by FlowJo‑V10 software (FlowJo LLC).

Reverse transcription‑quantitative PCR (RT‑qPCR). 
Following EGCG treatment for 48 h at 37˚C, total RNA was 
extracted from SKOV3 cells using TRIzol® reagent (Tiangen 
Biotech Co., Ltd.) and reverse‑transcribed into cDNA using 
a GoScript™ Reverse Transcription Mix (Promega, Biotech 
Co., Ltd, Beijing) at 42˚C for 20 min and 90˚C for 5 min. 
QPCR analysis was performed using UltraSYBR Mixture 
(CW Bio) on the ABI 7500 Fast Real‑Time PCR Detection 
system (Thermo Fisher Scientific, Inc.). The thermocycling 
conditions for were as follows: 95˚C for 30 sec, 40 cycles 

of 95˚C for 5 sec and 60˚C for 30 sec, followed by 95˚C for 
15 sec, 60˚C for 1 min, 95˚C for 15 sec and 50˚C for 30 sec. 
The primer sequences used in this study are presented in 
Table I. The relative mRNA expression levels were analyzed 
using the 2‑ΔΔCq method (31).

Western blot assay. Following treatment with EGCG for 
48 h at 37˚C, cells were lysed in RIPA buffer with 2 µg/ml 
aprotinin, 5 µg/ml leupeptin, 1 µg/ml pepstatin, 15 mM DTT 
and 1 mM PMSF. The lysates were centrifuged at 9,180 x g 
for 25 min at 4˚C. The protein concentrations were measured 
using a Bicinchoninic Acid (BCA) Protein Quantitation 
kit (Beyotime Institute of Biotechnology). The protein 
samples (30 µg/lane) were isolated by 8 or 10% SDS‑PAGE 
and electro‑transferred to nitrocellulose membranes. The 
membranes were blocked with 5% (w/v) skimmed milk in 
PBS + 0.1% Tween‑20 (PBST) for 2 h, followed by incuba-
tion with primary antibodies against Bax (cat. no. ab182733; 
1:2,000; Abcam), Bcl‑2 (cat. no. ab182858; 1:2,000; Abcam), 
total caspase‑3 (cat. no. ab32351; 1:2,000; Abcam), PTEN 
(cat. no. ab32199; 1:2,000; Abcam), phosphoinositide‑depen-
dent kinase‑1 (cat. no. WL00707; PDK1; 1:1,000; Wanleibio 
Co., Ltd.), AKT (cat. no. ab18785; 1:2,000; Abcam), phosphor 
(p)‑AKT (cat.  no.  WLP001a; Ser473; 1:1,000; Wanleibio 
Co., Ltd.), mTOR (cat.  no.  ab32028; 1:2,000; Abcam), 
p‑mTOR (cat. no.  ab137133; 1:2,000; Abcam) and β‑actin 
(cat. no. TA‑09; 1:500; Beijing Zhongshan Golden Bridge 
Biotechnology Co., Ltd.) diluted in primary antibody diluent 
(Beyotime Biotechnology) overnight at 4˚C. The membranes 
were washed for 7 min with PBST three times and incubated 
with horseradish peroxidase‑conjugated goat anti‑rabbit or 
anti‑mouse IgG secondary antibodies (cat. nos. 31430 and 
31460; 1:5,000; Thermo Fisher Scientific, Inc.) for 1 h at 25˚C. 
Finally, the protein signals were detected using an X‑ray film. 
The optical density of the protein bands was measured using 
ImageJ V1.8.0 software (National Institutes of Health).

Table I. Sequences of forward and reverse primers used in 
reverse transcription‑quantitative PCR.

Gene	 Sequences (5'→3')

Bcl‑2	 F: GCCACTTACCTGAATGACCACC
	 R: AACCAGCGGTTGAAGCGTTCCT
Bax	 F: AGACACCTGAGCTGACCTTGGAG
	 R: GTTGAAGTTGCCATCAGCAAACA
Caspase‑3	 F: AGAACTGGACTGTGGCATTGAG
	 R: GCTTGTCGGCATACTGTTTCAG
AKT	 F: AGAACCTCATRCTGGACAA
	 R: CTCATGGTCCTGGTTGTAGA
PTEN	 F: CAGTAGAGGAGCCGTCAAATC
	 R: CAGAGTCAGTGGTGTCAGAATATC
mTOR	 F: TCCGAGAGATGAGTCAAGAGG
	 R: CACCTTCCACTCCTATGAGGC
β‑actin	 F: AAAGACCTGTACGCCAACAC
	 R: GTCATACTCCTGCTTGCTGAT
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Table II. IC50 of epigallocatechin‑3‑gallate in four cancer cell lines.

	 IC50, µg/ml
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ -------------------------------------------------------------------------------------‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Cell line	 24 h	 48 h	 72 h

SKOV3	   34.58	   26.07	 22.04
NIH‑OVCAR‑3	 349.62	 118.82	 82.19
CAOV‑3	 410.81	 123.67	 57.64
A549	   72.61	   56.67	 29.24

Figure 1. EGCG inhibits ovarian cancer cell proliferation. Inhibitory effects of EGCG on SKOV3 and A549 cells were evaluated by MTT assay at (A) 24, 
(B) 48 and (C) 72 h. The viability of (D) SKOV3, (E) CAOV‑3 and (F) NIH‑OVCAR‑3 cells was analyzed by MTT assay. (G and H) Cell colony forming ability 
was assessed by colony formation assay. N=3. *P<0.05, **P<0.01 vs. control. EGCG, epigallocatechin‑3‑gallate.
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Ovarian cancer xenograft model. Female BALB/c nude mice 
(4‑5 weeks old) were purchased from Hunan SJA Laboratory 
Animal Co., Ltd. A total of 1x107 SKOV3 cells in 200 µl 
PBS were injected subcutaneously into the right flanks of the 

mice. Once the tumor volume reached 50 mm3, the animals 
were randomized into five groups (n=7 per group). The mice 
in the control group were administered normal saline; the 
positive control group were administered 5 mg/kg paclitaxel; 

Figure 2. EGCG induces apoptosis in ovarian cancer SKOV3 cells. (A and B) Apoptosis was detected by flow cytometry following 48‑h treatment with EGCG. 
(C) The mRNA expression levels of Bax, Bcl‑2 and caspase‑3 were detected by reverse transcription‑quantitative PCR. (D and E) The protein expression of 
Bax, Bcl‑2 and caspase‑3 were analyzed by western blotting. N=3. *P<0.05, **P<0.01 vs. 0 µg/ml. EGCG, epigallocatechin‑3‑gallate.
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and the mice in the experimental groups were administered 
10, 30 or 50 mg/kg EGCG. EGCG and saline were adminis-
tered every day, and paclitaxel was administered twice a week. 
Tumor volume was calculated using the following formula: 
Volume=length x width2/2. Following treatment for 21 days, 
the mice were euthanized, and tumor tissues were collected 
and maintained in a ‑80˚C deep freezer until further analysis. 
Ethical approval for the use of animals was obtained prior to 
the start of this study from the Institutional Animal Care and 
Use Committee of Guilin Medical University (Guilin, China), 
and all the animals used in the experiments were treated 
humanely.

Hematoxylin and eosin (HE) staining. Livers from nude 
mice were collected and immersed in a formaldehyde 
solution (37‑40% formaldehyde/PBS, 1:9) at  4˚C for 
24  h. After fixation, liver samples were dehydrated in 
70, 80, 90 and 100% alcohol, cleared in pure benzene and 

embedded in paraffin. Then, 3‑µm sections were cut and 
mounted onto slides, followed by 10‑min dewaxing with 
fresh xylene for three times. Subsequently, the sections 
were placed in 100, 95, 85 and 75% alcohol for 5 min and 
stained with hematoxylin (Beijing Solarbio Science & 
Technology Co., Ltd.) at 25˚C for 15 min. The sections were 
differentiated with hydrochloric alcohol, then dehydrated in 
75, 85, 95 and 100% alcohol for 5 min. After dehydration, 
the sections were stained with eosin (Solarbio Biotechnology 
Company, Shanghai, China) at 25˚C for 15 sec and placed 
in fresh xylene for 5 min. Finally, the sections were sealed 
with neutral gum. Morphological changes of liver tissue were 
observed under a light microscope.

Statistical analysis. The data are presented as the mean ± SD 
of at least three independent experiments. All data were 
analyzed by SPSS version 17.0 (SPSS, Inc.), and one‑way 
ANOVA followed by Tukey's post hoc test was used to assess 

Figure 3. EGCG inhibits the PTEN/AKT/mTOR pathway activation in SKOV3 cells. (A) The mRNA expression of PTEN, AKT and mTOR were detected 
by reverse transcription‑quantitative PCR. (B‑E) The protein expression of (C) PTEN and PDK1, (D) AKT and p‑AKT, and (E) mTOR and p‑mTOR were 
analyzed by western blotting. The extent of phosphorylation of AKT and mTOR is presented as the ratio of p‑AKT/AKT and p‑mTOR/mTOR, respectively. 
N=3. *P<0.05, **P<0.01 vs. 0 µg/ml. EGCG, epigallocatechin‑3‑gallate; p, phosphor.
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the statistical significance. P<0.05 was considered to indicate 
a statistically significant difference.

Results

EGCG inhibits cancer cell proliferation. To determine the 
EGCG‑mediated proliferation inhibition in SKOV3 and 
A549 cells, cell viability was examined at 24, 48 and 72 h 
following treatment with a range of EGCG concentrations. 
As presented in Fig. 1A‑C, EGCG exhibited a significant 

proliferation inhibition on SKOV3 cell and A549 cells. In 
addition, CAOV‑3 and NIH‑OVCAR‑3 cell lines were used 
to investigate the EGCG‑mediated proliferation inhibition. 
The results demonstrated that EGCG inhibited SKOV3, 
CAOV‑3 and NIH‑OVCAR‑3 cell proliferation in a dose‑ and 
time‑dependent manner (Fig. 1D‑F). Among the four cell 
lines, SKOV3 exhibited the lowest IC50 values, suggesting 
that it was more sensitive to EGCG compared with the other 
three cell lines (Table II). In addition, to detect the toxicity of 
EGCG to normal cells, EGCG was used to treat normal human 

Figure 4. VO‑Ohpic reverses the anticancer effect of EGCG in SKOV3 cells. (A) Cell viability was analyzed by MTT assay. (B and D) Cell colony forming 
ability was assessed by colony formation assay. (C and E) Apoptosis was detected by flow cytometry following 48‑h treatment with EGCG and VO‑Ohpic. 
(F) The mRNA expression levels of Bax, Bcl‑2 and caspase‑3 were detected by reverse transcription‑quantitative PCR. (G and H) The protein expression levels 
of Bax, Bcl‑2 and caspase‑3 were analyzed by western blotting. N=3. *P<0.05, **P<0.01. EGCG, epigallocatechin‑3‑gallate.
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RPE cells; the results demonstrated that 40 µg/ml EGCG had 
a small effect on the proliferation of RPE cells (Fig. S1A). 
In addition, to further confirm the proliferation inhibition 
of EGCG in SKOV3 cells, a colony formation assay was 
conducted. Compared with the control group, EGCG treat-
ment significantly decreased SKOV3 cell colony formation 
(Fig. 1G and H).

EGCG induces apoptosis in SKOV3 cells. The apoptotic rates 
of EGCG‑treated cells were examined by flow cytometry. 
As presented in Fig. 2A and B, the apoptotic rates in the 
5, 10, 20 and 40 µg/ml EGCG treatment groups increased to 
6.33, 9.51, 17.10 and 27.30%, respectively, compared with the 

3.19% in the control group. Increasing doses of EGCG induced 
higher rates of SKOV3 cells apoptosis (Fig. 2B). However, 
the apoptotic rate of 40 µg/ml EGCG was only 5% in human 
normal RPE cells (Fig. S1B and C). The RT‑qPCR results 
suggested that EGCG increased the mRNA expression of Bax 
and caspase‑3, and decreased the expression of Bcl‑2 compared 
with the control cells (Fig. 2C). Similarly, western blotting 
results demonstrated that EGCG treatment upregulated the 
protein expression of Bax and caspase‑3 and downregulated 
the expression of Bcl‑2 in SKOV3 cells compared with the 
untreated control (Fig. 2D and E). Taken together, these results 
indicated that EGCG promoted SKOV3 cell apoptosis and 
regulated the expression of apoptosis‑related factors.

Figure 5. VO‑Ohpic reverses EGCG‑mediated PTEN/AKT/mTOR pathway inhibition in SKOV3 cell. (A) The mRNA expression levels of PTEN, AKT and 
mTOR were detected by reverse transcription‑quantitative PCR. (B‑E) The protein expression levels of (C) PTEN and PDK1, (D) AKT and p‑AKT, and 
(E) mTOR and p‑mTOR were analyzed by western blotting. The extent of phosphorylation of AKT and mTOR is presented as the ratio of p‑AKT/AKT and 
p‑mTOR/mTOR, respectively. N=3. *P<0.05, **P<0.01. EGCG, epigallocatechin‑3‑gallate; p, phosphor.
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EGCG inhibits the activation of the PTEN/AKT/mTOR 
signaling pathway. The RT‑qPCR and western blotting results 
revealed that EGCG upregulated the expression of PTEN. 
Thus, the expression levels of PDK1, AKT and mTOR were 
also determined in SKOV3 cells. The results demonstrated 
that EGCG reduced the mRNA levels of AKT and mTOR, 
and reduced the protein expression of PDK1, p‑AKT and 
p‑mTOR, whereas no changes were observed in the total AKT 
and mTOR protein levels (Fig. 3). Taken together, these results 
demonstrated that EGCG modulated the activation of the 
PTEN/AKT/mTOR pathway in SKOV3 cells.

VO‑Ohpic trihydrate reverses the antitumor effects of EGCG. 
To confirm the effects of EGCG on the PTEN/AKT/mTOR 
pathway, VO‑Ohpic was used to determine whether the effects 
of EGCG on SKOV3 cells were altered. First, the effect on 
proliferation was detected by the MTT and colony formation 
assays. As presented in Fig. 4A, 0.1 µM VO‑Ohpic alone did not 
affect the cell viability. The viability of cells in the EGCG and 
VO‑Ohpic co‑treatment group was higher compared with that 
of cells in the EGCG group, indicating that VO‑Ohpic partly 
rescued the antiproliferative effect of EGCG in SKOV3 cells 
(Fig. 4B and D). Second, the flow cytometry results indicated 
that the apoptotic rate of control group was 1.33% and that 

of the VO‑Ohpic group was 1.11%, whereas the apoptotic rate 
of EGCG group was 14.00%, which was significantly higher 
compared with that of VO‑Ohpic treated group. The apoptotic 
rate of SKOV3 cells was 5.44% in the EGCG and VO‑Ohpic 
co‑treatment group, which was 8.56% lower compared with 
the EGCG group (Fig. 4C and E). The mRNA and protein 
detection results demonstrated that VO‑Ohpic reversed the 
effects of EGCG on Bax, caspase‑3 and Bcl‑2 expression levels 
in SKOV3 cells (Fig. 4F‑H). These results demonstrated that 
VO‑Ohpic partly rescued the proapoptotic effects of EGCG. In 
addition, the EGCG‑induced changes in the expression levels 
of PTEN, PDK1, AKT, p‑AKT and p‑mTOR were reversed by 
VO‑Ohpic (Fig. 5). These results suggested that EGCG exerted 
its antiproliferative and proapoptotic effects by regulating the 
PTEN/AKT/mTOR signaling pathway in SKOV3 cells.

EGCG suppresses xenograft ovarian tumor growth in vivo. 
To investigate the antitumor effect of EGCG on ovarian 
cancer in vivo, a xenograft tumor model was established in 
BALB/c nude mice. As presented in Fig. 6A and B, EGCG 
significantly suppressed tumor growth in vivo. In addition, 
the mean tumor volume in the 50 mg/kg EGCG treatment 
group was lower compared with that in the 5 mg/kg paclitaxel 
group (Fig. 6B). Compared with normal saline treatment, 

Figure 6. The antitumor effects of EGCG on ovarian cancer in nude mice bearing xenograft tumors. (A) Images of tumors in each group at the termination of 
the experiment. (B) Tumor volume was recorded every three days. (C) Mean tumor weights in all groups; (D) Body weight was recorded every three days. N=7 
mice per group. *P<0.05, **P<0.01 vs. control or as indicated. EGCG, epigallocatechin‑3‑gallate.
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50 mg/kg EGCG significantly decreased the tumor weight 
at the end of the experiment by 71.25%, whereas paclitaxel 
decreased it by 39.62% (Fig. 6C). In addition, EGCG‑treated 
mice exhibited a high tolerance and did not experience 
significant loss of body weight (Fig. 6D). In addition, the HE 
staining results revealed that EGCG exerted limited effects 
on the mouse liver (Fig. S2), which was consistent with 
previous studies (32,33). Furthermore, the activation of the 
PTEN/AKT/mTOR pathway was detected in tumor tissues. 
As presented in Fig. 7, mRNA and protein expression assays 
revealed that EGCG decreased the expression levels of AKT 
and mTOR, as well as increased the expression levels of 
PTEN in tumor tissues compared with those in the control 
group. These results were consistent with the in vitro assay 
results. Taken together, the results demonstrated that EGCG 
substantially suppressed tumor growth in mouse ovarian 
cancer xenografts, and the anticancer activity of EGCG 
in the xenograft tumors was partially associated with the 
regulation of the PTEN/AKT/mTOR pathway.

Discussion

Ovarian cancer is a common malignant gynecologic cancer, 
and patients typically present with advanced disease at the 
time of diagnosis due to a lack of early symptoms (34). In 
the past 10 years, therapeutic methods and drugs for ovarian 
cancer have been continuously developed, but the overall 
development is slow and the mortality of ovarian cancer is 
still increasing (35,36). Exploring novel therapeutic drugs is 
essential for the treatment of ovarian cancer. EGCG has been 
demonstrated to possess anticancer bioactivity, which has 
attracted attention; EGCG has demonstrated cancer preventive 
activity in various types of human cancer, including lung, oral 
cavity and esophageal cancers (37,38). Numerous studies have 
been conducted on the effects of EGCG on lung cancer (39‑42), 
and it had been reported that oral administration of EGCG was 
feasible and safe to patients with advanced lung cancer (43). 
However, the present study demonstrated that EGCG exerted 
a stronger proliferation inhibition on ovarian cancer SKOV3 

Figure 7. EGCG inhibits the PTEN/AKT/mTOR pathway activation in vivo. (A) The mRNA levers of PTEN, AKT and mTOR were analyzed by reverse 
transcription‑quantitative PCR. (B‑E) The protein expression levels of (C) PTEN and PDK1, (D) AKT and p‑AKT, and (E) mTOR and p‑mTOR were 
analyzed by western blotting in tumor tissue. The extent of phosphorylation of AKT and mTOR is presented as the ratio of p‑AKT/AKT and p‑mTOR/mTOR, 
respectively. N=3. *P<0.05, **P<0.01 vs. control. EGCG, epigallocatechin‑3‑gallate; p, phosphor.
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cells compared with that on lung cancer A549 cells, although 
few studies  (44,45) have focused on the effects of EGCG 
on ovarian cancer. Thus, it was meaningful and worthy to 
study the effects of EGCG on ovarian cancer and explore the 
underlying molecular mechanism. In the present study, the 
MTT assay results revealed that EGCG inhibited SKOV3, 
CAOV‑3 and NIH‑OVCAR‑3 cell proliferation; SKOV3 was 
the most sensitive to EGCG treatment among the four tested 
cell lines, and thus SKOV3 cells were selected as the research 
object of this study. In addition, MTT assay results revealed 
that 40 µg/ml EGCG exerted a limited effect on human retinal 
pigment epithelium (RPE) cell viability (Fig. S1A). In the flow 
cytometry analysis, the apoptotic rate of SKOV3 cells in the 
40 µg/ml EGCG treatment group reached 27.3%, whereas 
that in RPE cells was only 5% (Fig. S1B and C). Additionally, 
EGCG increased the expression of Bax and caspase‑3, and 
decreased the expression of Bcl‑2 in SKOV3 cells compared 
with the untreated control group. These results indicated that 
EGCG exhibited anticancer effects on ovarian cancer cells, 
but limited cytotoxicity to normal cells.

PTEN prevents PDK1‑mediated phosphorylation of 
AKT by converting PIP3 to PIP2, and further inhibits the 
phosphorylation of mTOR  (46). Upregulation of PTEN 
suppresses cell proliferation and promotes apoptosis, 
which is associated with its negative regulation of the 
AKT/mTOR pathway  (47). Abnormal activation of the 
AKT/mTOR pathway has been observed in various types 
of cancer, including ovarian cancer  (48‑51). Certain 
molecules targeting this pathway, including AKT inhibitor 
MK‑2206  (52), mTOR inhibitor AZD8055  (53) and dual 
PI3K/mTOR inhibitor PF‑04691502 (54), have been used 
for cancer treatment. Multiple studies have demonstrated 
that the AKT/mTOR pathway serves a prominent role in 
ovarian cancer tumorigenesis, proliferation and progres-
sion (55‑57). In the bioinformatics analysis performed by 
Shen et al (58), AKT was also identified as a target protein 
in ovarian cancer, but it was not verified if EGCG exerted 
anti‑ovarian cancer effect by targeting AKT. Therefore, the 
present study evaluated the expression of PTEN, PDK1, AKT 
and mTOR in ovarian cancer cells after EGCG treatment. 
The results suggested that the PTEN/AKT/mTOR pathway 
was involved in anti‑ovarian cancer activity of EGCG. 
In addition, the PTEN inhibitor VO‑Ohpic reversed the 
effects of EGCG on the proliferation inhibition, apoptosis 
induction and the PTEN/AKT/mTOR pathway activation 
in ovarian cancer cells. These results demonstrated that 
EGCG exerted anticancer effects in SKOV3 cells through 
the PTEN/AKT/mTOR pathway.

To further confirm the role of EGCG in the proliferation inhi-
bition of ovarian cancer, an in vivo experiment was performed 
in the present study, which demonstrated that EGCG signifi-
cantly decreased tumor growth in nude mice compared with 
the control group, and the mean tumor volume in the 50 mg/kg 
EGCG group was markedly attenuated compared with those 
in the control and 5 mg/kg paclitaxel groups. EGCG‑treated 
mice exhibited high tolerance and did not experience signifi-
cant loss of body weight.

Paclitaxel is the first‑line drug for ovarian cancer treatment; 
standard initial therapy for ovarian cancer is platinum/pacli-
taxel combination chemotherapy  (59). The in  vivo results 

of the present study demonstrated that 50  mg/kg EGCG 
treatment exhibited stronger growth suppression on ovarian 
cancer cells compared with 5 mg/kg paclitaxel, indicating 
that EGCG may be a potential therapeutic agent for ovarian 
cancer. In addition, EGCG treatment resulted in an inhibition 
of the PTEN/AKT/mTOR pathway in nude mice. These results 
suggested that EGCG exerted anti‑ovarian cancer effects 
in vivo via the PTEN/AKT/mTOR pathway.

In summary, the results of the present study suggested that 
EGCG exerted stronger proliferation inhibition on SKOV3 
cells compared with A549 cells, and the PTEN/AKT/mTOR 
signaling pathway was involved in the anti‑ovarian cancer 
effects of EGCG in  vitro and in  vivo. However, future 
analysis of PTEN or AKT overexpression and blood test 
(detection of liver‑ or heart‑related enzymes ALT, AST and 
CK) after EGCG treatment in nude mice will be required to 
support the potential application of EGCG in ovarian cancer 
therapy.
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