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Pancreatitis is an inflammatory disease that both facilitates and accelerates the trans-
formation of pancreatic cells upon activation of the KRAS oncogene. Autophagy is 
proposed to be one of the cellular mechanisms contributing to pancreatic carcinogen-
esis, especially during initial stages in which the KRAS oncogene appears to play a 
key role. Autophagy is also strongly induced during pancreatitis by the overexpression 
of VMP1. We recently developed a genetically engineered mouse model in which the 
VMP1 protein is induced simultaneously with the activation of the oncogene KrasG12D 
specifically in the pancreas, by the addition of doxycycline to a water drink. Using 
this sophisticated animal model, we can affirm that pancreatic autophagy, induced 
during pancreatitis by the overexpression of VMP1, promotes the development of 
precancerous lesions when induced by the mutated KRAS. In addition, the treatment 
of these mice with chloroquine, an inhibitor of autophagic flux, reverses the effects of 
VMP1 in pancreatic cancer induced by the KRAS oncogene. Overall, these results bear 
both mechanistic and biomedical relevance for further understanding and potentially 
targeting pathways that are critical for initiating pancreatic carcinogenesis, particularly 
if associated with pancreatitis.
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PANCReATiC DUCTAL ADeNOCARCiNOMA

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the Western 
world, with prediction curves demonstrating it will become the second leading cause of death by 
cancer in 2030, just after lung cancer (1). Both the initiation and progression of this pathology result 
from the interaction of complex genetic events with multiple less characterized factors (2, 3). Genetic 
alterations that contribute to the pathogenesis of pancreatic adenocarcinoma have been widely 
studied and definitively determined. Among these alterations, oncogenic mutations in the KRAS 
gene have been frequently detected (more than 90% of cases), not only in the established disease 
but also in preneoplastic lesions known as pancreatic intraductal neoplasia (PanINs). Activation 
of the oncogene KRAS signals pancreatic cells to undergo acinar-to-ductal metaplasia, an essential 
step in the formation of premalignant lesions, which together with the inactivation of tumor sup-
pressor genes, such as CDKN2A, TP53, and SMAD4, allow the progression of premalignant lesions 
to invasive cancer (4). As the activating mutation in the KRAS oncogene is almost systematically 
associated with PDAC, its role in cancer development has been the subject of numerous studies (5).

Autophagy has been proposed as a cellular process contributing to pancreatic carcinogenesis, par-
ticularly in the initial stages in which the KRAS oncogene is a key element (6–9). Indeed, activation 
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FigURe 1 | Schematic representation of the interaction between 
KRAS-mediated transformation in PDAC and autophagy induced by 
the pancreatitis-associated protein vMP1 pathways.
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of the pathway controlled by the KRAS oncogene generates a 
metabolic stress, characterized by a temporary deficit in energy, 
which must be compensated by an increase in metabolism, 
through activation of autophagy (6–10). Although this concept 
appears clear and simple, the role of autophagy in protumor or 
antitumor development is still debated in the context of PDAC, 
since multiple factors appear to modulate this process, such as 
regulatory pathways, the genomic status of transformed pancre-
atic cells, as well as the physiological and pathological contexts in 
which the process is enabled (11, 12).

PANCReATiTiS-ASSOCiATeD 
AUTOPHAgY PROMOTeS THe 
PROTUMORAL eFFeCT OF THe 
KRAS ONCOgeNe

Pancreatitis, an inflammatory disease of the pancreas, enables 
and accelerates the transformation of pancreatic cells when the 
KRAS oncogene is activated (13). Exactly how pancreatitis pro-
motes the development of PDAC is a fundamental question in the 
field of pancreatology, which has not yet been clearly answered. 
However, this has been partly answered by studies showing that 
the systematic activation of autophagy during pancreatitis, often 
for the protection of pancreatic cells, decreases disease progres-
sion and aids the recovery phase (14, 15). We have demonstrated 
that induction of autophagy in pancreatic acinar cells is accom-
panied by the overexpression of the VMP1 gene. VMP1 mRNA 
encodes a transmembrane protein that we cloned in 2002 due 
to its extraordinary pancreatic activation during the acute phase 
of pancreatitis (16). Overexpression of VMP1 triggers autophagy 
in numerous types of cells (16–19). Concerning its mechanistic 
activity, VMP1 is involved in the formation of the phagophore 
(18) following a direct interaction with beclin 1 (17), TP53INP2, 
a scaffold protein (20), and possibly its homolog, TP53INP1 (21). 
The main physiological role of autophagy during pancreatitis is 
the removal of damaged organelles to maintain cellular homeo-
stasis and ensure improved survival of pancreatic cells (22). It 
is likely that the protective effect of autophagy during the acute 
phase of the disease is at least partly related to the sequestration 
of zymogen granules that contain digestive enzymes responsible 
for autodigestion during pancreatitis. This may have a dual effect 
on pancreatic cells: first, zymophagy (autophagy of zymogen 
granules) could reduce the availability of digestive enzymes, 
which when released into the pancreatic parenchyma destroys the 
pancreatic gland by necrosis; second, these organelles could meet 
the unique metabolic needs that accompany cell growth during 
the regeneration phase (23).

AUTOPHAgY iNDUCeD BY 
OveReXPReSSiON OF vMP1 
eNHANCeS TRANSFORMATiON 
OF PANCReATiC CeLLS

It is interesting to note that the expression of VMP1 is also tran-
scriptionally activated by the mutated KRAS oncogene through a 

mechanism dependent on GLI3 and p300 (24). The KRAS onco-
gene possibly induces VMP1 expression to meet the increased 
energy needs of the cell during the transformation process. 
Expression of the VMP1 protein, and its triggered autophagy, 
is therefore induced and maintained by mutation of the KRAS 
oncogene, which is strongly reinforced during the course of pan-
creatitis. The most likely hypothesis is that autophagy induced by 
pancreatitis, and mediated by overexpression of VMP1, provides 
the energy required of cells harboring an activating mutation in 
the KRAS oncogene, therefore allowing their transformation. To 
test this hypothesis, we have recently developed an animal model 
wherein the genetically modified VMP1 protein is induced simul-
taneously with the activation of the oncogene KrasG12D specifically 
in the pancreas, by the addition of doxycycline to a water drink 
(25). This model was developed with the objective to first assess 
the effects of overexpressed VMP1 on initiation of pancreatic 
cancer, and second, to define the role of pharmacological inhibi-
tors of autophagy in the development of pancreatic cancer. The 
results of these experiments in mice affirm our hypothesis that 
autophagy, induced by overexpressing VMP1 in the pancreas, 
significantly increases the protumor effect of the KRAS oncogene 
(Figure  1). In addition, we demonstrated that chloroquine, a 
classical inhibitor of autophagic flux (26), can reverse the effect 
of VMP1 overexpression on pancreatic cancer induced by the 
KRAS oncogene in a preclinical trial using our mouse model 
(25). Overall, these observations support the idea that pathways 
activated by pancreatitis, particularly those regulating autophagy, 
can promote pancreatic carcinogenesis. Finally, the results sup-
port the concept that inhibition of autophagy could be used to 
prevent the progression of pancreatic pre-tumoral lesions to 
pancreatic cancer.

MeCHANiSMS OF ACTiON OF vMP1

In light of these clinically relevant results, it is important to review 
and discuss the identified functions of the VMP1 protein, which 
will consequently improve the interpretation of its role in pancre-
atic tumor progression. For example, it has been established that 
this protein is involved in the initiation of autophagy since cells 
engineered to be deficient in VMP1 have high levels of PtdIns3P 
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and trigger autophagic signaling by the resulting aberrant endo-
plasmic reticulum, with subsequent recruitment of ATG18 and 
other autophagic proteins (19). In addition, although ULK1 and 
ATG5 are separated in the genetic hierarchy during autophagy, 
both proteins accumulate synchronously within punctate struc-
tures containing VMP1, followed by recruitment of ATG14, 
ZFYVE1, and WIPI1 (27). Moreover, VMP1 protein directly 
binds to the BH3 motif of beclin 1 to induce the formation of a 
complex with hVps34, a key phosphatidylinositol-3 kinase class 
III regulator of autophagy, on the site where autophagosomes 
are generated. Importantly, the interaction between beclin 1 and 
VMP1 proteins leads to the dissociation of the Bcl-2 protein 
with beclin 1, therefore increasing intracellular levels of beclin 
1 available to induce autophagy (28). In addition, the presence 
of the VMP1 protein regulates the formation of autophagosomes 
by shortening the training time of the omegasome and therefore 
significantly accelerating autophagic flux (18). Finally, the pro-
duction of cells inactivated for VMP1 protein in Dictyostelium 
revealed a massive accumulation of protein aggregates, both 
poly- and multi-ubiquitinated, containing the autophagic mark-
ers ATG8 counterparts and p62 but presenting strong defects in 
autophagy process. Altogether, these observations demonstrate 
that expression of the stress protein VMP1 is essential for 
unloading cells of these protein aggregates by autophagy (29) and 
recycling them to provide the energy substrate required by the 
cell under these stress conditions.

It is also important to discuss the broader role that autophagy 
plays in the development of PDAC as it is so complex and 
varied. Indeed, it was previously demonstrated that autophagy 
participates in the transition from mitosis to senescence 
(30), and certain molecules can induce both autophagy and 
senescence, such as kinase ULK3 (30). Senescence is known 
to be an important anticancer pathway set up in response to 
the oncogenic activation of mutated KRAS. In this context, 
senescence enhanced by activation of autophagy might partially 
inhibit the oncogenic effect of the KRAS oncogene rather than 
increase it. Furthermore, activation of autophagy in certain 
tissues, either dependent or independent of VMP1 overex-
pression, can act as an antiapoptotic factor, according to the 
biological circumstances (31, 32). Finally, as mentioned earlier, 
the oncogenic activation of KRAS induces a strong metabolic 
stress to cells due to their exceptional energy requirements 
that can be partially counterbalanced with the contribution of 
energy sources through the activation of autophagy. Autophagy 
can therefore play important roles in either promoting or, on 
the contrary, antagonizing the development of PDAC, depend-
ing on the activated intracellular pathways by cells harboring 
KRAS mutations. This possibly explains the contrasting results 
reported in the literature on the role of autophagy in cancer. 
Another important note is that a large majority of these studies 
were performed in  vitro, therefore the cellular environment 
has not, or only partially, been taken into account, possibly 
causing a bias in data interpretation. Regarding the pancreatic 
autophagy induced by VMP1 overexpression in mice, we have 
established that the development of pancreatic precancerous 
lesions is associated with a significant reduction of apoptosis 
with a concomitant increase in cell proliferation (25). In other 

words, autophagy is clearly a pro-tumor cellular event, at least 
in this context.

Importantly, autophagy has been considered an important 
mediator of the resistance to radiotherapy and chemotherapy, at 
least with particular anticancer drugs and for certain cancers (33, 
34), although this point still remains controversial. Nevertheless, 
the fact that cancer treatments systematically induce autophagy 
has now been clearly established (35). However, the mecha-
nism by which autophagy is involved in resistance to cancer 
treatments seem to be initiated by the removal of damaged 
intracellular organelles to improve cell viability. Furthermore, 
autophagy has also been reported as a mediator of cell death 
induced by chemotherapy in several cancers (36). Although 
the mechanism by which autophagy induces cell death is not 
yet clearly established, it appears to be mediated by the activa-
tion of caspase 3 (36). Therefore, in line with such knowledge, 
co-treatment with chloroquine appears to enhance the effect of 
many anticancer drugs in  vitro as well as in some preclinical 
models (37–41), although a clinical study has yet to confirm its 
benefit as a co-treatment.

CONCLUSiON AND PeRSPeCTiveS

In conclusion, many aspects concerning the role of autophagy 
during PDAC development are still not clearly defined. 
However, we can confirm that pancreatic autophagy induced 
during pancreatitis through the overexpression of VMP1, a 
protein associated with pancreatitis, promotes PanINs when 
activated by the KRAS oncogene. In addition, inhibition of 
autophagic flux by chloroquine almost completely abolishes the 
KRAS pro-tumor effect in the pancreas. Overall, these results 
bear both mechanistic and biomedical relevance for further 
understanding and potentially targeting those pathways critical 
for initiating pancreatic carcinogenesis, particularly if associ-
ated with pancreatitis. In  the near future, it will be necessary 
to take into account not only the role of autophagy activation 
in transformed cells but also in the stromal non-transformed 
cells. Recently, it was clearly evidenced that the activation of 
autophagy in cancer-activated fibroblast (CAF cells) is an 
essential mechanism to produce and secrete non-essential 
amino acids into the microenvironment, which serves as a 
major source of energy for transformed cells (42). This may be 
the starting point of a novel time in which the autophagy may 
be considered as the fuel source for other cells. All in all, these 
facts are revealing a more complex scenario than suspected 
and therefore are opening news ways for treating diseases in 
which autophagy seems to be strongly involved, such as PDAC. 
An interesting observation to be noted was recently pointed 
out by Guo and colleagues who demonstrated that the loss of 
VMP1 expression in colorectal cancer is associated with a poor 
prognosis and aggressiveness of the cancer cells. In addition, 
in vitro assays revealed that colon cancer-derived cells in which 
VMP1 was knocked down gained significant aggressive proper-
ties in regards to proliferation and invasion. Remarkably, in vivo 
studies revealed a higher number of formed nodules in mice 
after intraperitoneal injection of VMP1 knocked down cells 
(43). Another recent work reports that approximately 10% of 
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esophageal adenocarcinomas present a RPS6KB1–VMP1 gene 
fusion as a recurrent event. Notably, esophageal adenocarcinoma 
cases harboring RPS6KB1–VMP1 fusions exhibited significantly 
poorer overall survival as compared to fusion-negative cases. 
Mechanistically, the RPS6KB1–VMP1 fusion protein promotes 
cell growth in vitro, but it is ineffective in triggering autophagy 
(44). Altogether, these studies suggest that the role of VMP1, 
and perhaps autophagy, in cancer development and progression 
is organ or context dependent.
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