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Abstract: Obstructive sleep apnea (OSA) is a recognized independent risk factor for metabolic
disorders, type 2 diabetes mellites (DM2) in particular. Therefore, the study aimed to assess the
influence of nocturnal oxygen saturation parameters on the onset of DM2 among OSA patients. The
study consisted of 549 participants, who underwent polysomnography examination. Based on apnea
hypopnea index (AHI), 465 patients were diagnosed with OSA. One hundred and seven individuals
had comorbid DM2. Cox regression models were used to assess the effect of oxygen saturation
parameters on the onset of DM2. Classification and regression trees (CART) analysis was used to
assess the onset of the DM2 in the study group in context of oxygen saturation variables. One-way
Cox regression showed higher risk of earlier DM2 for increased values of BMI, AHI, decreased basal
O2 and O2 nadir value, while lowered mean O2 desaturation has not shown statistical significance.
In the CART analysis, the following cut-off points 92.2%, 81.7%, 87.1% were determined for basal O2,
O2 nadir and mean O2 desaturation, respectively, with the first two parameters being statistically
significant. Therefore, basal O2 is independent from AHI, BMI and age is a risk factor of DM2 among
OSA patients.

Keywords: obstructive sleep apnea (OSA); type 2 diabetes mellitus (DM2); polysomnography (PSG);
O2 saturation; hypoxia; risk factor

1. Introduction

Type 2 diabetes mellitus (DM2) is one of the most prevalent civilizational diseases
and is associated with great morbidity and mortality [1]. It is important to identify po-
tentially modifiable risk factors for DM2. Obstructive sleep apnea (OSA) is a common
sleep respiratory disease characterized by repetitive collapse of upper airways resulting in
sleep fragmentation and nocturnal recurrent intermittent hypoxia (IH), which manifests
as desaturations in polysomnography (PSG). Prevalence estimation shows that around
one billion adults worldwide could have OSA (apnea—hypopnea index [AHI] ≥ 5/h) [2].
Considering the scale of the problem it is important to properly recognize and treat many
chronic medical conditions associated with OSA such as hypertension, coronary artery
disease and metabolic disorders [3,4]. Numerous studies have provided evidence that OSA
may be independent from other classic risk factors as a determinant for incident DM2 [5–7].
Intermittent hypoxia in OSA-related respiratory disorders may cause many metabolic dis-
turbances such as insulin resistance and an onset of DM2 [8]. The exact mechanism of this
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connection is not yet known, but possible pathophysiological pathways may be involved,
such as hypoxia-inducible factor 1α (HIF-1α) [9], key regulator of oxygen metabolism, as
the factor is upregulated in OSA patients [10–13]. Few authors have connected the fact
of nocturnal hypoxemia and its physiological consequences (e.g., oxygen desaturation)
and possibility of increased risk of DM2 [14]. There is an important need to evaluate
which parameters are essential to assess the risk of onset of metabolic disturbances due
to nocturnal hypoxemia. Monitoring oxygen saturation parameters (SpO2 basal, mean
O2 desaturation, SpO2 nadir) is a routine procedure during PSG which is a gold-standard
procedure for diagnosis of OSA. There is not enough evidence of how nocturnal satura-
tion parameters may be correlated with the DM2. There is some literature reporting that
nocturnal hypoxemia has an impact on impaired glucose metabolism and higher HbA1c
levels in individuals with and without OSA [15,16]. Therefore, the purpose of this study
was to assess the utility of saturation parameters as a predictive factor for incident DM
type 2 among OSA patients.

2. Materials and Methods

The retrospective study included data from patients being evaluated at the Department
of Sleep Medicine and Metabolic Disorders of Medical University of Lodz with presumptive
diagnosis of OSA (between January 2017 and February 2020). All patients included in the
study were assessed and investigated by authors and underwent diagnostic PSG; while
scoring PSG studies, the authors were blinded for the clinical data. All patients gave
their informed consent for the sleep study. Demographic and clinical information was
collected from patients’ histories, including taken medications, other diseases, in particular,
DM2. The following inclusion criteria were applied in the study: age 18–70 and body mass
index (BMI) 20–45 kg/m2 patients were excluded from the study if their total sleep time
was shorter than three hours, if sleep time either in lateral or supine position was shorter
than half an hour or if total REM sleep was shorter than half an hour. Moreover, patients
diagnosed with any chronic respiratory conditions (e.g., bronchial asthma, or chronic
obstructive pulmonary disease) and any sleep disorders other than OSA (e.g., insomnia,
delayed phase syndrome) were excluded from the study. Furthermore, exclusion criteria
included chronic inflammatory diseases (e.g., connective tissue diseases or inflammatory
bowel diseases), diagnosis of cancer (active or in medical history), psychiatric disorders and
shift work system, jet lag due to a flight within 2 weeks of the study or taking medications
affecting sleep (e.g., benzodiazepines and melatonin).

2.1. Polysomnography

Patients were admitted to the sleep lab at 21:00 h (±0.5 h) and underwent physical ex-
amination (measurement of body mass, height, heart rate and blood pressure). A standard
nocturnal polysomnography was performed by recording the following channels: elec-
troencephalography (C4\A1, C3\A2), chin muscles and anterior tibialis electromyography,
electrooculography, measurements of oro-nasal air flow (a thermistor gauge), snoring, body
position, respiratory movements of chest and abdomen (piezoelectric gauges), unipolar elec-
trocardiogram and haemoglobin oxygen saturation (SpO2) (Alice 6, Phillips-Respironics).
Sleep stages were scored according to the criteria based on 30 s epoch standard [17]. Apnea
was attained with the reduction of air flow to less than 10% of the baseline for at least 10 s.
Hypopnea was defined as at least 30% reduction of air flow for at least 10 s, accompanied by
over 3% decrease in SpO2 or an arousal. Encephalography arousals were scored according
to the American Academy of Sleep Medicine guidelines [17]. The study was conducted in
accordance with the amended Declaration of Helsinki.

2.2. Statistical Analysis

Statistical analyses were performed using Statistica 13.3 (Statsoft, TIBCO). Due to
the lack of normality of continuous variables, they were compared using non-parametric
tests. To analyze differences between continuous variables between two groups, the Mann–
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Whitney U test for independent groups was used. In case of more than two groups being
compared, generalized linear models and Kruskall–Wallis tests were performed. For
nominal variables, we applied Pearson’s chi-squared test.

To compare the influence of factors on hazard of DM2 development, Cox’s regression
was applied. For multivariate regression, forward stepwise feature selection was applied
to determine features included in a multivariate model—BMI, AHI and basal O2 were
selected. The Kaplan–Meier curves for the age of DM2 development using log-rank test
were also compared. The groups for Kaplan-Meier curves analysis were determined
using classification and regression trees for basal O2, O2 mean desaturation and O2 nadir
level. Alfa level for statistical comparisons at level 0.05 was assumed to be significant.
Bonferroni–Holm correction to maintain false discovery rate below 25% was applied.

3. Results

Altogether, 549 patients were included in the analysis, with median age 62 (IQR: 57–68).
General group characteristics are provided in Table 1. Significant correlation between BMI,
AHI values and basal O2, mean desaturation O2 and O2 nadir level evaluated during PSG
were observed. Further results of comparison of basal O2, mean desaturation O2 and O2
nadir level (unadjusted and adjusted for BMI and AHI) between patients with and without
OSA, and for different OSA severity are provided in Table 2 and on Figure 1. Equations for
adjustments are provided in Supplementary Table S1.

Table 1. Group characteristics.

Parameter All Participants No OSA (n = 155; AHI < 5) OSA (n = 394; AHI ≥ 5) p-Value

Age (years) 62.00 (57.00–68.00) 61 (53.5–69) 62 (57–68) 0.1525

Sex (male) 56.60% 47.62% 58.28% 0.0696

BMI (kg/m2) 31.13 (27.46–35.66) 28.69 (25.61–31.65) 31.56 (27.92–36.20) <0.0001

AHI (events/h) 24.30 (9.00–49.50) 2.1 (1–3.75) 30.38 (14.3–52.89) <0.0001

Basal O2 (%) 91.90 (90.00–93.20) 93.2 (91.75–94.05) 91.6 (90–93) <0.0001

Mean desaturation
O2 (%) 83.45 (74.10–88.00) 89.8 (86.9–91) 82 (72.9–87) <0.0001

O2 nadir (%) 85.00 (79.90–88.10) 88.9 (85–90.5) 84 (78.1–87.9) <0.0001

DM2 19.50% 10.71% 21.08% 0.0274

AHI—apnea–hypopnea index, BMI—body mass index, DM2—diabetes mellitus type 2, OSA—obstructive sleep apnea.

Table 2. Comparison of O2 saturation parameters in different OSA severity groups.

Groups

Saturation
Parameter

No OSA
(AHI < 5)

Mild OSA
(15 > AHI ≥ 5)

Moderate
OSA

(30 > AHI ≥ 15)

Severe OSA
(AHI ≥ 30)

Any OSA
(AHI ≥ 5) p-Value p-Value

Adjusted

Basal O2 (%) 93.20
(91.75–94.05)

92.00
(90.90–93.40)

92.00
(90.90–93.40)

91.00
(88.80–92.30)

91.6
(90.00–93.00)

<0.0001
<0.0001 *

<0.0001
<0.0001 *

Mean
desaturation

O2 (%)

89.80
(86.90–91.00)

86.50
(82.40–88.90)

83.95
(76.90–87.00)

75.25
(67.00–83.90)

82.00
(72.90–87.00)

<0.0001
<0.0001 *

<0.0001
<0.0001 *

O2 nadir (%) 88.90
(85.00–90.50)

86.00
(82.10–88.90)

85.10
(79.90–89.00)

82.10
(75.00–86.20)

84.00
(78.10–87.90)

<0.0001
<0.0001

<0.0001
<0.0001

AHI—apnea–hypopnea index, OSA—obstructive sleep apnea. First p-value corresponds to KW p-value for No OSA vs.
Mild/Moderate/Severe OSA. Second p-value indicated by * corresponds to UMW p-value for No vs. Any OSA. Adjusted p-value
corresponds to difference after adjustment for BMI and AHI values.



J. Clin. Med. 2021, 10, 3770 4 of 8
J. Clin. Med. 2021, 10, x FOR PEER REVIEW 4 of 8 
 

 

 
Figure 1. Comparison of O2 saturation parameters in different OSA severity groups; A—based on 
basal O2 saturation; B—based on Mean O2 desaturation; C—based on O2 nadir desaturation; OSA—
obstructive sleep apnea. 

Figure 1. Comparison of O2 saturation parameters in different OSA severity groups; (a)—based
on basal O2 saturation; (b)—based on Mean O2 desaturation; (c)—based on O2 nadir desaturation;
OSA—obstructive sleep apnea.
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Figure 2. Kaplan–Meier curves for development age of DM2 based on O2 saturation parameters: 
A—based on basal O2 saturation, cut-off point 92.15%; B—based on mean O2 desaturation, cut-off 
point 87.05%; C—based on O2 nadir desaturation, cut-off point 82.7%. 

Figure 2. Kaplan–Meier curves for development age of DM2 based on O2 saturation parameters:
(a)—based on basal O2 saturation, cut-off point 92.15%; (b)—based on mean O2 desaturation, cut-off
point 87.05%; (c)—based on O2 nadir desaturation, cut-off point 82.7%.
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Next, the effects of BMI, AHI, basal O2, mean desaturation O2 and O2 nadir level
on the age of DM2 development were determined. Univariate and multivariate analyses
have shown that BMI, AHI, basal O2 and O2 nadir level are significantly altered in patients
developing DM2 at a younger age (Table 3). Using classification and regression trees, we
determined that basal O2 < 92.15% and O2 nadir level < 81.7% were effective for separation
of patients at higher risk of DM2 at a younger age (log-rank p-value 0.0161 and 0.0001
respectively). Kaplan–Maier curves are provided in Figure 2.

Table 3. Univariate and multivariate Cox regression analysis for development of DM2 at younger age.

Univariate Regression Multivariate Regression

HR 95% CI p HR 95% CI p

BMI 1.1170 1.0826–1.1526 <0.0001 1.1219 1.0824–1.1629 <0.0001

AHI 1.0107 1.0036–1.0178 0.0032 1.0054 0.9980–1.0129 0.1542

Basal O2 0.9326 0.8875–0.9799 0.0057 1.0262 0.9494–1.1091 0.5146

Mean deasturatiom O2 0.9864 0.9729–1.0002 0.0531 - - -

O2 nadir 0.9844 0.9727–0.9961 0.0092 - - -

AHI—apnea–hypopnea index, BMI—body mass index, CI—confidence interval, HR—hazard ratio.

4. Discussion

This retrospective study showed that desaturation parameters assessed by polysomnog-
raphy examination are associated with increased risk of DM2. Higher SpO2 nadir and
basal SpO2 are correlated with the later onset of DM2 in OSA patients while basal O2 is
independent from AHI, BMI and age predictor of DM2 among OSA patients. The current
study provides convincing evidence for correlation between nocturnal hypoxemia in the
course of OSA and early onset of DM2.

The results of our research are consistent with other existing literature on that subject.
In this field of research there has been a lot of OSA-related factors taken under consider-
ation as possible predictors for DM2. A prospective analysis of Atherosclerosis Risk in
Communities Study and the Sleep Heart Health Study proves that the severity of OSA
assessed by AHI is an independent risk factor of incidence of DM2 [6]. Another clinical
cohort study provided evidence that not only severity of OSA but also REM-AHI, duration
of O2 saturation less than 90%, shorter total sleep time, higher mean heart rate, greater
neck circumference, and the presence of daytime sleepiness were significant predictors of
DM2 [14].

An interesting hypothesis of connection between OSA and DM2 is that parameters
of oxygenation may be responsible for different manifestations and comorbidities of OSA
independently from AHI [18]. Desaturation parameters such as SpO2 nadir assessed by
pulse oximetry has also been associated with the risk of DM2 in Japanese prospective
study [19]. However, the lack of polysomnography is the main limitation of this study.

Nocturnal intermittent hypoxia is characteristic for OSA patients. There are a few
studies showing that hypoxemia and its reflection in desaturation parameters in PSG may
be corelated with increased level of HbA1c [16,20], and other metabolic disturbances such
as dyslipidemia [21].

Our findings match the proposed pathophysiological pathways linking nocturnal
hypoxia and DM2. There are several mechanisms that can possibly lead to metabolic
disorders including intermittent hypoxia, sleep fragmentation, elevated sympathetic tone,
and oxidative stress [22]. In addition to the previously mentioned hypothesis, there is
a new interesting pathway including HIF 1α, a factor that plays a significant role in the
glucose metabolism in hypoxemic condition and may be responsible for insulin resistance
and the development of diabetes [9]. Moreover, upregulation of HIF-1α alone may be
considered as an independent risk factor for OSA [11].
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We are aware of several limitations of our study that should be acknowledged in inter-
pretation of the results, such as lack of fasting glucose of glycated hemoglobin evaluation as
some individuals might have suffered from not-yet-diagnosed DM2; however, this should
not greatly influence the obtained results, especially considering that the large group of
patients is representative of the general population. Furthermore, our analysis consisted
of more than one oximetric parameter and the method of recording these parameters
(full-night PSG) which are the strengths of this research.

The results of our research and many literature reports may lead to a conclusion
that monitoring nocturnal oximetric parameters may be useful for recognizing patients
at risk of developing metabolic disorders. This thesis is reflected in recommendations of
the International Diabetes Federation Taskforce on Epidemiology and Prevention for the
health professionals working with both DM2 and OSA patients [23]. In clinical practice,
considering patients with one condition for the other should be adopted. Despite the
number of convincing scientific reports in that field, further research is needed to examine
this correlation in a prospective study. Especially including assessment of CPAP treatment
and compering other chronic pulmonary disorders that might present with hypoxia such
as chronic obstructive pulmonary diseases and cystic fibrosis [24].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jcm10173770/s1, Supplementary Table S1: Equations used for adjustment of basal O2
saturation, mean O2 desaturation and O2 nadir by BMI and AHI based on general linear regression.
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