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Simple Summary: Cattle lameness detection as well as behaviour recognition are the two main
objectives in the applications of precision livestock farming (PLF). Over the last five years, the
development of smart sensors, big data, and artificial intelligence has offered more automatic tools.
In this review, we discuss over 100 papers that used automated techniques to detect cattle lameness
and to recognise animal behaviours. To assist researchers and policy-makers in promoting various
livestock technologies for monitoring cattle welfare and productivity, we conducted a comprehensive
investigation of intelligent perception for cattle lameness detection and behaviour analysis in the
PLF domain. Based on the literature review, we anticipate that PLF will develop in an objective,
autonomous, and real-time direction. Additionally, we suggest that further research should be
dedicated to improving the data quality, modeling accuracy, and commercial availability.

Abstract: The growing world population has increased the demand for animal-sourced protein.
However, animal farming productivity is faced with challenges from traditional farming practices,
socioeconomic status, and climate change. In recent years, smart sensors, big data, and deep learning
have been applied to animal welfare measurement and livestock farming applications, including
behaviour recognition and health monitoring. In order to facilitate research in this area, this review
summarises and analyses some main techniques used in smart livestock farming, focusing on those
related to cattle lameness detection and behaviour recognition. In this study, more than 100 relevant
papers on cattle lameness detection and behaviour recognition have been evaluated and discussed.
Based on a review and a comparison of recent technologies and methods, we anticipate that intelligent
perception for cattle behaviour and welfare monitoring will develop towards standardisation, a larger
scale, and intelligence, combined with Internet of things (IoT) and deep learning technologies. In
addition, the key challenges and opportunities of future research are also highlighted and discussed.

Keywords: cattle behaviour; lameness detection; precision livestock farming; intelligent perception;
cattle welfare

1. Introduction

Livestock production is the second largest supplier of food for human consumption,
after vegetable/cereal agriculture. The livestock sector contributes up to 50% of the global
agricultural gross domestic product and supports the livelihoods and food security of
almost 1.3 billion people in developing countries [1]. The increasing demand of livestock
products is the result of human population growth, urbanisation, and growing incomes.
The United Nations Food and Agriculture Organisation predicts a 60% increase in demand
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for animal products (i.e., meat, milk, and eggs) by 2050 [2]. To meet the rising global
demand for animal products, the livestock industry will need to improve its efficiency and
operations to enhance productivity per animal. Along with this, there are also growing
concerns about wastewater, air pollutants caused by animal manures, CO2 emissions, and
animal ethical issues. However, rising labour and maintenance costs alongside the increas-
ing number of animals per farm have reduced the levels of individual animal care [3,4]. In
addition, some animal farming problems such as high levels of lameness, inefficient use of
resources, reduced species diversity, reproduction, and cows’ short lifespan also need to
be considered.

In order to provide sufficient care for each individual animal to increase productivity
and yield, automatic livestock monitoring and management technologies are needed. With
the ability to increase efficiency by shifting the focus towards the individual animal, preci-
sion livestock farming (PLF) has attracted much attention from both governments and the
industry in recent years [5]. Conceptually, PLF involves the integration and interpretation
of relevant sensor information to enable the management of individual animals through
continuous real-time monitoring of their health, behaviour, production/reproduction, and
environmental impact [6,7]. Through technologies such as machine learning and Internet
of Things (IoT, i.e., the interconnection between computing devices via the Internet), deci-
sion making in PLF can be better managed by fusing and analysing different sensor data
streams, thereby reducing operational costs and improving animal health and welfare while
increasing productivity, yield, and environmental sustainability. The intelligent perception
and analysis of individual animal’s behaviours, welfare, and production is fundamental
for improving sustainable production systems [4]. The concept of intelligent perception
for animal monitoring was proposed by [8] and refers to perceptive animal bio-response
from the animal–environment interaction using multi-senor data and the ability to apply
adaptive learning to analyse animal welfare and health status [9]. In recent years, sensors
such as cameras, microphones, 3D accelerometers, temperature sensors, glucose sensors,
and technologies such as deep learning and the IoT make it increasingly feasible to model,
monitor, and control animal bio-response and to provide accurate feedback to the farmer.
Grounded on this basis, combined with the development of a Decision Support System
(DSS) or expert systems, intelligent perception technologies can make large-scale animal
husbandry more cost-effective, efficient, and sustainable [10,11].

Cattle lameness is a key factor for reduced performance on many farms. The timely
detection of lameness is important for providing effective and inexpensive treatment
and for preventing future ailments [12]. Meanwhile, cattle behaviour is an important
indicator for animals’ health and welfare, which influence the quantity and quality of
cattle products [13]. However, traditional lameness detection and behaviour recognition
approaches are time-consuming and labour-intensive, resulting in major concerns on
farms. Here, we focus on intelligent perception and analysis technologies relevant for the
following two main tasks: (1) lameness detection; (2) cattle behaviour recognition and
analysis. In this work, we summarise and analyse recent work in the above areas and
discuss future research, and developmental opportunities and challenges. For an overview
of existing technologies used for cattle identification, body condition score evaluation, and
weight estimation, we refer the reader to [14].

In this study, we focus on intelligent perception techniques for precision beef cattle
farming. We also partially review existing studies on dairy cattle. This is mainly because
some technologies and methods could be used to resolve common concerns in both beef and
dairy cattle. Therefore, we focus on beef cattle in this work and discuss some references
corresponding to dairy cows. A general intelligent perception-based animal farming
process is presented in Figure 1. In this framework, the animal welfare measurement with
relevant smart sensors is the key part, and a DSS utilises the former information to manage
farming and environment protocols [15–17].
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Figure 1. The framework of intelligent perception-based animal farming.

2. Cattle Lameness Detection and Scoring
2.1. Cattle Lameness

Lameness is a prevalent health issue in cattle production, impacting both animal
welfare and livestock productivity. Painful disorders in the locomotor system result in the
animal modifying its gait and posture to minimise pain, which is observed as impaired
motion, or non-standard gait or posture [18–20]. The main causes of lameness include
Hoof lesions [12], limb lesions, or locomotor deficiencies [21]. Lameness in cattle restricts
locomotion and movement and leads to reduced milk production, lower fertility, and
higher culling rates [22]. As a consequence, it is the third most costly health issue after re-
production issues and mastitis in the dairy industry [23]. Lameness affects not only animal
welfare but also yield and profit. In addition, due to its high prevalence on farms, lameness
is regarded as a major health and economic concern in modern cattle farming. As such,
the detection of lameness in an accurate and timely manner is of great significance [24,25].
However, the cause and prevalence of lameness vary between production systems (pastures
and barns) and farm management but lameness is typically found in between 10% and 30%
of the herd [26].

2.2. Manual Cattle Lameness Detection Approaches

Lameness can be detected manually by visually observing behavioural changes as
lame animals reduce their speed, change their pace, arch their backs, and drop their heads
during walking [27]. A manual Locomotion Scoring System (MLSS) is a systematic method
of assessing lameness [28] with the locomotion of an animal scored on an ordinal scale by
humans who watch for specific locomotion traits [28]. Sprecher et al. [22] and Winckler and
Willen [29] scored cow lameness by considering the step consistency, step size, and load of
a dairy cow’s gait. More recently, Thomsen et al. [30] used the threshold judgment method
to make the lameness scoring system reliable. It should be remarked that the score from
MLSS is subjective, as it is influenced by the examiner’s experience and perceptions [31,32].
Moreover, as the intensity and scale of cattle farming increase, farmers tend to have less
time to conduct manual lameness assessments.
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2.3. Automatic Cattle Lameness Detection Approaches

In recent years, electronic sensors and artificial intelligence techniques have been intro-
duced into the livestock industry for lameness detection. With these emerging technologies,
lameness detection can be performed in a more timely and accurate manner [32]. Advances
in sensor technologies and other fields have been adapted to automatic lameness detection.
For example, there is recent research dedicated to detecting lameness automatically with
Automatic Locomotion Scoring Systems (ALSSs) [19,33]. In contrast to MLSSs, ALSSs
could provide a more objective, consistent lameness assessment [20]. Locomotion was
classified into lameness levels in recent studies using more advanced metrics such as body
movement pattern [34], gait [35], and step frequency [36].

The most popular sensors used in automatic cattle lameness detection include force
platforms [37], two-dimensional (2D) and three-dimensional (3D) cameras [38], and on-
limb accelerometers [39]. Measurements from these sensor are the input to algorithms to
compute lameness traits such as step overlap [33,40] and back curvature [38].

According to [19,27], automatic lameness detection approaches can be categorised
into three classes: kinetic (measuring forces involved in locomotion), kinematic (measuring
limb trajectories in space and time, and related specific posture variables), and indirect
measurement techniques (measuring behavioural or production variables). An overview
of the most popular lameness detection methods and the corresponding locomotion traits
observed is given in Table 1.

2.3.1. Kinetic Approaches

Cattle lameness can be detected through an analysis of cattle motion and the causes
of motion such as forces, or translational and rotational torque. This is known as the
kinetic framework. In kinetic approaches, hoof forces or weight distribution when cattle
are walking or standing, respectively, are often used to evaluate locomotion scores. For
example, Liu et al. [37] and Dunthorn et al. [41] used a force-plate to measure the leg
force and applied logistic regression to detect cattle lameness. It should be noted that in
early work on kinetic approaches, only vertical ground reaction forces were considered for
lameness detection. In recent years, ground reaction forces in three dimensions have been
measured and utilised for lameness detection [38,41].

Deep learning approaches have also gained some recent interest. For example,
Wu et al. [42] proposed a lameness detection approach for dairy cows based on YOLOv3.
It is worthwhile mentioning that, in real practical experiments, the lameness detection
accuracy of kinetic approaches is affected by the cattle hoof position on the weighing units
during measurement [43] or by the walking speed of cows [44].
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Table 1. Main studies on lameness detection.

Work Sensor Dataset Size
(Cattle Number)

Traits Model Automation Level Results

kinetic
Liu et al. [37] force plate 346 vertical kinetic logistic regression medium sensitivity = 51.92%

Dunthorn et al. [41] 3D force-plate 85 leg force logistic regression medium sensitivity = 90.0%
Nechanitzky et al. [45] weighing platform 44 weight and laying time logistic regression medium sensitivity = 81.0%

Chapinal et al. [36] camera
weighing platform

57 step frequency
laying time, weight

logistic regression high Area under the curve = 83.0%

Chapinal and Tucker [46] camera
weighing platform

257 step number and gait statistic analysis high sensitivity ≥ 0.96

Zillner et al. [47] clock 53 walking speed analysis of variance low sensitivity = 71.43%

kinematic
Van Nuffel et al. [48] gaitwise system 61 gait linear discriminant medium sensitivity = 88.0%

Pluk et al. [40] camera 85 step overlap regression model medium R2 = 80.90%
Poursaberi et al. [49] camera 156 back curvature image analysis high accuracy = 96.7%
Poursaberi et al. [50] camera 1200 posture and movement image analysis high accuracy = 92.0%

Viazzi et al. [34] camera 90 posture and movement image analysis high accuracy = 76.0%
Viazzi et al. [38] 3D camera 273 back posture decision tree high accuracy = 90.0%

Van Hertem et al. [35] 3D camera 186 gait logistic regression model high accuracy = 60.2%
Van Hertem et al. [51] 3D camera 208 back posture binary GLMM high accuracy = 79.8%

Wu et al. [42] camera 50 step size long short-term memory high accuracy = 98.57%
Zhao et al. [12] camera 98 leg swing decision tree classifier high sensitivity = 90.25%
Beer et al. [52] Camera 63 gait logistic regression model medium sensitivity = 90.2%

Jiang et al. [53] camera 30 walking characteristics double normal distribution
statistical high accuracy = 93.75%

Jabbar et al. [54] 3D camera 22 height variation support vector machine high accuracy = 95.7%
Kang et al. [55] camera 100 supporting phase data analysis high accuracy = 95.7%
Piette et al. [56] camera 209 back posture threefold cross validation high accuracy = 82.0%

In direct
De Mol et al. [57] 3D accelerometers 100 lying time dynamic linear model high sensitivity = 85.5%

Kamphuis et al. [58] pedometers, weigh scales
milk meters

292 live weight, steps
milk yield

dynamic linear model high sensitivity = 80.0%

Miekley et al. [59] milk meter pedometers 338 milk yield
feeding patterns

principal component analysis high sensitivity = 87·8%

Kramer et al. [60] milk meter
neck transponders

125 milk yield and activity fuzzy logic model high sensitivity ≥ 70.0%

Chapinal et al. [44] camera 153 gait score, walking speed
lying behaviour

discriminant analysis high sensitivity = 67.0%

Garcia et al. [61] automatic milking system 88 milk yield and activity
variables discriminant analysis high sensitivity ≥ 80.0%

Wood et al. [62] Infrared thermometry 153 foot temperature linear regression high coefficient = 62.3%
Lin et al. [63] infrared thermometers 990 foot-surface temperatures linear regression high sensitivity = 78.5%

Jabbar et al. [54] 3D camera 22 shape index and curvedness SVM high accuracy = 95.7%
Taneja et al. [64] camera 150 step count, lying time, swaps K-Nearest Neighbours high accuracy = 87.0%

Jiang et al. [53] camera 30 pixel distribution
characteristics statistical model high accuracy = 93.75%

Note: SVM means support vector machine; GLMM means Generalised linear mixed model; Gaitwise is a pressure-sensitive measure system.
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2.3.2. Kinematic Approaches

Unlike kinetic approaches that try to measure ground reaction forces, kinematic approaches
focus on kinematic variables (i.e., how the cattle move spatially and temporally) [20]. In other
words, the kinematic approaches only study the motion itself without considering the cause of
the motion.

In kinematic approaches, different techniques can be used to obtain variables of
locomotion such as step size, step length, height, and back curvature [40,48,65]. In general,
kinematic gait variables can be computed based on hoof location pattern. For example,
Pluk et al. [65] used a pressure sensitive mat-based Gaitwise system to measure the hoof
location with the vertical reaction force and time.

Image/video processing and analysis have also been used for cattle lameness detec-
tion, where the recorded cattle videos are transformed into images sequences for kinematics
extraction [65]. Here, the hooves, limb joints, and withers were tracked using attached
reflective markers, and the kinematic gait parameters (e.g., stride duration, stance dura-
tion, and swing duration and hoof speed) were calculated to find ulcers. Moreover, back
postures extracted from video frames were used for automatic lameness detection in [49],
where a binary classification from a back arch metric resulted in a sensitivity of 100%, a
specificity of 97.6%, and correct classification rates in the order of 96.5%. Furthermore,
Beer et al. [52] evaluated the feasibility of the newly described parameters (e.g., “calculated
walking speed” and “lying bout duration”) of cow gait for the early detection of lameness.

Other techniques use cattle limbs attached accelerometers to measure the acceleration
of legs while cattle are walking [66]. Based on the collected measurements, a ratio of
acceleration variance and a ratio of wavelet detail between the left and right limbs can be
used for lameness detection.

2.3.3. Indirect Approaches

Some variables not directly related to lameness or motion have also been used for lame-
ness detection. The methods in this category are usually called indirect approaches [58,67,68].
Generally speaking, these approaches use sensors to measure behavioural (e.g., lying,
standing, and walking time) and production variables (e.g., milking order and milk yield)
for final lameness detection [61]. For example, ALSSs in Buisman et al. [25] relied on the
use of on-cow sensors such as accelerometers to detect alterations in behaviour, such as
the duration of lying or standing bouts, and the total time lying down or standing per day.
In fact, lying time is a commonly used behaviour metric in several works [69–71], while
ALSSs is based on production information and mainly focuses on the live weight, or milk
yield and collection time. The production data may be obtained by combining off-cow
sensors such as milk meters or weight scales [58].

Miekley et al. [59] proposed a lameness detection method based on pedometer activity
and feeding patterns. Kramer et al. [60] used the milk yield and feeding behaviour to
predict lameness with the aid of fuzzy logic and achieved specificity in the range of 75% for
125 cows. Gardenier et al. [20] used Faster R-CNN to detect hooves and carpal/tarsal joints
to obtain individual trajectories per limb. Jiang et al. [68] learned video representations
using neural networks with single-stream long-term optical flow convolution and achieved
98.24% lameness behaviour recognition accuracy with a speed of 564 FPS (1.77 ms/image).

Garcia et al. [61] used the milking, feeding, and behavioural parameters to predict
lameness with a partial least squares discriminant analysis model. In that work, a binary
lameness classification reached 77% and 83% for parity in two cows. To improve lameness
detection performance, in Ishihara et al. [72], a multivariate model combining several
variables such as body posture, day-time activity, rear back angle, walking speed, milk
yield, and milk flow rate was proposed.

Additionally, 2D cameras and 3D sensors have gained popularity in lameness
detection [49]. In these approaches, after image acquisition (Seen in Figure 2), visual fea-
tures (such as uneven gait and back arch) were extracted to build a lameness detection
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model. Viazzi et al. [38] compared the 2D and 3D camera systems for cow lameness de-
tection and found that both 3D and 2D camera can achieve more than 90% accuracy. In
general, compared with 2D camera, 3D cameras obtain more comprehensive information
and are more suitable for long-term observation and data collection for lameness detection.
However, the processing of 3D information is complex and time-consuming due to its
larger amount of data.

Figure 2. Examples of acquired images from an Intel RealSense D435 camera.

In Song et al. [33], trackway information containing hoof locations in the real world
and its corresponding times in a video were calculated for automatic detection of lame-
ness. Van Hertem et al. [51] used a 3D video recording system to automatically quantify
the back posture of cows and achieved 79.8% lameness classification accuracy using gener-
alised linear mixed models (GLMM). Jabbar et al. [54] proposed a nonintrusive lameness
detection method in dairy cows using 3D video and achieved an overall lameness classifi-
cation accuracy with 95.7%. Zhao et al. [12] developed an automatic system for scoring the
locomotion of cows, quantified the movement patterns of cows for classifying lameness
using the features extracted from movement analysis, and achieved 90.18% accuracy.

Recently, Jiang et al. [53] proposed a double normal background statistical model for
lameness detection using side-view images and achieved 93.75% detection accuracy. Piette
et al. [56] proposed a lameness monitoring algorithm based on back posture values derived
from a camera for individual cows and tuned the deviation thresholds and the quantity
of the historical data being used. Taneja et al. [64] developed an end-to-end approach that
leverages fog computing and K-Nearest Neighbours techniques to identify lame cattle
and achieved 87% accuracy for an early lameness detection window of 3 days before
visual signs.

Apart from traditional 2D and 3D cameras, thermal infrared cameras have also been
used to check hoof temperatures for cattle lameness detection [73]. This is based on the fact
that hoof lesions and infection can change the hoof surface temperature due to increased
blood flow. Hence, when a cow’s hoof is damaged, the surface temperature increases [74].

For example, Lin et al. [63] proposed a lameness detection approach using infrared
thermometers. They analysed the ambient-temperature-adjusted foot-surface tempera-
tures and temperature differences between the hind feet of individual cows to optimise
lameness detection. According to their results, the optimal threshold was 23.3 ◦C with
78.5% sensitivity and 39.2% specificity. However, given the fact that different hoof positions
result in varying temperatures, the selection of the threshold value still needs further study.
Nevertheless, infrared thermography has great potential as an early diagnostic method
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for lameness and can compensate for 2D or 3D lameness detection because early lameness
motor characteristics may not be as significant [75].

2.4. Limitations of Automated Lameness Detection Systems

The availability of low cost and validated automatic lameness detection systems makes
monitoring animal lameness behaviour quite feasible. However, the majority of lameness
detection systems are still in the research phase and have not yet been commercialised and
implemented under field conditions [76].

The use of ALSSs can be influenced by many factors (e.g., experiences of users,
the space limitation, and the investment budget). Investment cost, product efficiency,
maintenance complexity, robustness, and equipment application ability are the main factors
to consider when choosing the type of automatic lameness detection system [27]. A good
lameness detection system should be combined with existing farm infrastructures (e.g.,
weighing platform) and should allow the manager to regularly (e.g., twice or three times a
day) check the data. The fusion of different sensors’ measurements such as feeding, milking,
and grooming data has the potential to improve the accuracy of lameness detection at an
early stage [53].

In terms of automated lameness detection methods, a combination of multiple meth-
ods can potentially further improve the robustness and accuracy of detection because it is
difficult to detect all lame cows accurately based on only a single feature [64]. Meanwhile,
both temporal and spatial characteristics from data can be unified to improve performance
of lameness detection [77]. High quality data should be given to lameness detection sys-
tems to help farmers make decisions and to provide some early warnings. In addition,
parts of lameness detection also rely on the recognition of behaviours such as walking,
lying, and feeding; therefore, a comprehensive behaviour recognition and analysis is also
helpful in some cases.

2.5. Cattle Behaviours

Cattle behaviour mainly refers to the animals’ continuous interaction with the envi-
ronment and the way they express themselves. Hence, it is a valuable indicator in assessing
the health and welfare of animals [78]. The behaviour of domestic cattle has evolved over a
long time, initially in response to their domestication [79]. According to recent research, the
main cattle activity behaviours in PLF can be classified into grazing, exploring, grooming,
mounting, ruminating, lying, walking, standing, and aggressive behaviour [80]. Measuring
and assessing the behaviour of livestock is important as it can be used to indicate their pain
feeling [81], lameness [67], and welfare status [82]. When animals are ill, their behaviour
changes include a decrease in exploratory activity, reproductive activity, food and water in-
take, grooming, and other social behaviours. Hence, monitoring and analysing changes in
behavioural activity could provide useful information for timely management decisions to
optimise animal performance, genetic selection and breeding, welfare, and environmental
outcomes [83]. In Table 2, the descriptions of some main cattle behaviours are given.

Especially, grazing is an important behaviour from an economic and welfare point
of view in PLF [80]. Lying behaviour is a parameter frequently quantified by precision
dairy monitoring technologies, since the time that a cattle spends lying down can indicate
comfort, welfare, and health changes in an animal [84,85]. Mounting behaviour is the
most widely used indicator of reproductive behaviour for estrus detection [86]. Aggressive
behaviour can be observed during feeding times when animals compete for food, water, or
other resources. There is also some association between aggressiveness and a high level of
feeding in a half-open feedlot production system, as investigated in [87].

Recent progress towards cattle behaviour monitoring and analysis can be classified
into three different categories: the first category only focuses on behaviour detection, the
second category is long-term behaviour monitoring and detection, and the final category is
automatic behavioural changes detection and quantification based on long-term behaviour
monitoring [88]. Currently, most existing results in the literature focus on the second
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category—monitoring behaviour over time, with few reports about the third category—
detection and quantification of behavioural changes.

Table 2. Main cattle behaviour descriptions.

Behaviour Description

Grazing Head is placed in or over feed or pasture,
while cattle searches, masticates, or sorts the feed (silage) or pasture

Exploring Head is in close proximity to
or in contact with

the ground, using the nose to detect smells or food

Grooming Turns head towards abdomen with a stretched neck,
using their tongue to groom the body

Mounting Animal climbs on any part of the body or head of another animal

Ruminating The cow regurgitates feed,
or swallows masticated feed and regurgitates it

Lying The cow lies
in any position except flat on its side

Walking The position of the body and four legs changes,
with the head and neck not moving

Standing The cow stands on all four legs with its head erect
and without swinging its head from side to side

Aggressive Causes actual or potential harm
(e.g., threat) to other animals

2.6. Manual Approaches for Cattle Behaviour Monitoring and Recognition

The traditional human observation method for cattle behaviour recognition is time-
consuming [89]. For example, Geers et al. [90] reported that the time required for mounting
behaviour detection accounts for 30% of the labour involved in commercial farming. Sam-
braus et al. [91] mentioned that continuous monitoring of mounting behaviour results in
20% of oestrus being undetected. Moreover, recognising individual cattle in a large herd for
key management decisions such as the identification of estrus is too labour-intensive [92].

2.7. Automatic Approaches for Cattle Behaviour Monitoring and Recognition

Recently, the increasing availability of sensors and machine learning technologies
makes automated monitoring and recognition of animal behaviour practicable [93,94].
Sensors that can provide information about animal behaviour can be classified as contact
and non-contact ones. On the one hand, contact sensors are usually fitted on (or sometimes
in) the animal, for example, tags, collars, global Positioning System (GPS), accelerometer,
pedometers, and magnetometer, etc. [95]. On the other hand, non-contact sensors such as
camera and LiDAR are cheap, easy, non-stressful, and noninvasive methods. Moreover,
non-contact sensors can be adapted to different animals, in both indoor and outdoor
situations, using the animals’ natural features (e.g., shape, colour, and movement) for
monitoring their behaviours [96].

It should be remarked that an automatic activity monitoring system needs to allow for
recording in the animals’ normal environment without influencing the animals’ behaviour.
Additionally, cattle can vary in size and shape (spatial), and over a period of time (temporal).
Therefore, to collect behavioural phenotypic information, temporal or spatial features (e.g.,
velocity, acceleration, speed, shape, and contour) can be extracted from sensor data for
behaviour recognition.

The concept of features should also include external factors such as temperature and
air quality. In addition, the distribution time of feed and drinking also contains useful
information that can explain the current conditions influencing cattle’s behaviours. The
feature extraction processes need to be practical with respect to the demand on computa-
tional cost and efficiency. After the features are extracted, machine learning methods can
be applied to identify the cattle behaviours. In Table 3, some main contact and non-contact
sensor-based cattle behaviour recognition studies are presented.
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Table 3. Main studies on cattle behaviour recognition.

Work Sensor Behaviour
Type Feature Model Automation

Level
Average
Accuracy

Contact sensor based approach

Martiskainen et al. [97] 3D accelerometer standing, lying, ruminating, feeding, normal,
lame walking, lying down, and standing up Statistical features SVM low 94.50%

Tani et al. [98] single-axis accelerator chewing sound spectrogram pattern matching low over 90.0%
González et al. [80] GPS and 3D accelerometers foraging, ruminating, traveling, resting ,and others Statistical features Statistical analysis medium 90.5%

Smith et al. [99] motion collars grazing, walking, ruminating, resting, and others head position and motion intensity Binary time series classifiers medium 82.25%
Williams et al. [100] GPS grazing, resting, and walking statistical features machine learning medium 85.0%
Williams et al. [101] GPS data grazing, resting, and walking behaviour-labelled GPS data hidden Markov model medium 94.0%

Andriamandroso et al. [102] IMU grass intake and ruminating statistical features two-step discrimination tree low 92.0%

Wang et al. [103] 3D accelerometer standing, lying, normal walking,
active walking, standing up, and lying down statistical features binary decision-tree medium 76.47%

Rahman et al. [104] 3D accelerometer grazing, standing, or ruminating statistical features Stratified Cross Validation medium 91.2%

Achour et al. [105] IMU lying, standing, lying down, standing up,
walking, and stationary behaviours statistical features Finite Mixture Models medium 99.0%

Peng et al. [106] IMU feeding, lying, ruminating licking salt,
moving, social licking, and head butting motion data LSTM-RNN model medium 88.65%

Riaboff et al. [107] 3D accelerometer grazing, walking lying, and standing statistical features decision tree medium 95.0%
Williams et al. [108] 3D accelerometer drinking statistical features accelerometer algorithm medium 95.0%

Peng et al. [93] IMU ruminating (lying), ruminating (standing), lying normal,
standing normal, feeding, lying final, and standing final deep learning features LSTM-RNN high 77.56%

Shen et al. [109] 3D accelerometer eating, ruminating, and other behaviours time/frequency-domain features K-nearest neighbour high 93.25%
Tran et al. [110] 3D accelerometer walking, feeding, lying, and standing statistical features Random Forest algorithm high 94.75%

Non-contact sensor-based approach
Tsai and Huang [96] camera estrus and mating behaviour changes of moving object lengths motion analysis medium 99.67%

Dutta et al. [82] camera grazing, ruminating, resting,
walking, and other sensor data and behaviour observations bagging ensemble classification medium 96%

Porto et al. [111] camera feeding and standing image detectors Viola–Jones algorithm medium 86.5%
Gu et al. [112] camera estrus and hoof disease behaviours minimum bounding box area Dynamic Analysis medium 83.40%

Ahn et al. [113] camera mounting, walking, running,
tail wagging, and foot stamping motion history image feature SVM medium 82.83%

Guo et al. [114] camera mounting behaviour geometric and optical flow characteristics SVM medium 90.9%

Yin et al. [115] camera lying, standing,
walking, drinking, and feeding visual features EfficientNet-LSTM high 97.87%

Achour et al. [116] camera standing and feeding visual features CNN high 92.00%
Fuentes et al. [77] camera 15 types: standing, lying, lying, and others 3D-CNN features deep learning high 78.80%

Wu et al. [13] camera drinking, ruminating, walking, standing, and lying visual features CNN-LSTM high 97.60%
Guo et al. [117] camera exploring, feeding, grooming, standing, and walking visual features BiGUR-attention high over 82%

Note: SVM means support vector machine; LSTM means Long Short Term Memory network; RNN means Recurrent Neural Network; BiGRU is short for Bidirectional Gated Recurrent Unit.
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2.7.1. Contact Sensor-Based Approaches

Contact sensor-based approaches mainly collect individual animal data through sen-
sors fixed on cattle and recognise behaviours according to animal posture (standing or ly-
ing), behavioural activity (walking, resting, grazing, and ruminating), and geolocation [101].
For example, Yin et al. [118] used a wireless sensor monitoring system to capture cattle
body temperature, respiratory rate, and movement acceleration parameters; then, they
used a K-means clustering algorithm to distinguish cattle behaviours. Barriuso et al. [119]
presented a multi-agent architecture based on virtual organisations to help farmers monitor
the cattle remotely.

González et al. [80] analyzed grazing cattle data from collar-mounted motion and
used GPS sensors to perform automatic and real-time behaviour monitoring with high
spatial and temporal resolution. Werner et al. [120] validated the RumiWatchSystem as a
research tool for measuring detailed grazing behaviour of cows. To improve cattle welfare
monitoring and to reduce the labour requirements, Mattachini et al. [70] proposed an
automated lying behaviour measurement method for monitoring lactating dairy cows. In
the work of [121], pedometers were used to record the step numbers, and the relationship
between cattle step numbers, behavioural estrous parameters, and ovulation time were
studied. In that work, it was argued that the pedometer is a promising tool to detect estrus
and to predict ovulation. Palmer et al. [122] combined visual observations, tail paint, and
radiotelemetry (HeatWatch) for 23 cows’ estrus detection. The results in Gibbons et al. [123]
highlighted the complexity of aggressive style of cows during feeding and illustrated
that some measures of aggressive feeding behaviour were repeatable within cows. Šimić
et al. [124] reported that an enriched environment reduced the occurrence of aggressive
behaviour in beef cattle.

More recently, Rahman et al. [104] classified cattle behaviour based on a time series
of accelerometer data from collar, halter, and ear tag sensors. Riaboff et al. [107] used 3D
accelerometer data to predict the behaviours of dairy cows. Peng et al. [93] developed
a recurrent neural network (RNN) with a long short-time memory (LSTM) model to
detect and recognise calving-related behaviours using inertial measurement unit (IMU).
Shen et al. [109] used a triaxial acceleration sensor as the device for collecting mandibular
movement data of dairy cow and divided dairy cow behaviours into three categories:
eating, ruminating, and other behaviours. In that work, by using K-nearest neighbour
algorithm, the recognition accuracy of eating and ruminating reached 92.8% and 93.7% ,
respectively.

Although contact sensors might have a high precision, they can cause cattle stress.
Moreover, the service life of these detection devices can be affected by factors such as
scraping and moisture infiltration. In addition, it is impractical to use contact sensors for
scoring group behaviours due to their cost and vulnerability.

2.7.2. Non-Contact Sensor-Based Approach

In recent years, a number of non-contact sensor-based approaches have been proposed
for undertaking behaviour monitoring and recognition. As non-contact sensors can contin-
uously operate without operator involvement, it is generally believed that they have the
potential to assess animal behaviour more quantitatively under a predetermined process
that does not change greatly [125,126]. For these reasons, vision/LiDAR-based animal
behaviour recognition methods have attracted a lot of attention in the literature [69].

For example, Huang et al. [127] investigated cattle body dimension reconstruction
with transfer learning from LiDAR measurements. Gao et al. [128] extracted cattle for
moving behaviour tracking and recognition using a dynamic analysis. Gu et al. [112]
used minimum bounding box and contour mapping to identify cattle behaviour, and
hoof or back characteristics. Meunier et al. [129] integrated a number of image analysis
techniques to help determine cows’ main activities (except drinking behaviour). In some
other studies, 2D and 3D cameras have been utilised to quantify how much feed was
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consumed by an individual animal [88,130]. In general, 2D camera monitoring realises
behaviour clarification based on shape and colour features, while 3D cameras are more
accurate in distinguishing between behaviour using 3D motion detection during feeding
and drinking times.

Porto et al. [111] modeled and verified feeding and standing behaviour detection
in dairy cows by designing a method based on the Viola–Jones algorithm and a multi-
camera video recording system. The sensitivity of this system to feeding and standing
behaviours was about 0.87 and 0.86, respectively. Guo et al. [114] used region geometry (for
example, inter-frame difference and background subtraction), optical flow characteristics
and support vector machine to recognise cow mounting behaviour, achieving a recognition
accuracy of 0.98 with 30 videos. Tracking the animal around its enclosure can also lead
to the discovery of other important information such as the time taken at the feeder or
drinker and can help optimise farm decisions, e.g., the number of feed stations or space
requirements [125].

Additionally, sound recognition-based cattle behaviour recognition approaches have
also attracted some attention in the cattle industry. Nunes et al. [131] trained a recurrent
neural network (RNN) with a long short-term memory (LSTM) layer to detect and dis-
tinguish cattle behaviours via chews, bites, and noise. Jung et al. [132] proposed deep
learning-based cattle vocal classification model and real-time livestock monitoring system
with noise filtering. The proposed approach achieved 81.96% accuracy after the sound
filtering. Meen et al. [133] reported a potential welfare monitoring system that observes
the vocalisations and behaviours of Holstein Friesian cattle using audio and video record-
ings. Röttgen et al. [134] reported that the vocalisation rate is a suitable indicator used to
confirm a cattle’s estrus status, and it was suggested that the status of the cattle can be
monitored through voice analysis. Chelotti et al. [135] estimated grazing and rumination
bouts using acoustic signals in grazing cattle and achieved 0.75 F1-scores for both activities.
However, how to effectively acquire sound and to accurately determine this information in
a livestock facility is still a challenge.

Apart from the above, the potential to identify welfare-compromised animals through
motion characteristics or spatial characteristics can has also been explored. Fuentes et al. [77]
extracted temporal-context features (3D-CNN) and motion information (optical flow) from
videos, achieving 78.8% recognition for 15 different hierarchical behaviours. Yin et al. [115]
proposed the EfficientNet-LSTM model to extract spatial feature for the recognition of
cows’ motion behaviours, which achieved 97.87% behaviour recognition accuracy in the
antagonism of environmental robustness. Wu et al. [13] proposed CNN-LSTM (a fusion
of convolutional neural network and long short-term memory) for recognising the basic
behaviours of a single cow. In the former work, the experimental results illustrated that
the precision of the proposed algorithm for the recognition of five behaviours ranged from
0.958 to 0.995, that the recall ranged from 0.950 to 0.985, and that the specificity ranged from
0.974 to 0.991.

2.8. Cattle Behavioural Change Detection and Quantification

Although comprehensive knowledge of the characteristics of the behavioural activities
of animals is fundamental, changes in behavioural activity are also important as they
reflect exceptional and probably challenging situations caused by internal or external
stimuli [88]. Methods of assessing behavioural changes have emerged in recent years with
the development of smart sensors and data analysis techniques.

Actually, behavioural change is a good indicator that can reflect diseases or welfare
situations [136]. González et al. [81] used data on the feed intake, feeding time, and number
of daily feeder visits to describe and quantify changes in short-term feeding behaviour.
Their research showed that the quantification of short-term feeding behaviour is helpful in
the early identification of sick cows. Overton et al. [137] recorded dairy cow behavioural
patterns using time-lapse video photography and examined factors affecting lying behaviour
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changes during summer conditions. Butt [138] investigated the influences of seasonality in
drylands for space–time dynamics of cattle behaviours based on data from GPS collars.

In addition, MacKay et al. [139] illustrated the links between short-term temperament
tests and the longer-term behaviour data in beef steers. Some subtle behavioural changes
such as walking speed, frequency of standing episodes, or the amount of food intake may
also be regarded as indicators of animal health compromises [88]. However, quantifying
variable and complex animal behaviour is challenging, and some subtle changes are hard
to detect at early stages. Therefore, leveraging long-term videos to measure and quantify
the change in behaviours through automated tracking and analysing is of significant value
in health and welfare monitoring.

2.9. Limitations of Existing Approaches

Most studies focus on the basic behaviours of a single animal such as walking, stand-
ing, lying, feeding, and drinking. There are few research on other advanced and group
behaviours such as rumination, limping, reproduction, and aggression [79]. In large
farms, group or interaction behaviours are also important for animal welfare and the
corresponding management. Meanwhile, some tiny behaviours such as limping is part
of basic walking behaviours, which is difficult to detect using a general network [13]. In
terms of behavioural analysis, environmental conditions are prone to be ignored. Actually,
environmental conditions such as temperature, humanity, and carbon dioxide density
affect the cattle’s activity and motion behaviours [124].

On the other hand, the majority of the abovementioned behaviour recognition methods
require high-definition videos, which may limit their practicability in complex environ-
ments such as the low image quality of farm cameras, night, and rainy days. Additionally,
quantifying variable and complex animal behaviours based on video data is challenging.
The instances of a given behaviour must be recorded and analysed to detect changes
with statistical analysis. However, it is time-consuming and often accompanied by error.
Additionally, some small behavioural changes are difficult to detect using visual data. All
of these severely limit the quantification of animal behaviour changes [77]. It is believed
that computer vision combining motion sensor systems could achieve a more economical
and accurate behavioural analysis system.

Moreover, the majority of existing monitoring techniques used ground-level sensors
such as smart ear tags, camera traps [140], and infrared thermal cameras. Hence, these
approaches have limitations in relatively large geographic areas with complex terrains.
Remotely sensed imagery can be used to identify dead or live animals with poor mobility
by tracking the movement of the animals. This could be a potential alternative and could
complement ground-based animal monitoring [141]. The use of quadcopter or satellite
data in conjunction with machine learning algorithms is likely to become an emerging and
promising direction that can revolutionise livestock management.

3. Challenges and Future Research Trends

Based on the above literature review and the livestock development requirements,
some main challenges of lameness detection and behaviour recognition are summarised in
the following:

(1) Lack of high-quality public data and data fusion methods: Machine learning
methods rely on large-scale data to train a favorable model. However, considering the high
values of data and the issues of ownership, security, and confidentiality, farms and other
commercial entities seldom release their collected data into the public domain [142]. In
addition, complex datasets generated from different sources, such as images and motion
information, may fail to compensate for functions due to unknown interactions across
multiple variables.

(2) Demand for smart management systems: Various sensor data and information
could be used to support farm-level decision making, but few management systems could
be used to deal with the complex and large-scale data in a broader geographic contexts.



Animals 2021, 11, 3033 14 of 20

How to establish a production and cost management system and how to use this to balance
economic and non-economic values from emerging technologies remain challenge to be
explored [143].

(3) Lack of commercial availability: The data in laboratory research and production
practice have been in a state of disconnect, and actual production is still lacking. Given
the techniques used, the performance of the new proposed systems reviewed would be
questionable if applied outside the laboratory environment. There is a lack of effective tools
to widely use existing data, knowledge, and models [10]. Therefore, a practical system
would need to be designed to satisfy applications in a commercial farm environment.

With the development and maturity of various smart sensors, big data, and artificial
intelligence, precision livestock farming will develop in the direction of standardisation,
large scales, and intelligence with the support of modern equipment. Based on the above
review of the research in lameness detection and behaviour recognition, the future research
opportunities are discussed in the following:

(1) Animal pose estimation and behaviour changes detection: Pose estimation could
help to ensure that cattle in abnormal conditions can be identified on time, hence reducing
the possibility of infection and improving the quality of dairy or meat products. In addition,
perceived animal’s behaviour changes can provide a basis for automatic determination of its
health status, accurate breeding, and other fields. However, research on pose estimation and
behaviour change detection is still in its infancy. Advanced pose estimation, behavioural
models, and detection theories and methods are important and are desired for future
PLF development.

(2) Livestock growth model and intelligent decision support system: Based on big data,
perception technology, automatic control technology, and livestock breeding technology,
the whole life cycle of an animal can be monitored and analysed. By analysing and
processing massive amounts of animal data and information, livestock growth models can
be constructed to achieve fine control of livestock and to maximise the benefits of farmers.
Meanwhile, decision support systems exploring the trade-off among conflict objectives and
offering farmers feasible solutions are desirable. Such systems should consider various
data sources, including economic (farm income, profit, and gross domestic product), social
(public support subsidy and farm employment), animal welfare and health (body condition,
weight, behaviour, reproduction, and growth), and environmental indicators (soil cover,
nitrogen, pesticide, and energy). Based on these indicators, an intelligent growth model
can be used to assess the trade-off among economic–social–environmental objectives.

(3) New strategies for environmental regulation based on livestock welfare and pro-
duction performance: Environmental conditions have a significant influence on animal
growth rate, behaviours, health status, and productivity. Creating a comfortable growth
and production environment for livestock is not only related to the welfare and health of
the livestock itself but also closely related to the quality of livestock products, food safety,
and economic benefits of the farm. It is necessary to monitor the dynamic changes in the
ecological environment parameters in real time. Based on animal behaviour changes, nutri-
tion, growth, and health status, regulatory decisions for the fine control of environmental
dynamics and fine feeding of livestock can be made.

(4) The development of more advanced livestock monitoring equipment: It is desirable
to develop intelligent equipment and production process robots with embedded perception
and intelligent control, from breeding stocks to commercial stock. Industrial applications
of intelligent breeding equipment, especially robots, should be combined with breeding
modes and livestock facilities in order to improve the overall process efficiency. At the
same time, it will also be challenging and rewarding to study animal physiology, growth,
and behaviour for better mutual adaptation of equipment and animals and to improve the
welfare of animals.
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4. Conclusions

The global livestock industry has been developing in the direction of standardisation,
large scales, and intelligence. Intelligent perception for cattle monitoring is the key to
the development of precision livestock farming. The low cost, high efficiency, safety, and
sustainability of a large-scale livestock industry can be promoted through the acquisition,
processing, analysis, and application of information on cattle welfare and behaviour. Cattle
lameness and behaviour are two important indicators for the determination of diseases
and health status, early and real-time detection of normal behaviours (e.g., feeding and
drinking), and abnormal behaviours (e.g., aggression).

Hence, monitoring cattle lameness and behaviour can reduce the cost of animal pro-
duction, reduce losses from diseases and mortality, and improve the efficiency of livestock
management. In this paper, we conducted a comprehensive survey of intelligent perception
for cattle lameness detection and behaviour analysis in the precision livestock farming
domain. It is our anticipation that contactless, automated, real-time, and continuous de-
tection will play an important role in PLF. Based on the literature review, we have also
discussed the emerging future research trends. Our aim and hope is that this survey will
assisst researchers in the field of precision livestock farming, especially in solving various
livestock problems involving monitoring cattle welfare and productivity.
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124. Šimić, R.; Matković, K.; Ostović, M.; Pavičić, Ž.; Mihaljević, Ž. Influence of an enriched environment on aggressive behaviour in
beef cattle. Vet. Stanica 2018, 49, 239–245.

125. Tscharke, M.; Banhazi, T.M. A brief review of the application of machine vision in livestock behaviour analysis. Agrárinformatika/J.
Agric. Inform. 2016, 7, 23–42.

126. Xue, T.; Qiao, Y.; Kong, H.; Su, D.; Pan, S.; Rafique, K.; Sukkarieh, S. One-shot Learning-based Animal Video Segmentation. IEEE
Trans. Ind. Inform. 2021. [CrossRef]

127. Huang, L.; Guo, H.; Rao, Q.; Hou, Z.; Li, S.; Qiu, S.; Fan, X.; Wang, H. Body Dimension Measurements of Qinchuan Cattle with
Transfer Learning from LiDAR Sensing. Sensors 2019, 19, 5046. [CrossRef]

128. Gao, R.; Gu, J.; Liang, J. Cow Behavioral Recognition Using Dynamic Analysis. In Proceedings of the 2017 International
Conference on Smart Grid and Electrical Automation (ICSGEA), Changsha, China, 27–28 May 2017; pp. 335–338.

129. Meunier, B.; Pradel, P.; Sloth, K.H.; Cirié, C.; Delval, E.; Mialon, M.M.; Veissier, I. Image analysis to refine measurements of dairy
cow behaviour from a real-time location system. Biosyst. Eng. 2018, 173, 32–44. [CrossRef]

130. Kashiha, M.; Pluk, A.; Bahr, C.; Vranken, E.; Berckmans, D. Development of an early warning system for a broiler house using
computer vision. Biosyst. Eng. 2013, 116, 36–45. [CrossRef]

131. Nunes, L.; Ampatzidis, Y.; Costa, L.; Wallau, M. Horse foraging behavior detection using sound recognition techniques and
artificial intelligence. Comput. Electron. Agric. 2021, 183, 106080. [CrossRef]

132. Jung, D.H.; Kim, N.Y.; Moon, S.H.; Jhin, C.; Kim, H.J.; Yang, J.S.; Kim, H.S.; Lee, T.S.; Lee, J.Y.; Park, S.H. Deep Learning-Based
Cattle Vocal Classification Model and Real-Time Livestock Monitoring System with Noise Filtering. Animals 2021, 11, 357.
[CrossRef] [PubMed]

133. Meen, G.; Schellekens, M.; Slegers, M.; Leenders, N.; van Erp-van der Kooij, E.; Noldus, L.P. Sound analysis in dairy cattle
vocalisation as a potential welfare monitor. Comput. Electron. Agric. 2015, 118, 111–115. [CrossRef]

134. Röttgen, V.; Becker, F.; Tuchscherer, A.; Wrenzycki, C.; Düpjan, S.; Schön, P.C.; Puppe, B. Vocalization as an indicator of estrus
climax in Holstein heifers during natural estrus and superovulation. J. Dairy Sci. 2018, 101, 2383–2394. [CrossRef] [PubMed]

135. Chelotti, J.O.; Vanrell, S.R.; Rau, L.S.M.; Galli, J.R.; Planisich, A.M.; Utsumi, S.A.; Milone, D.H.; Giovanini, L.L.; Rufiner, H.L. An
online method for estimating grazing and rumination bouts using acoustic signals in grazing cattle. Comput. Electron. Agric. 2020,
173, 105443. [CrossRef]

136. Nasirahmadi, A.; Edwards, S.A.; Sturm, B. Implementation of machine vision for detecting behaviour of cattle and pigs. Livest.
Sci. 2017, 202, 25–38. [CrossRef]

137. Overton, M.; Sischo, W.; Temple, G.; Moore, D. Using time-lapse video photography to assess dairy cattle lying behavior in a
free-stall barn. J. Dairy Sci. 2002, 85, 2407–2413. [CrossRef]

138. Butt, B. Seasonal space-time dynamics of cattle behavior and mobility among Maasai pastoralists in semi-arid Kenya. J. Arid.
Environ. 2010, 74, 403–413. [CrossRef]

139. MacKay, J.; Turner, S.; Hyslop, J.; Deag, J.; Haskell, M. Short-term temperament tests in beef cattle relate to long-term measures of
behavior recorded in the home pen. J. Anim. Sci. 2013, 91, 4917–4924. [CrossRef] [PubMed]

140. Norouzzadeh, M.S.; Nguyen, A.; Kosmala, M.; Swanson, A.; Palmer, M.S.; Packer, C.; Clune, J. Automatically identifying,
counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. USA 2018, 115, E5716–
E5725. [CrossRef]

141. Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Chen, G.; Tait, A.; Schneider, D. Automated cattle counting using Mask R-CNN in
quadcopter vision system. Comput. Electron. Agric. 2020, 171, 105300. [CrossRef]

142. Jones, J.W.; Antle, J.M.; Basso, B.; Boote, K.J.; Conant, R.T.; Foster, I.; Godfray, H.C.J.; Herrero, M.; Howitt, R.E.; Janssen, S.; et al.
Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science.
Agric. Syst. 2017, 155, 269–288. [CrossRef]

143. Rojo-Gimeno, C.; van der Voort, M.; Niemi, J.K.; Lauwers, L.; Kristensen, A.R.; Wauters, E. Assessment of the value of information
of precision livestock farming: A conceptual framework. NJAS-Wagening. J. Life Sci. 2019, 90, 100311. [CrossRef]

http://dx.doi.org/10.3390/s18010108
http://www.ncbi.nlm.nih.gov/pubmed/29301310
http://dx.doi.org/10.1016/j.jneumeth.2017.08.022
http://www.ncbi.nlm.nih.gov/pubmed/28842192
http://dx.doi.org/10.1016/j.theriogenology.2005.04.004
http://dx.doi.org/10.1016/j.theriogenology.2010.02.009
http://dx.doi.org/10.1016/j.applanim.2009.08.002
http://dx.doi.org/10.1109/TII.2021.3117020
http://dx.doi.org/10.3390/s19225046
http://dx.doi.org/10.1016/j.biosystemseng.2017.08.019
http://dx.doi.org/10.1016/j.biosystemseng.2013.06.004
http://dx.doi.org/10.1016/j.compag.2021.106080
http://dx.doi.org/10.3390/ani11020357
http://www.ncbi.nlm.nih.gov/pubmed/33535390
http://dx.doi.org/10.1016/j.compag.2015.08.028
http://dx.doi.org/10.3168/jds.2017-13412
http://www.ncbi.nlm.nih.gov/pubmed/29331456
http://dx.doi.org/10.1016/j.compag.2020.105443
http://dx.doi.org/10.1016/j.livsci.2017.05.014
http://dx.doi.org/10.3168/jds.S0022-0302(02)74323-3
http://dx.doi.org/10.1016/j.jaridenv.2009.09.025
http://dx.doi.org/10.2527/jas.2012-5473
http://www.ncbi.nlm.nih.gov/pubmed/23893981
http://dx.doi.org/10.1073/pnas.1719367115
http://dx.doi.org/10.1016/j.compag.2020.105300
http://dx.doi.org/10.1016/j.agsy.2016.09.021
http://dx.doi.org/10.1016/j.njas.2019.100311

	Introduction
	Cattle Lameness Detection and Scoring
	Cattle Lameness
	Manual Cattle Lameness Detection Approaches
	Automatic Cattle Lameness Detection Approaches
	Kinetic Approaches
	Kinematic Approaches
	Indirect Approaches

	Limitations of Automated Lameness Detection Systems
	Cattle Behaviours
	Manual Approaches for Cattle Behaviour Monitoring and Recognition 
	Automatic Approaches for Cattle Behaviour Monitoring and Recognition 
	Contact Sensor-Based Approaches 
	Non-Contact Sensor-Based Approach

	Cattle Behavioural Change Detection and Quantification
	Limitations of Existing Approaches

	Challenges and Future Research Trends
	Conclusions
	References

