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Abstract

Influenza A virus [IAV] genomes comprise eight negative strand RNAs packaged into virions

in the form of viral ribonucleoproteins [vRNPs]. Rab11a plays a crucial role in the transport

of vRNPs from the nucleus to the plasma membrane via microtubules, allowing assembly

and virus production. Here, we identify a novel function for Rab11a in the inter-cellular trans-

port of IAV vRNPs using tunneling nanotubes [TNTs]as molecular highways. TNTs are

F-Actin rich tubules that link the cytoplasm of nearby cells. In IAV-infected cells, Rab11a

was visualized together with vRNPs in these actin-rich intercellular connections. To better

examine viral spread via TNTs, we devised an infection system in which conventional,

virion-mediated, spread was not possible. Namely, we generated HA-deficient reporter

viruses which are unable to produce progeny virions but whose genomes can be replicated

and trafficked. In this system, vRNP transfer to neighboring cells was observed and this

transfer was found to be dependent on both actin and Rab11a. Generation of infectious

virus via TNT transfer was confirmed using donor cells infected with HA-deficient virus and

recipient cells stably expressing HA protein. Mixing donor cells infected with genetically dis-

tinct IAVs furthermore revealed the potential for Rab11a and TNTs to serve as a conduit for

genome mixing and reassortment in IAV infections. These data therefore reveal a novel role

for Rab11a in the IAV life cycle, which could have significant implications for within-host

spread, genome reassortment and immune evasion.

Author summary

Influenza A viruses infect epithelial cells of the upper and lower respiratory tract in

humans. Infection is propagated by the generation of viral particles from infected cells,

which disseminate within the tissue. Disseminating particles can encounter obstacles in

the extracellular environment, including mucus, ciliary movement, antibody
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neutralization and uptake by phagocytic immune cells. An alternative mode of spread,

which avoids these hazards, involves direct transport of viral components between cells.

This cell-cell spread of infection is not a well understood process. In this study we demon-

strate that the host factor Rab11a mediates the transport of viral genomes in the cell-cell

spread of infection. Rab11a is already known to play a pro-viral role in the transport of

viral genomes to the plasma membrane for assembly into virus particles. Here, we see that

this same transport mechanism is co-opted for direct cell-cell spread through cellular con-

nections called tunneling nanotubes. We show that complexes of Rab11a and viral com-

ponents can be trafficked across tunneling nanotubes, transmitting infection without the

formation of virus particles. Importantly, this route of spread often seeds viral genomes

from multiple donor cells into recipient cells, which in turn increases viral genetic

diversity.

Introduction

Influenza A virus[IAV] genomes are composed of eight RNA segments that are packaged into

the virion in the form of viral ribonucleoproteins [vRNPs], which contain viral nucleoprotein

[NP] as well as the polymerase complex [PB2, PB1 and PA] [1]. Influenza genome packaging

mechanisms have been studied extensively and, although there are a lot of unknowns, it has

been demonstratively shown that the host cell protein Rab11a is crucial for the trafficking of

newly synthesized vRNPs after they exit the nucleus to the site of assembly at the plasma mem-

brane [2,3]. Rab11a is a small GTPase that has multiple roles in the host cell, including a pivotal

role in retrograde transport of cargoon recycling endosomes [4,5]. The intracellular transport

of vRNP-Rab11a complexes is thought to occur via the microtubule network with the help of

dynein motors [6–11]. There are, however, conflicting observations about the impact of micro-

tubule disruptionon the viral lifecycle, with results ranging from no detectable effect [6] to an

attenuation of viral progeny production [8]. Our prior work revealed that loss of Rab11a

reduces infectious viral titers, most likely due to a defect in the packaging of vRNPs, leading to

the formation of incomplete viral particles [12]. Taken together, these data demonstrate the

importance of an intact microtubule network as well as Rab11a in the IAV life cycle.

Tunneling nanotubes [TNTs] are F-Actin rich cellular connections that are formed between

two or more cells [13]. These connections can be formed over long distances and provide cyto-

plasmic connectivity between the cells, allowing for exchange of materials including organelles,

nutrients, and membrane vesicles [14–16]. Many viruses including HIV [17–19], herpesviruses

[20] and IAVs [21,22] have been shown to utilize these TNTs for cell-cell spread. Previous

work has shown that IAV spread via TNTs proceeds in the presence of neutralizing antibodies

or antivirals such as oseltamivir [21,22]. This mode of infection does not depend on the forma-

tion of viral particles, thus allowing for the assembly stage of the lifecycle to be bypassed.

Although the use of TNTs by IAVs has been demonstrated, the exact mechanism is unclear.

In this study, we show that Rab11a mediates the transport of IAV vRNPs and proteins

through TNTs, as evidenced by Rab11a co-localization with viral components in TNTs and

the disruption of this transport between Rab11a knock out cells. This system was observed to

be functional in multiple host cell backgrounds and virus strains. Using HA deficient viruses,

we confirm that transport of viral components through TNTs can seed productive infection in

recipient cells. In the context of viral co-infection, we find direct cell-cell spread often seeds

viral genomes from multiple donor cells into recipient cells, thus romoting genome mixing

and reassortment. Finally, our data suggest that, at least in the case of IAV infection, TNTs
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access the cytosol of both connected cells and allow bi-directional movement of cargo. Taken

together, these findingsdemonstrate a novel and crucial role for Rab11a in the trafficking of

IAV genomes via tunneling nanotubes and extend mechanistic understanding of this uncon-

ventional mode of viral dissemination.

Results

IAV vRNPs associate with Rab11a within F-Actin rich TNTs

Upon nuclear exit, IAV vRNPs bind to Rab11a via PB2, allowing their transport to the plasma

membrane for assembly [8,23,24]. We hypothesized that vRNP-Rab11a complexes could also

be routed to F-Actin rich intercellular connections called tunneling nanotubes [TNTs] and

could seed new infections by direct transport through TNTs. To test this hypothesis, we visual-

ized Rab11a, F-Actin and viral nucleoprotein [NP]—as a marker for vRNPs—in MDCK cells

infected with either influenza A/Netherlands/602/2009 [NL09; pH1N1] or A/Panama/2007/99

[P99; H3N2] virus. NP and Rab11a were seen to co-localize in a perinuclear compartment, as

has been shown previously [2,9]. In addition, co-localization of these components was

observed within the F-Actin rich TNTs connecting infected and uninfected cells [Figs 1A and

S1]. This observation suggests that there are at least two functional pathways for the trafficking

of vRNP-Rab11a complexes post nuclear exit: the canonical assembly pathway and the TNT-

mediated genome transfer pathway.

To further corroborate the role of Rab11a in the transport of vRNPs across TNTs, we used

Rab11a knockout [KO]A549 cells generated by CRISPR/Cas9 [12] and wild type [WT]A549

cells as a control. As before, cells were infected with either NL09 or P99 viruses and then

stained for NP, Rab11a and F-Actin. WT cells showed co-localization of NP and Rab11a in the

perinuclear region and within TNTs [Figs 1B and S2]. Conversely, Rab11a KO cells did not

show NP staining within the TNTs, indicating that Rab11a drives the transfer of vRNPs

through TNTs [Figs 1C and S3].

We used super resolution Stimulated Emission Depletion [STED] microscopy to analyze

the association of Rab11a and vRNPs within TNTs in more detail. STED microscopy over-

comes the diffraction resolution limit of confocal microscopy and allows for imaging with up

to 30nm resolution [25,26]. A549 WT or Rab11a KO cells were infected with NL09 viruses and

stained for NP, Rab11a and F-Actin. Using 3 color STED imaging of TNTs, we observed punc-

tate Rab11a and NP staining in close proximity within the TNTs in WT cells. In the case of the

Rab11a KO cells, the NP staining was relatively diffuse in the cytoplasm and could not be

observed within the TNTs [Fig 2A]. Co-localization of Rab11a and NP within TNTs was ana-

lyzed quantitatively for both WT and KO cells. A resolution of 41.67 nm for the Rab11a-NP

staining was achieved, giving a high degree of confidence in the co-localization quantitation.

Of note, Rab11a was previously determined to interact with vRNPs via PB2 [24] and not with

NP, the target of our vRNP staining. The observed colocalization co-efficient of 0.9 in the WT

cells indicates that the majority of the NP puncta within TNTs coincide with Rab11a puncta

[Fig 2B]. These data indicate that Rab11a and vRNPs are indeed interacting with each other

within TNTs and are likely trafficked as a complex.

To evaluate the frequency with which Rab11a accesses TNTs, we quantified the percentage

of TNTs that were NP+Rab11a+, NP+Rab11a- and NP-Rab11a+ in uninfected and NL09

infected A549 WT cells. Rab11a was routinely detected within the TNTs of uninfected cells,

indicating that Rab11a+ recycling endosomes are trafficked within TNTs under normal condi-

tions [Fig 2C]. In infected cells, a majority of TNTs carried NP+Rab11a+ puncta, indicating

that transport of vRNPs into TNTs is a common feature of the viral life cycle [Fig 2C].
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Fig 1. IAV vRNPs associate with Rab11a in F-Actin rich TNTs. [A] MDCK cells,[B] A549 WT and [C]A549 Rab11a

KO cells were mock-infected or infected with NL09 or P99 viruses. Cells were stained for DAPI [blue], NP [red],

Rab11a [green] and F-Actin [pink]. Representative images are shown withadditional images in S1–S3 Figs. Scale bar is

20μm for all images.

https://doi.org/10.1371/journal.ppat.1009321.g001
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Fig 2. IAV vRNPs co-localize with Rab11a within TNTs. [A]A549 WT and Rab11a KO cells were infected with NL09

viruses. Cells were stained for DAPI [blue], NP [red], Rab11a [green] and F-Actin [grey]. Representative confocal

images are shown with the high-resolution STED images depicted in the insets. The arrows depict the co-localized

puncta of NP and Rab11a. [B] Co-localization coefficient of NP and Rab11a within TNTs from A549 WT and Rab11a

KO cells [n = 10 TNTs]. Significance of differences in co-localization between the WT and KO cells was tested using a

two tailed unpaired t-test [���� P-value<0.0001]. [C] A549 WT cells were mock infected or infected with NL09 viruses

and the percentage of TNTs formed between 50 cell pairs were counted manually as NP+Rab11a+ [blue], NP-Rab11a+

[magenta] and NP+Rab11a- [teal]. Error bars represent the SEM of two biological replicates.

https://doi.org/10.1371/journal.ppat.1009321.g002
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Rab11a does not modulate TNT formation

IAV infection increases the number of TNTs formed between cells [21,22]. To test whetherthe

loss of Rab11a had an impact on TNT formation, we counted the number of TNTs formed

between cells in WT and Rab11a KO cells in the presence and absence of NL09 infection. Con-

sistent with prior work, a significant increase in the number of TNTs formed upon IAV infec-

tion was observed in both WT and KO cells [Fig 3]. Conversely, we saw no significant

difference between WT and KO cells in the number of TNTs formed, either in the context of

infection or mock infection [Fig 3]. The observation that loss of Rab11a does not significantly

impact TNT formation suggests that the reliance of vRNP trafficking through TNTs on

Rab11a arises through the observed interaction between these components.

Disruption of actin or loss of Rab11a significantly attenuates direct cell-cell

transmission of infection

Since we observed the presence of vRNP-Rab11a complexes within TNTs, we next tested

whether the loss of either the TNTs or Rab11a influences the cell-cell spread of IAV infection.

Previously, neutralizing antibodies or neuraminidase inhibitors have been used to block con-

ventional viral infection and allow examination of IAV protein and RNA transport via TNTs

[21,22]. Although these methods are effective in abrogating conventional spread, we wanted to

fully eliminate the generation of viral progeny to define the role of Rab11a and TNTs in IAV

Fig 3. Rab11a does not modulate TNT formation. A549 WT and Rab11a KO cells were mock infected or infected

with NL09 viruses and the total number of TNTs formed between 50 cell pairs were counted manually. Significance of

differences in the number of TNTs between mock and NL09 infected groups was tested using 1-way ANOVA [�� P-

value<0.01]. Error bars represent the SEM of two biological replicates.

https://doi.org/10.1371/journal.ppat.1009321.g003
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genome transfer more clearly. To this end, we rescued recombinant viruses in the NL09 and

P99 strain backgrounds that lack the HA gene but instead contain either mVenus [NL09

ΔHAVenus; P99 ΔHAVenus] or mScarlet [NL09 ΔHAScarlet] fluorescent reporter ORFs

flanked by HA packaging signals. These HA deficient reporter viruses are infection competent

but are unable to produce progeny in the absence of a HA complementing cell line. Therefore,

these viruses are excellent tools to study the cell-cell spread of IAV infection via TNTs.

To analyze the role of F-actin in the cell-cell spread of viral genomes, MDCK cells were

infected with either NL09 ΔHAVenus or P99 ΔHA Venus viruses in the presence or absence of

Cytochalasin D, which is a potent inhibitor of actin polymerization and disrupts TNTs[21,22].

Cytochalasin D was added 2h post internalization. mVenus positive cells were counted at 16,

24, and 48 h post-infection [p.i.]and binned into one of two categories: single cells or foci com-

prising > = 2 contiguous, positive cells. We hypothesized that the disruption of TNTs by Cyto-

chalasin D would severely limit the spread of IAV genomes from infected cells, preventing the

formation of infected foci. As shown in Fig 4A and 4B, there was a significant reduction in the

number of infected foci in the Cytochalasin D treated cells compared to the untreated controls

in both the NL09 ΔHA Venus and P99 ΔHA Venus infected cells. These data confirm that

intact TNTs are required for direct cell-cell spread of IAV genetic material.

Fig 4. Disruption of actin or loss of Rab11a abrogates direct cell-cell transmission of infection. MDCK cells

infected with NL09 ΔHA Venus WT [A] or P99 ΔHA Venus WT [B]at a MOI of 0.5 were counted as single infected

cells or foci of infected cells. Significance of differences in the number of infected foci between the control and

Cytochalasin D treated groups was tested using 2-way ANOVA with Bonferroni’s correction for multiple comparisons

[���� P-value<0.0001]. Error bars represent the standard error of three biological replicates. A549 WT or A549

Rab11a KO cells infected with NL09 ΔHA Venus WT [C] or P99 ΔHA Venus WT [D] at a MOI of 0.5 were counted as

single infected cells or foci of infected cells.Significance of differences in the number of infected foci between cell types

was tested using 2-way ANOVA with Bonferroni’s correction for multiple comparisons [���� P-value<0.0001]. Error

bars represent the standard error of three biological replicates.

https://doi.org/10.1371/journal.ppat.1009321.g004
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Next, we analyzed the role of Rab11a in direct cell-cell spread of IAV. To do this, A549 WT

and Rab11a KO cells were infected with either NL09 ΔHA Venus or P99 ΔHA Venus viruses.

Venus positive cells were counted at 16, 24, and 48 h p.i. and categorized based on their pres-

ence as single cells or within foci at each time point. If Rab11a directs transport of vRNPs

across TNTs, the loss of Rab11a would be expected to reduce the cell-cell spread of IAV genetic

material. As shown in Fig 4C and 4D, this was indeed the case. In contrast to WT controls, the

number of infected foci did not increase over time in the Rab11 KO cells. These data provide

further evidence for the role of Rab11a in this alternate infection pathway.

Virion-independent genome transfer leads to productive infection by an

actin-dependent mechanism

To assess whether all eight genome segments can be transported via TNTs leading to the pro-

duction of infectious progeny, we performed a co-culture experiment using MDCK cells and a

MDCK-derived cell line which expresses the HA ofinfluenza A/WSN/33 [H1N1] virus on the

cell surface [MDCK WSN HA cells]. When infected with an HA deficient reporter virus, these

cells provide the HA protein required for the generation of infectious virus particles. For sub-

sequent analysis of co-infection via TNT/Rab11a mediated genome transfer, these experiments

were set up using two IAV strains, NL09 ΔHAVenus WT and NL09 ΔHAScarlet VAR viruses.

In addition to carrying differing reporter genes, these viruses differ in the presence of a silent

mutation in each segment of the VAR virus, which acts as a genetic tag [27]. Neither of these

differences is important for the purposes of the present analysis.

As outlined in Fig 5A, separate dishes of MDCK cells were singly infected with either NL09

ΔHAVenus WT or NL09 ΔHAScarlet VAR virus. After infection for 2 hours, the cells were

acid washed to remove residual inoculum and then trypsinized to make a cell slurry. MDCK

cells infected with NL09 ΔHAVenus WT and NL09 ΔHAScarlet VAR were mixed with naïve

MDCK WSN HA cells in the ratio 1:1:2. The cell mixture was plated in medium containing

trypsin [to allow activation of HA] and ammonium chloride [to prevent secondary infections

mediated by virus particles]. If all eight segments of the viral genome can be transported across

TNTs to a conducive cell, which in this case must be a MDCK WSN HA cell, then the recipient

cell will produce virus particles. To detect any such progeny viruses produced, supernatant

was collected at 0, 24, 48 and 72 h post mixing and plaque assays were performed on MDCK

WSN HA cells.

To evaluate the role of TNTs in cell-cell spread of infection, cells were treated with either

vehicle or 30 μM Cytochalasin D, which disrupts F-Actin. As can be seen from Fig 5B, infec-

tious virus was detected in the vehicle treated control cells, but not in the Cytochalasin D

treated cells. Virus production in vehicle treated cells demonstrates the transfer of the full com-

plement of IAV genome segments from infected cells, which lack HA protein and cannot pro-

duce virions, to cells which express complementing HA protein. A lack of virus production in

Cytochalasin D treated cells indicates that this transfer was F-Actin-dependent, strongly impli-

cating TNTs. Comparing the two MOIs tested[2.5 and 25 PFU/cell], a dose dependence was

observed at 24 h, which is most likely due to the increased probability of an infected cell mak-

ing a connection with a naïve MDCK WSN HA cell at higher MOI.

To assess if actin depolymerization was impairing vRNP transport upstream of TNT trans-

fer, we tested the effect of Cytochalasin D on conventional virus production in the context of

multicycle replication. No difference in viral yield from vehicle treated or Cytochalasin D

treated cells was detected [Fig 5C]. Taken together, these data indicate that actin depolymeriza-

tion specifically abrogates TNT mediated transfer of viral genomes but has no impact on con-

ventional viral assembly.
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Fig 5. Virion-independent genome transfer leads to productive infection by an actin-dependent mechanism. [A]

Experimental workflow for MDCK, A549 WT or A549 Rab11a KO infection and co-culture with MDCK WSN HA

cells [generated via BioRender.com]. Plotted is the infectious virus yield from co-culture of MDCK WSN HA cells with

MDCK cellsinfected with NL09 ΔHA Venus WT and NL09 ΔHAScarlet VAR viruseseither treated with Cytochalasin

D [B] or Nocodazole [D]. [C] Infectious virus yield from MDCK cells infected with NL09 viruses and treated with

Cytochalasin D. [E] Infectious virus yield from co-culture of MDCK WSN HA cells with A549 WT or Rab11a KO cells

infected with either NL09 ΔHA Venus WT or NL09 ΔHAScarlet VAR viruses. Significance of differences between the

control and Cytochalasin D or Nocodazole treated cells or between WT and KO cells was tested using 2-way ANOVA

with Bonferroni’s correction for multiple comparisons [� P-value<0.1; �� P-value<0.01; ��� P-value<0.001; ���� P-
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To test if microtubules play a role in TNT mediated transport of IAV genomes, we per-

formed the co-culture assay as described above with vehicle treated and 30 μM Nocodazole,

which depolymerizes microtubules. We detected infectious virus in both control and nocoda-

zole treated cells [Fig 5D], indicating that microtubules most likely did not play a role in the

trafficking of vRNPs through TNTs.

Finally, to analyze the effect of the loss of Rab11a on the production of infectious progeny,

we co-cultured either A549 WT or A549 Rab11a KO cells infected with the NL09 ΔHAVenus

WT or NL09 ΔHAScarlet VAR viruses with the MDCK WSN HA complementing line as

described above. Supernatant was collected at 24, 48 and 72 h post mixing and plaque assays

were performed on MDCK WSN HA cells. As can be seen from Fig 5E, infectious virus was

detected from both A549 WT and Rab11a KO cells, with a marginal difference in titers at 48

and 72 hpi. Since this observation was incongruent with our previous data demonstrating the

importance of Rab11a in the transport of vRNPs, we hypothesized the transfer of viral

genomes from the Rab11a KO cells was occurring via Rab11a that originates in the MDCK

WSN HA cells. If correct, this observation would indicate that TNTs are open ended and allow

for bi-directional movement of cargo.

TNTs likely allow bidirectional shuttling of Rab11a between cells

To analyze if Rab11a could shuttle form one cell to another in a bi-directional manner, we

used A549 WT and Rab11a KO cells in combination. Briefly, A549 Rab11a KO cells were

infected with NL09 WT virus. The infected cells were then mixed in a 1:1 ratio with uninfected

A549 WT cells which were pre-stained with CellTracker Blue dye. The mixed cells were

stained for NP, Rab11a and F-Actin at 24h post-mixing and imaged using STED microscopy.

We observed NP and Rab11a within the TNTs connecting the infected KO cells and the unin-

fected WT cells[Fig 6A]. Co-localization analysis again showed Rab11a-NP colocalization

within TNTs in this KO-WT co-culture system [Fig 6B], although the coefficient was lower

than that seen in a fully Rab11a competent system [Fig 2B]. Since the WT cell is the only

source of Rab11a in the KO-WT co-culture, our data show that Rab11a traveling from an

uninfected cell to an infected cell can pick up vRNPs. The production of viral progeny

observed in this system further indicates that this Rab11a from the originally uninfected cell

can then transport vRNPs back through the TNTs, mediating infection. Our data suggest that

TNTs formed in the context of IAV infection are most likely open ended and bi-directional.

TNTs serve as conduits for genome mixing and reassortment

Since we observed that infectious progeny could be generated via Rab11a-mediated genome

transfer through TNTs, we hypothesized that this process could also mediate co-infection and

therefore reassortment. In particular, reassortment would be expected if differentially infected

donor cells connect to the same recipient cell. To test this hypothesis, the genotypes of virus

produced from the co-cultures described in Fig 5E were evaluated. In these experiments, cells

infected with NL09 ΔHA Venus WT virus were mixed with cells infected withNL09 ΔHA Scar-

let VAR virus and these infected cells were in turn mixed with MDCK WSN HA cells; thus,

co-infections could occur if WT infected and VAR infected cells each formed connections

with the same HA-expressing recipient cell and a full complement of IAV segments was recon-

stituted therein. The silent mutations differentiating each of the non-HA gene segments of the

value<0.0001; ns = not significant]. Error bars represent the SEM of two biological replicates,each comprising three

replicate infections[black circles]. The dotted line represents the limit of detection of the plaque assay.

https://doi.org/10.1371/journal.ppat.1009321.g005
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Fig 6. TNTs allow for bidirectional shuttling of Rab11a between cells. [A]A549 Rab11a KO cells were infected with

NL09 viruses and mixed with A549 WT cells pre-stained with CellTracker Blue CMAC dye [blue]. Cells were stained for

NP [red], Rab11a [green] and F-Actin [grey]. Representative confocal image is shown with the high-resolution STED

images depicted in the inset. [B] Co-localization coefficient of NP and Rab11a within TNTs formed between A549 WT

and Rab11a KO cells [n = 10 TNTs]. Error bars represent the SEM of two biological replicates with two technical

replicates each.

https://doi.org/10.1371/journal.ppat.1009321.g006
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WT and VAR viruses allow the parental origin of segments to be identified. Thus, to evaluate

reassortment, plaque clones were isolated from co-culture supernatants and the genotype of

each was determined. The results show that viruses generated from MDCK WSN HA cells

mixed with infected A549 WT cells were predominantly reassortant under all conditions eval-

uated [Fig 7A]. In contrast, when MDCK WSN HA cells were mixed with infected A549

Rab11 KO cells, parental viruses typically dominated [Fig 7B]. Thus, in a Rab11a-sufficient sys-

tem, intercellular transfer of IAV vRNPs through TNTs readily yielded reassortants, indicating

that TNTs are forming a network rather than pairwise connections between cells. When

Rab11a was absent from infected donor cells, however, reassortants were rarely observed.

Since Rab11a knock out does not impact the number of TNTs formed [Fig 3], this relative lack

of reassortants suggests that vRNP transport through TNTs is less efficient when Rab11a is

absent from donor cells.

We note that, in both data sets shown in Fig 7, richness of viral genotypes was low, with at

most four distinct gene constellations detected in each sample of 21 plaque isolates. This obser-

vation suggests that very few cells are producing most of the progeny virus in this experimental

system, and that each producer cell is releasing virus with only one or a small number of geno-

types. In turn, this suggests that MDCK WSN HA cells that receive a full complement of IAV

vRNPs do not tend to receive multiple copies of a given segment. Although low in both culture

systems, richness was significantly higher in the samples derived from A549 WT cells

Fig 7. TNTs serve as conduits for genome mixing and reassortment in a Rab11a dependent manner. Genotypes of

clonal viral isolates collected from the culture medium of NL09 ΔHA Venus WT and NL09 ΔHA Scarlet VAR virus

infected A549 WTcells [A]or A549 Rab11a KOcells [B] co-cultured with MDCK WSN HA cells. Three

technicalreplicate co-cultures per condition were sampled serially at the time points indicated and 21 plaque isolates

were analyzed per sample. The origin of the gene segments, represented by the columns in each table, is denoted by the

colored boxes [blue = WT and red = VAR]. The segments are in order PB2, PB1, PA, NP, NA, M and NS moving from

left to right. The white panels indicate samples where no plaques were detected [ND = not detected].

https://doi.org/10.1371/journal.ppat.1009321.g007
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compared to those from A549 Rab11a KO cells, with 2.8 and 1.9 unique genotypes detected on

average, respectively [p = 0.019, t-test]. This difference is consistent with less efficient vRNP

transfer when donor cells lack Rab11a.

Discussion

Our data reveal a novel role for the host GTPase Rab11a in the trafficking of IAV genomes via

tunneling nanotubes. We decisively show that productive infection can be mediated through

this direct cell-to-cell route and find evidence that Rab11a can move through TNTs in a bidi-

rectional manner to mediate IAV genome transfer. In the context of mixed infections, we fur-

thermore find that TNT/Rab11a-mediated transfer readily leads to cellular coinfection and

reassortment.

The trafficking of IAV genomes is a complex and poorly understood process. Although it is

known that newly synthesized vRNPs form transient complexes with active Rab11a post

nuclear exit and are trafficked to the plasma membrane for assembly on microtubule struc-

tures [6–9], the fate of these complexes is not completely elucidated. Here we examined the

potential for Rab11a-vRNP complexes to be trafficked through TNTs to neighboring cells.

Tunneling nanotubes [TNTs] are F-Actin based cytoplasmic connections that are utilized for

long distance communication and have been shown to have a role in the IAV life cycle [21,22].

TNTs can be used to transport vesicular cargo [14,28–30], so we posed the question of whether

the Rab11a-vRNP vesicular complexes could be re-routed to these structures. We show that

Rab11a and vRNPs co-localize within TNTs in multiple cell types, with near complete concor-

dance of NP with Rab11a in high resolution STED images of TNTs. Loss of Rab11a leads to

severely reduced detection of NP within the TNTs and more dispersed NP localization within

the cytoplasm. These observations strongly suggest that Rab11a-vRNP complexes are trans-

ported within TNTs.

TNTs are mainly composed of F-Actin and the transport of organelles through TNTs

requires myosin motor activity on actin filaments [11,23–25]. Since Rab11a can utilize both

dynein motors, which drive microtubule movement [6,26,27], and myosin motors, which

drive actin dynamics [28–30], the observation that Rab11a mediates transport through TNTs

raises the question of which motor proteins are involved. Studies to date on IAV infection

have mainly focused on the role of Rab11a and microtubules. Further studies are needed to

determine whether the same transport mechanism is active within TNTs and, conversely,

whether Rab11a-actin dynamics may function in vRNP transport both within and between

cells. Although Rab11a has been shown to be important for trafficking and efficient assembly

of IAV genomes [2,8,12], we have shown that the loss of Rab11a does not completely abrogate

genome assembly and viral particle release, indicating that there may exist an alternative path-

way for canonical assembly of virions [12].

We observed that infectious progeny could be recovered from co-cultures of infected

Rab11a KO A549 cells with MDCK WSN HA cells, which was incongruous with our previous

observation that Rab11a KO abrogated the cell-cell transmission of infection. We were able to

resolve this paradox by utilizing high-resolution STED imaging to visualize the transport of

Rab11a from uninfected A549 WT cells to infected A549 Rab11a KO cells, where vRNPs could

be picked up and trafficked through TNTs. TNTs can be formed in multiple ways- single

ended, open ended or closed—and therefore support varying modes of transport [13,16,31].

The generation of progeny virions in the Rab11a KO co-culture is likely due to the formation

of open ended, bi-directional TNTs that allow Rab11a from the HA-expressing producer cell

to shuttle to and from infected KO cells where it could pick up vRNPs. This process seems to

be inefficient, however, as evidenced by the low rate of reassortment observed when infected
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cells do not encode Rab11a. Bi-directional transfer of organelles such as mitochondria through

TNTs have been observed in various cell types, including lung mesothelioma cells [32]. It is

also possible that there exists another host factor that can mediate vRNP transport through

TNTs in the absence of Rab11a, albeit inefficiently. The possibility of bidirectional trafficking

of vRNPs between cells, or potential novel host factors involved in vRNP transport, opens hith-

erto unexplored avenues of viral infection.

Our datarevealing that coinfection and reassortment can occur through TNT transfer of

vRNPs between cells raise new questions about the processes driving IAVgenetic exchange.

The prevalence of reassortants produced via TNT transfer from Rab11a+ cells indicates that

vRNPs may be trafficked individually or as subgroups and not as a constellation of 8 segments.

This process would then seed incomplete viral genomes into recipient cells, which require

complementation to allow the production of progeny viruses. Owing to this reliance on com-

plementation, incomplete viral genomes are known to augment reassortment[33–35]. Our

data suggest that both seeding and complementation of incomplete viral genomes can occur

via TNT transfer of vRNPs. In the presence of a conventional viral infection system, co-infec-

tion with multiple virions is thought to be the modus operandi of IAV reassortment, where

reassortment efficiency is a function of the dose and relative timing of two infections, as well

as levels of incomplete viral genomes [27,33]. It will be interesting to determine whether TNT-

mediated co-infection is also sensitive to dose and timing. More broadly, further work is

needed to tease out the extent to which TNT mediated reassortment occurs alongside conven-

tional modes of reassortment.

The human airway is composed of multiple cell types, including polarized epithelial cells in

a tightly packed environment [36]. It is yet unclear what role TNTs may play in the normal

homeostasis of the airway, but TNTs have been demonstrated to mediate the transfer of cargo

and organelles in various solid tumors of the lung, including adenocarcinomas and mesotheli-

omas [32]. TNT mediated transfer of organelles and other components including viruses has

been observed between heterotypic cells, mostly involving immune cells such as macrophages

[37–40]. It is therefore likely that IAV infection of the airway epithelium or potentially

immune cells can spread via TNTs in vivo. The extent to which TNT mediated spread acts in

conjunction with particle-based transmission of infection within the host is as yet unexplored.

IAV spread through TNTs may be particularly important in the evasion of antibodies, and

other antiviral factors that act directly on extracellular virions, in a manner that does not

depend on the generation of escape mutants. Additional routes of HA-independent direct cell-

cell spread of infection are possible. It has been recently shown that cell-cell spread of H5N1

IAVs can occur via trogocytosis, in which there is an actin dependent exchange of the plasma

membrane and its associated molecules between conjugated cells [41]. Direct cell-cell spread

of human metapneumovirus occurs via reorganization of the actin cytoskeleton [42], while

measles virusinfection of neighboring cells can occur through tight junctions [43,44]; whether

IAV exploits these two routes of spread remains unclear. Direct cell-cell spread may make an

important contribution to spatial structure of infection within the host, leading to more local-

ized spread and limiting mixing among de novo variants [45]. To further investigate these

potential implications, an exciting prospect for future work is the development of ex vivo and

in vivo models for the study and visualization of TNT mediated cell-cell spread.

In summary, our data show a novel role for Rab11a in the IAV life cycle, where it can medi-

ate vesicular transport of vRNPs across TNTs and seed new infections [Fig 8]. Future work to

elucidate the exact mechanism of transport of the Rab11a-vRNP complexes, including the

motors utilized and the fate of the incoming Rab11a-vRNP complexes in the recipient cytosol,

are exciting avenues to be studied and will further our understanding of IAV-host

interactions.
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Materials and methods

Cells and cell culture media

MDCK cells [obtained from Dr. Daniel Perez] and MDCK WSN HA cells [obtained from Dr.

Ryan Langlois] were maintained Minimal Essential Medium [Sigma] supplemented with 10%

fetal bovine serum [FBS; Atlanta Biologicals], penicillin [100 IUml−1], and streptomycin [100

μg ml−1; PS; Corning]. A549 WT, A549 Rab11a KO were maintained in Dulbecco’s Modified

Essential Medium [Gibco] supplemented with 10% FBS [Atlanta Biologicals], and PS. All cells

were cultured at 37˚C and 5% CO2 in a humidified incubator. All cell lines were tested

monthly for mycoplasma contamination while in use. The medium for culture of IAV in each

cell line [termed virus medium] was prepared by eliminating FBS and supplementing the

appropriate medium with 4.3% BSA and PS. Ammonium chloride-containing virus medium

was prepared by the addition of HEPES buffer and NH4Cl at final concentrations of 50 mM

and 20 mM, respectively. OPTi-MEM [Gibco] was used as a serum free medium where

indicated.

Generation of Rab11aKO cells

Generation and characterization of Rab11a KO A549 cells wasreported in [12,46]. Briefly, two

guide RNAs [gRNA] targeting the promoter and exon 1 of the Rab11a gene were used. Oligo-

nucleotides for the CRISPR target sitesT1[forwardCACCGCATTTCGAGTAAATCGAGAC

and reverseAAACGTCTCGATTTACTCGAAATGC] and T2 [forward CACCGTAACAT-

CAGCGTAAGTCTCA and reverse AAACTGAGACTTACGCTGATGTTAC] were annealed

and cloned into lentiCRISPRv2 [Addgene #52961] and LRG [Addgene #65656] expression

vectors, respectively. A549 cells transduced with lentivirus vectors expressing gRNAs were

selected in the presence of 2 μg/mL puromycin for 10 days and clonal Rab11a KO cells were

generated by limiting dilution of the polyclonal population. Rab11a KO cells were identified

by PCR analysis of the targeted genomic region using the following primers [forward

Fig 8. Working model for Rab11a mediated vRNP transport across TNTs. vRNP complexes synthesized within the

nucleus are exported out and form Rab11a-vRNP complexes. Two potential fates of these complexes are shown- the

classical assembly and egress pathway for production of progeny virions and transport of these complexes via TNTs to

an uninfected cell. A new infection is initiated in the recipient cell, resulting in progeny virion production. Generated

via BioRender.com.

https://doi.org/10.1371/journal.ppat.1009321.g008
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TGTTCAACCCCCTACCCCCATTC and reverseTGGAAGCAAACACCAGGAAGAACTC]

and further confirmed by western blot analysis of Rab11a expression [46].

Viruses

All viruses used in this study were generated by reverse genetics [47]. For influenza A/Pan-

ama/2007/99 virus [P99; H3N2], 293T cells transfected with reverse-genetics plasmids 16–24 h

previously were injected into the allantoic cavity of 9- to 11-d-old embryonated chicken eggs

and incubated at 37˚C for 40–48 h. The resultant egg passage 1 stocks were used in experi-

ments. For influenza A/Netherlands/602/2009 virus[NL09; pH1N1], 293T cells transfected

with reverse-genetics plasmids 16–24 h previously were co-cultured with MDCK cells at 37˚C

for 40–48 h. The supernatants were then propagated in MDCK cells at a low MOI to generate

NL09 working stocks. The titers for these viruses were obtained by plaque assays on MDCK

cells.

The NL09 ΔHA Venus WT, P99 ΔHA Venus WT and NL09 ΔHA Scarlet VAR viruses were

generated by reverse genetics by co-culture with MDCK WSN HA cells rather than MDCK

cells. The ΔHA Venus and ΔHA Scarlet rescue plasmids were prepared by inserting either the

mVenus [48] or mScarlet [49] ORF within the HA sequence, retaining only the 3’ terminal 136

nucleotides of the HA segment upstream of the reporter gene start codon and the 5’ terminal

136 nucleotides of the HA segment downstream of the reporter gene stop codon. ATG

sequences within the upstream portion were mutated to ATT to prevent premature translation

start [50]. As previously described [51], one silent mutation was introduced into each NL09

cDNAto generate the NL09 VAR reverse genetics system, which was used to generate the

NL09 ΔHA Scarlet VAR virus. These silent mutations enable differentiation of VAR virus seg-

ments from those of the WT virus using high-resolution melt analysis [27,52].

Immunofluorescence and confocal imaging

For fixed cell imaging, MDCK, A549 WT or A549 Rab11a KO cells were seeded onto glass cov-

erslips. Infection with either NL09 or P99 viruses was performed the next day by adding 250μl

of inoculum to the coverslips and incubating at 37˚C for 1 h with intermittent rocking. Inocu-

lum was removed, cells washed twice with 1X PBS and Opti-MEM added to the dish. After

incubation at 37˚C for 24h,cells were washed with 1X PBS [Corning] thrice and fixed with 4%

paraformaldehyde [AlfaAesar] for 15 minutes at room temperature. Cells were washed with

1X PBS and permeabilized using 1% Triton X-100 [Sigma] in PBS for 5 minutes at room tem-

perature and washed with 1X PBS. Cells were stained with mouse anti NP antibody [Abcam

ab43821][1:100], rabbit anti Rab11a antibody [Sigma HPA051697][1:100], and Phalloidin

Alexa Fluor 647 [Invitrogen A22287][1:40] overnight at 4˚C. Cells were washed thrice with 1X

PBS and incubated with donkeyanti mouse Alexa Fluor 555 [Invitrogen A32773][1:1000] and

Anti rabbit Alexa Fluor 488 [Invitrogen A32731][1:1000] for 1 h at 37˚C. Coverslips were

washed thrice with 1X PBS and mounted on glass slides using ProLong Diamond Anti-Fade

Mountant with DAPI [Invitrogen P36962] prior to imaging.

Confocal images were collected using the Olympus FV1000 Inverted Microscope at 60X

1.49 NA Oil magnification on a Prior motorized stage. Images were acquired with a Hamama-

tsu Flash 4.0 sCMOS camera controlled with Olympus Fluoview v4.2 software. All images

were processed using Fijiimage analysis software [53].

Immunofluorescence and high-resolution STED imaging

A549 WT or A549 Rab11a KO cells were seeded onto glass coverslips. Infection with NL09

WT viruses was performed the next day by adding 250 μl of inoculum to the coverslips and
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incubating at 37˚C for 1 h with intermittent rocking. Inoculum was removed, cells washed

twice with 1X PBS and Opti-MEM added to the dish. After incubation at 37˚C for 24 h, cells

were washed with 1X PBS [Corning] thrice and fixed with 4% paraformaldehyde [AlfaAesar]

for 15 minutes at room temperature. Cells were washed with 1X PBS and permeabilized using

1% Triton X-100 [Sigma] in PBS for 5 minutes at room temperature and washed with 1X PBS.

Cells were stained with mouse anti NP antibody [Abcam ab43821][1:50], rabbit anti Rab11a

antibody [Proteintech 20229-1-AP][1:50], and CellMask Deep Red Actin Tracking Stain [Invi-

trogen A57248][1:1000] overnight at 4˚C. Cells were washed thrice with 1X PBS and incubated

with goat anti- mouse STAR ORANGE [Abberior STORANGE-1001] and goat anti-rabbit

STAR GREEN [Abberior STGREEN-1002] for 1 h at 37˚C. Coverslips were washed thrice with

1X PBS and mounted on glass slides using ProLong Diamond Anti-Fade Mountant with DAPI

[Invitrogen P36962] prior to imaging.

For the A549 KO-WT co-culture experiment, WT cells were pre-stained with CellTracker

Blue CMAC dye [Invitrogen C2110][1:500] overnight at 37˚C in OPTIMEM. This dye stains

thiols in the cytoplasm and fluoresces blue under the DAPI filter. Cells were washed with 1X

PBS, trypsinized and then mixed with NL09 infected Rab11a KO cells and seeded onto glass

coverslips. After incubation at 37˚C for 24 h, cells were processed and stained as described

above. Coverslips were washed thrice with 1X PBS and mounted on glass slides using ProLong

Glass Anti-Fade Mountant [Invitrogen P36980] prior to imaging.

Images were taken using an Abberior Facility Line STED microscope, controlled via Light-

box. The microscope is a custom design with a built-inOlympus IX3-ZDC-12 z-drift compen-

sation unit for steady confocal/STED imaging to correct for chromatic abberration. Single

planes were acquired at 900 x 900 px [150 μm × 150 μm] with a 4μs dwell time and a line accu-

mulation of 4. A 60X NA 1.4 [oil immersion; UPLXAPO60XO] objective lens was used with a

confocal pinhole of 0.5 AU. The Alexa 647 STED channel [F-Actin] was excited with a 1mW

pulsed 640nm laser line at 1% and spectral detection at 650–735 nm. 2D STED was induced

with a 2750 mW 775nm pulsed laser at 25%. The STAR ORANGE channel [NP] was excited

with a 200μW pulsed 561 nm laser line at 10% and spectral detection at 574–637 nm. 2D

STED was induced with a 2750 mW 775 nm pulsed laser at 25%. The STAR GREEN channel

[Rab11a] was excited with a 1mW pulsed485 nm laser line at 5% and spectral detection at 498–

574 nm. 2D STED was induced with a 400mW 595 nm pulsed laser at 30%. The DAPI/Cell-

Tracker Blue channel was excited with a 20 mW 405 nm laser line at 3% and spectral detection

at 415–497 nm. All 2D STED images were acquired at a 2 μs dwell time. All images were

acquired using the same parameters and pixel intensities were consistent across all datasets.

Quantification of co-localization

Co-localization efficiency of NP and Rab11a was calculated using the Manders coefficient [54]

with the Costes threshold [55] on both A549 WT and Rab11a KO cells using the JaCoP plugin

[56] in FiJi [53].The quantification of co-localization was limited to the TNT regions of inter-

est. All images were acquired in 2D and quantification was performed on the single slice.

Quantification of cell-cell transmission

MDCK, A549 WT and A549 KO cells were inoculated with NL09 ΔHA Venus WT or P99

ΔHA Venus WT virus at aMOI of 0.5 PFU/cell and incubated for 1 h at 37˚C. Cells were

washed with 1X PBS [Corning] to remove residual inoculum and supplemented with OPTI-

MEM [Gibco] without trypsin and in the presence of 30μM Cytochalasin D [Sigma] where

indicated and incubated at 37˚C. Infected cells were counted manually by the presence of

green fluorescence using an epifluorescence microscope [Zeiss] at the time points indicated
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and binned into single infected or foci of infected cells. Foci were defined as clusters of at least

two contiguous, positive, cells. The cell counts were graphed using the GraphPad Prism soft-

ware [57].

Co-culture for production of infectious virus

MDCK, A549 WT or A549 Rab11a KO cells were inoculated with either NL09 ΔHA Venus

WT or NL09 ΔHA Venus VAR at a MOI of 25 PFU/cell or 2.5 PFU/cell and were incubated in

virus medium without trypsin for 2 h at 37˚C. Cells were washed twice with 1X PBS [Corning]

and then treated with PBS-HCl, pH 3.0 for 5 min at room temperature to remove residual

inoculum. Cells were washed once with 1X PBS and then trypsinized using 0.5 M trypsin-

EDTA [Corning]. Cell slurry was collected in growth medium containing FBS and centrifuged

at 1000 rpm or 5 minutes in a tabletop centrifuge [ThermoSorvall ST16]to pellet cells. Super-

natant was aspirated and cells resuspended in virus medium containing TPCK-trypsin

[Sigma], 20 mM HEPES [Corning] and 50 mM NH4Cl [Sigma] with or without 30 μM

Cytochalasin D [Sigma] or 30 μM Nocodazole [Sigma] as indicated. Infected cell slurry was

mixed with naïve MDCK WSN HA cells in a ratio of 1:1:2 of NL09 ΔHA Venus WT: NL09

ΔHA Scarlet VAR: Naïve MDCK WSN HA cells respectively and plated onto 6-well plates.

Cells were allowed to attach at 37˚C and supernatant was collected at indicated time points for

analysis.

Conventional production of infectious virus with Cytochalasin D treatment

MDCK cells were infected with NL09 WT virus at a MOI of 25 PFU/cell, acid washed as

described above to remove residual inoculum and incubated with or without 30 μM Cytocha-

lasin D in virus medium containing TPCK-trypsin. Supernatant was collected at indicated

time points for analysis.

Quantification of reassortment

Reassortment was quantified for coinfection supernatants as described previously [27]. Briefly,

plaque assays were performed on MDCK WSN HA cells in 10cm dishes to isolate virus clones.

Serological pipettes [1 ml] were used to collect agar plugs into 160 μl PBS. Using a ZR-96 viral

RNA kit [Zymo], RNA was extracted from the agar plugs and eluted in 40 μl nuclease-free

water [Invitrogen]. Reverse transcription was performed using Maxima reverse transcriptase

[RT; ThermoFisher] according to the manufacturer’s protocol. The resulting cDNA was

diluted 1:4 in nuclease-free water, each cDNA was combined with segment-specific primers

[S1 Table] and Precision melt supermix[Bio-Rad] and analysed by qPCR using a CFX384

Touch real-time PCR detection system [Bio-Rad] designed to amplify a region of approxi-

mately 100 bp from each gene segment that contains a single nucleotide change in the VAR

virus. The qPCR was followed by high-resolution melt analysis to differentiate the WT and

VAR amplicons [27]. Precision Melt Analysis software [Bio-Rad] was used to determine the

parental virus origin of each gene segment based on the melting properties of the cDNA frag-

ments and comparison to WT and VAR controls. Each plaque was assigned a genotype based

on the combination of WT and VAR genome segments, with two variants on each of seven

segments allowing for 128 potential genotypes.

Supporting information

S1 Fig. IAV vRNPs associate with Rab11a within F-Actin rich TNTs in MDCK cells.

MDCK cells were mock-infected or infected with NL09 or P99 viruses. Cells were stained for
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DAPI [blue], NP [red], Rab11a [green] and F-Actin [pink]. Scale bar is 20μm for all images.

(TIF)

S2 Fig. IAV vRNPs associate with Rab11a within F-Actin rich TNTs in A549 WT cells. A549

WT cells were mock-infected or infected with NL09 or P99 viruses. Cells were stained for DAPI

[blue], NP [red], Rab11a [green] and F-Actin [pink]. Scale bar is 20μm for all images.

(TIF)

S3 Fig. IAV vRNPs associate with Rab11a within F-Actin rich TNTs in A549 Rab11a KO

cells. A549 Rab11a KO cells were mock-infected or infected with NL09 or P99 viruses. Cells

were stained for DAPI [blue], NP [red], Rab11a [green] and F-Actin [pink]. Scale bar is 20μm

for all images.

(TIF)

S1 Table. Sequence specific primers for High Resolution Melt Analysis. Forward and

Reverse primer sequences for all eight genome segments from NL09 [PB2, PB1, PA, HA, NP,

NA, M and NS] are depicted in the table.

(XLSX)
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