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Abstract

Estimating the causal interaction between neurons is very important for better understanding the functional connectivity in
neuronal networks. We propose a method called normalized permutation transfer entropy (NPTE) to evaluate the temporal
causal interaction between spike trains, which quantifies the fraction of ordinal information in a neuron that has presented
in another one. The performance of this method is evaluated with the spike trains generated by an Izhikevich’s neuronal
model. Results show that the NPTE method can effectively estimate the causal interaction between two neurons without
influence of data length. Considering both the precision of time delay estimated and the robustness of information flow
estimated against neuronal firing rate, the NPTE method is superior to other information theoretic method including
normalized transfer entropy, symbolic transfer entropy and permutation conditional mutual information. To test the
performance of NPTE on analyzing simulated biophysically realistic synapses, an Izhikevich’s cortical network that based on
the neuronal model is employed. It is found that the NPTE method is able to characterize mutual interactions and identify
spurious causality in a network of three neurons exactly. We conclude that the proposed method can obtain more reliable
comparison of interactions between different pairs of neurons and is a promising tool to uncover more details on the neural
coding.
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Introduction

The question of how neurons interact has gained considerable

attention over the years [1,2]. Traditional methods emphasize the

strength of pairwise connections, i.e. the degree of similarity or

dissimilarity between two spike trains, such as the cost-based

metric [3], the van Rossum distance [4], the event synchronization

method [5], the cross correlation [6] and the interspike interval

distance [7]. However, they cannot offer any insights into the

information flow from one neuron to another because of their

symmetric properties. In fact, fundamental knowledge about the

causal interaction between spike trains is crucial for deeper insights

into the neural coding [8,9]. In recent years, analyzing the

causality between recordings from different neurons is of

increasing interest [10–15].

Information theoretic measures are inherently non-linear and

do not require a model of the interaction, thus they are widely

applied for the causality detection between neural signals [16–20].

For continuous-valued signals, e.g. electroencephalography (EEG)

and local filed potential (LFP), recent works showed that transfer

entropy (TE) is a good method for estimating the causal

interaction [19,21], which can quantify the fraction of information

in the history of a time series flowed to the future of another time

series when the latter is already known. The TE has also applied to

analyzing spike trains, and referred as normalized transfer entropy

(NTE), so as to evaluate the information transferred between

auditory cortical neurons [15], the NTE can detect the asymmetry

in the interaction between neurons, namely the causality. The

symbolic transfer entropy (STE) is an improvement of the TE,

which makes use of the technique of symbolization (i.e.

permutation) to quantify the information flow between time series

[9,20]. Another new information theoretic method is called as

permutation conditional mutual information (PCMI), which can

estimate the coupling direction between neural series based on the

ordinal structure of data [16]. The PCMI has also been employed

to characterize the causal interaction between spike trains, which

is more immune to noisy spikes than the TE [13]. By means of the

discretizing procedure in the PCMI calculation, the STE also can

be employed to analyze spike trains. A brief description of these

three methods is given in File S1.

Unfortunately, we find that the amount of information flow

estimated with the PCMI and STE is greatly influenced by the

firing rate of neurons. Specifically, increasing firing rate brings

about spurious increase of the information flow. The NTE is

superior to them but it is not robust for estimating the time delay

of causality between spike trains. This will be illustrated in the

following sections. In this paper, we integrate permutation and

transfer entropy to propose normalized permutation transfer

entropy (NPTE) for characterizing the causal connectivity between

spike trains, with the intention to reduce the influence of firing rate

and improve the robustness of time delay estimation between the

spike trains. The performance of the approach is evaluated using
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an Izhikevich’s neuronal model by comparing with the NTE,

PCMI and STE methods. To further demonstrate the ability of

NPTE to describe mutual interactions and identify spurious

causalities, the Izhikevich’s cortical network model is employed to

construct a network with simulated biophysically realistic synapses.

Materials and Methods

Normalized Permutation Transfer Entropy
Firstly, the spike trains are discretized to sequences of non-

negative integers, which denote the number of spikes that occurred

in each bin D [22]. Generally, there are some ordinal patterns of

the integers in the discretized spike trains. The scheme is

illustrated in Figures 1(A–C). The ordinal patterns are also

referred as motifs that are defined in Ref. [23]. The number of

total motifs is equal to m!, i.e. the number of data points in each

motif. The motifs for m~3 are shown in Figure 1(D). In case of

equal values in motifs the arrangement is determined by the index

of data involved, which ensures that they are uniquely mapped

into one of the m! possible permutations. For example, as

illustrated in Figure 1(C), the motif that includes three points

denoted by solid hexagons is assigned a label of M5. Following

Ref. [16], we choose the order m~3 in this study. The rational for

this choice is in the following: to ensure that every possible joint

ordinal motif occurs at least once in the two neural signals of

length L, the order m needs to satisfy the condition

Lwm! �m! �m!. Thus, if a large value of m is selected, it will

need a large amount of data and lose the temporal information in

the data. On the other hand, only very few distinct states are

available for m~1 or 2. Thus, m~3 is appropriate for the

calculation of NPTE. In addition, it should be pointed out that if

the dynamics are over large time scales and there are sufficient

data a lager m should be tried. Another important parameter for

permutation analysis is the lag t, which denotes the number of

data points spanned by each section of the motif [23]. The

selection of this value will be discussed in Sec. 4.

Secondly, the transfer entropy based on the permutation

analysis is defined in the following. Suppose two spike trains SX

and SY are given. Instead of the number of spikes, we use the

ordinal patterns to calculate the information transferred from SX

to SY . Let DX ~ d1
x ,d2

x , � � � ,dw
x

� �
and DY ~ d1

y ,d2
y , � � � ,dw

y

n o
denote the discretized spike trains of SX and SY , where w is the

total number of bins within the recorded time interval. Let

PP
X ~ p1P

x ,p2P
x , � � � ,pnP

x

� �
and PF

X ~ p1F
x ,p2F

x , � � � ,pnF
x

� �
denote the

motif numbers in DX , where n~w{ m{1ð Þ:t, PP
X and PF

X denote

the ordinal patterns of DX falling in the past time interval and the

upcoming time interval respectively, piP
x is the motif number of

three data points: di
x, dizt

x , diz2t
x , piF

x is the motif number of three

data points: diz2tz1
x , diz3tz1

x , diz4tz1
x , i~1,2, � � � ,k,

k~n{2:t:mz1. The generation of PP
X and PF

X for a simulated

spike train SX is illustrated in Figures 1(A–C). PP
Y and PF

Y can be

obtained in the same way. Then, the distribution of PP
X , PF

X , PP
Y or

PF
Y is discrete and the permutation transfer entropy (PTE) from

SX to SY can be defined as

QX?Y ~I PF
Y ; PP

X DPP
Y

� �
~H PF

Y DPP
Y

� �
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Y DPP
X ,PP
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~
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" #

where a, b, and cdenote the motif number, which range from

one to six for order m~3.

Lastly, it is necessary to remove the bias that makes the PTE

value tend to drift upwards as a function of the bin. When the bin

is large, the joint distribution of PF
Y , PP

Y , and PP
X will be broad and

sparse, which induces a spurious increase of the PTE from SX to

SY [15]. We use the procedure introduced in Ref. [15] to reduce

this influence, including removal of the shuffled estimation and

normalization. Randomly shuffling the interspike intervals in SX

disconnects SX and SY without altering the interspike intervals

distribution of either. The shuffled estimation of the PTE is an

average of results obtained on s(s~50 in this study) trials and is

denoted as Qshuffled
X?Y . Furthermore, the remainder should be

normalized by the conditional entropy in SY of its future on its

past. Thus, the normalized permutation transfer entropy can be

defined as

WX?Y ~
QX?Y {Qshuffled

X?Y

H PF
Y DPP

Y

� �
which represents the fraction of permutation information in SY not

predicted by its own past but predicted by the past of SX . We take

the maximum over all values obtained with different bins as the

final NPTE estimation. Note that the value of NPTE may be

negative at some time scales. To restrict the NPTE in the interval

Figure 1. Extracting motifs from a simulated spike train. (A) A
simulated spike train SX . (B) Discretizing the spike train by counting
spikes in each bin and the generation of PP

X and PF
X . (C) Some motifs

contained in the discretized sequence. (D) All motifs for the order
m~3(3! = 6 different motifs), which are identical to those defined in Ref.
[23].
doi:10.1371/journal.pone.0070894.g001
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[0 1], we set up: W~0 if Wv0. The directionality index DX?Y is

defined in the following,

DX?Y ~
WX?Y {WY?X

WX?Y zWY?X

� �
[ {1 1½ �

DX?Y w0 means that the spike train SX drives SY , and

DX?Y v0, the spike train SX is driven by SY . DX?Y ~0 means

that the interaction between SX and SY is symmetrical. Note that

if WX?Y ~WY?X ~0, there is no temporal causal relationship

between the two spike trains.

Simulations
To evaluate the performance of the proposed method,

Izhikevich’s neuronal model is employed to generate spike trains

for simulation analysis, which integrates the computational

efficiency of integrate-and-fire neurons with the biological

plausibility of Hodgkin-Huxley-type dynamics [24]. The model

is in the following,

v’~0:04v2z5vz140{uzI

u’~a bv{uð Þ

with the auxiliary after-spike resetting,

if v§30 mv, then
v/c

u/uzd

�

where v is the membrane potential of the neuron and u is the

membrane recovery variable. The parameter a describes the time

scale of u, b describes the sensitivity of u to sub-threshold

fluctuations in v, c is the spike reset values of v and d is the spike

reset value of u. They are set as: a~0:02, b~0:2, c~{65, d~2.

The injected current I is set to be a normally distributed random

Gaussian variable, whose amplitude determines the firing rate R of

the simulated spike trains. Utilizing this model, two independent

spike trains SX and SY are firstly generated. Then we set up the

causality between two spike trains by means of the method

introduced in Ref. [15]. That is, a proportion Q[ 0 1½ � of spikes in

SY are replaced by the same number spikes that are picked up

randomly from the SX and delayed by some time (denoted by D).

Through this replacement, the SY will contain the causal

information from the SX , which is proportional to Q. The spikes

in SX which are used to generate the causality and their delayed

copies in the SY are referred as ‘causal spikes’ in the following

sections. The duration of the simulated spike train is 10s through

this study except for the performance test on data length.

To simulate biophysically realistic synapses, we use Izhikevich’s

cortical network model [25] to construct a simulated network,

which has been widely used in spike train studies [26–29].

According to Izhikevich, the model has many realistic features

including firing patterns, synaptic delays and spike-timing depen-

dent plasticity (STDP). By adjusting the parameters (i.e. a, b, c and

d in the above neuronal model), many firing patterns observed in

cortical neurons can be generated, including regular spiking (RS),

intrinsically bursting (IB) and fast spiking (FS). The MATLAB

code to implement this simulation is based on Ref. [25] and

modified slightly as described below. The network model contains

two types of neurons: 16 RS neurons (excitatory neurons) with

parameters [a, b, c, d] = [0.02, 0.2, 265, 8] and 4 FS neurons

(inhibitory neurons) with parameters [a, b, c, d] = [0.1, 0.2, 265,

2]. Each neuron has three delayed postsynaptic connections to

other neurons. Excitatory neurons connect to any neurons with

delays uniformly distributed in time interval ranging from 1 ms to

30 ms, while inhibitory neurons only connect to excitatory

neurons with a fixed delay of 6 ms. In Eq. 4, I represents the

total synaptic input arriving at a neuron, containing thalamic input

and inputs from other cortical neurons. Every thalamic input has a

synaptic weight of 20 mV that delivered at random times. The

weights of inputs from excitatory neurons are initially set as 6 mV,

however the weights of inputs from inhibitory cortical neurons are

always set as 5 mV. Then, these excitatory weights are evolved by

STDP in the manner in the following: synaptic inputs arrived

before a postsynaptic spike with the derivatives of their weights

increase, while synaptic inputs arrived after a postsynaptic spike

decrease, where the increment or decrement decays exponentially

with a time constant of 20 ms. The simulation runs for two hours,

but only the last one minute of the output are used to evaluate the

NPTE algorithm to avoid model transients. Because of synaptic

plasticity, excitatory connections present variant synaptic weights

ranging from 0 to 10 mV. We take the mean of weights within the

last one minute as the final weight of each excitatory connection.

In this manner, we get spike timings of 20 neurons, as well as the

synaptic weights and time delays of the connections between them.

Results and Discussion

Parameter Choice
Before discussing the parameter choice, we first investigate the

necessity of removing bias and the effect of normalization. Given

Q~0:5, R~10 spike=s and D~15 ms, spike trains SX and SY

are generated. In the calculation, the lag is set as t~1. As shown

in Figure 2(A), when Dw10 ms, the PTE value increases with the

increase of bin, which is caused by the sparse joint distribution of

PF
Y , PP

Y , and PP
X . As can be seen in Figure 2(B), removal of this

bias eliminates the spurious increase and the PTE stays close to 0

for large bins. Figure 2(C) shows that the amount of information

available in SX and SY also increases with the increase of the bins.

In Figure 2(D), the normalization of PTE by the conditional

entropy highlights the main peak at D~5ms:
Then, we study the parameter choice for the NPTE before its

application. The bin D is used to discretize spike trains. In

Figure 2(D), there is a peak for WX?Y at D~5ms which is related

to the delay of the model, meaning that the most information is

transferred from the SX to the SY : For a small D(e.g. D~1 ms),

the PF
Y and the PP

X are independent because they cannot involve

the causal spikes. For a big D (e.g. D~30 ms), a pair of two causal

spikes are located in one time interval and the causal relationship is

destroyed. Actually, the product of order and the ‘peak bin’ (Dp,

where the peak value is present) indicates the time delay between

two causal spike trains. Thus it is necessary to chose many bins to

investigate the information transferred at all delay times for real

data. Another parameter, the lag tis the distance between adjacent

two points in each motif. Figure 3 shows the NPTE WX?Y for

different D and t. Clearly, there are obvious peaks for

t~1,2,3,4,6,7, while the NPTE values for t~5,8,9,10 are always

close to zero. The underlying reason is that the transferred

information at different time scales is proportional to the extent

that the two causal spikes are involved in the motifs which

generate PF
Y and PP

X . It is believed that there always exists a

obvious peak for t~1 in the curve of NPTE values as a function of

D. Thus, herein t~1 is suggested for the NPTE calculation.

Causal Interaction between Spike Trains
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Comparison with other Methods
The methods mentioned in this paper are all able to estimate

the coupling strength and time delay of the causal interaction

between spike trains. Although they have similar characteristics,

the proposed NPTE measure is superior to the others. The

comparison is performed in the following four aspects.

Variation with coupling strength. Herein, we demonstrate

the variation of estimated values with the coupling strength

between two spike trains which is determined by the proportion Q.

Given R~10 spikes=sand D~15 ms, spike trains SX and SY are

generated. The Q ranges from 0 to 1 with a step of 0.05. As shown

in Figures 4(A–D), the estimation from SX to SY is nonlinearly

related to Q, including NPTE, NTE, PCMI and STE. On the

other hand, the estimation from SY to SX is always close to 0

because there is no causality in this direction. Specifically, NPTE

and NTE are normalized metrics and they take values from 0 to 1

as the strength increases. Although PCMI and STE are not

normalized, they can reflect the strength under certain firing rate.

That is, the four methods are all able to describe the coupling

strength between spike trains.

Influence of data length. We examine pairs of spike trains

with different lengths to test whether the estimated values would

change as a function of the data length. Given

R~10 spikes=s ,Q~0:5 , and D~15 ms, two spike trains are

generated with a driving direction from SX to SY . The duration

ranges from 1s to 25s with a step of 1s. Figures 5(A–D) show the

effects of increased data length on the estimation of NPTE, NTE,

PCMI and STE respectively. It shows that the NPTE, PCMI and

STE yields fairly consistent and robust estimates for various data

lengths, meaning that they are largely independent of record

length. This is rather valuable for practical applications where long

recordings are not available. In comparison, the NTE shows

significant reduction for shorter data length.

Time complexity. In real world scenarios, the speed of a

method may be of considerable importance. Thus, it is necessary

to compare the computational demand of these four methods.

First, the STE and PCMI are both based on the technique of

permutation and sliding time steps. However, the calculation of

conditional mutual information is a little more complex than that

of transfer entropy, which implies that the PCMI takes longer

running time than the STE. Next, due to the procedure of bias

removal and normalization, the NTE and NPTE need much more

amount of calculation than the STE and PCMI. Moreover, the

permutation analysis employed in the NPTE makes it more

Figure 2. Removal of the bias and normalization of the PTE. (A) Permutation transfer entropy. (B) Unbiased permutation transfer entropy.
(C) Conditional entropy. (D) Normalized permutation transfer entropy.
doi:10.1371/journal.pone.0070894.g002

Figure 3. NPTE values for different t and D.
doi:10.1371/journal.pone.0070894.g003

Causal Interaction between Spike Trains
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complicated than the NTE, and consequently its running takes

more time.

Error of time delay estimation. The methods mentioned in

this paper are all able to estimate time delay of the causal

interaction between spike trains. A typical distribution of axonal

propagation delays between different pairs of cortical neurons is

broad, ranging from several tenths to tens of milliseconds. In this

study, we only investigate the performance for time delay ranging

from 5 ms to 45 ms with a step of 5 ms. Given Q~0:5 and

R~10spikes/s, spike trains SX and SY are generated. 500

Figure 4. Variation of estimated values with coupling strength between spike trains. (A) NPTE. (B) NTE. (C) PCMI. (D) STE.
doi:10.1371/journal.pone.0070894.g004

Figure 5. Estimated values for varying spike trains duration. (A) NPTE. (B) NTE. (C) PCMI. (D) STE.
doi:10.1371/journal.pone.0070894.g005

Causal Interaction between Spike Trains
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realizations for each time delay are implemented by each method.

We use Euclidean distance between simulation result and the time

delay that used for constructing the model to quantify the error of

each realization. The results are considered as outliers if they are

larger than Q3z1:5 � Q3{Q1ð Þ or smaller than

Q1{1:5 � Q3{Q1ð Þ, where Q1 and Q3 are the 25th and 75th

percentiles, respectively. As shown in Figure 6A), the error and

standard deviation of NTE estimation increases with the increase

Figure 6. The error of estimation methods for different time delays. (A) NTE. (B) NPTE.
doi:10.1371/journal.pone.0070894.g006

Figure 7. Effect of firing rate on the values estimated by different methods. (A) NPTE and NTE under Q~0:8. (B) PCMI and STE under Q~0:8.
(C) NPTE and NTE under Q~0:2. (D) PCMI and STE under Q~0:2. (E) Coefficients of variation for the four methods under different coupling strength.
doi:10.1371/journal.pone.0070894.g007

Causal Interaction between Spike Trains
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of time delay. In Figure 6(B), it can be seen that the error remains

unchanged at 1 ms for the nine delays except for 15 ms, 30 ms

and 45 ms. This is caused by the resolution of the NPTE (3 ms in

this paper), which is related to the order. In other words, the

NPTE is able to estimate precisely for time delays that are

multiples of 3 ms, while with a fixed error of 1 ms for others. On

the other hand, the PCMI and STE methods can always estimate

the time delay without error and it is not plotted because of the

zero values. Briefly, the NPTE is superior to the NTE for

estimating time delay in terms of robustness and inferior to the

PCMI and STE in resolution. The reasons are below. These four

methods all use bins to discretize spike trains. In the NPTE and

NTE, varying bins and normalization method are used to

characterize the causal interaction. As mentioned above, large

bins are likely to induce spurious increase of information

transferred between spike trains, also bring about unstable and

imprecise estimation of time delay. In this study, the NPTE

method uses three bins simultaneously to overcome this defect

with a little loss of resolution. On the other hand, the PCMI and

STE, which employ a fixed bin (1 ms in this paper) and the sliding

technique, can supply robust and precise estimation of time delay

with a high resolution.

Effect of firing rate. Finally, we analyze the effect of firing

rate on the performance of different methods. As we know,

neurons may fire at different frequencies depending on their type

and location. In this study, we make the firing rate R ranges from 1

spikes/s to 30 spikes/s with a step of 1 spikes/s. Given

D~15 ms,spike trains SX and SY are generated. To investigate

the effect at different coupling strength, we set Q from 0.1 to 1 with

a step of 0.1. In Figures 7(A–D), the estimated values of NPTE,

Figure 8. NPTE estimate in mutual coupling. (A) Two mutual coupled neurons sampled from a simulated network. (B) The NPTE estimate of
connections on two directions.
doi:10.1371/journal.pone.0070894.g008

Figure 9. NPTE estimate in a network with three neurons. (A) Three neurons sampled from a simulated network. (B), (C) and (D) The pairwise
NPTE estimate of connections on two directions.
doi:10.1371/journal.pone.0070894.g009

Causal Interaction between Spike Trains
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NTE, PCMI and STE for different firing rates under Q~0:2 and

Q~0:8 are plotted for illustration purpose. In either case, the

PCMI and STE significantly increase with the increasing of firing

rate. On the contrary, the NPTE and NTE decrease gradually as

the firing rare increases. To explain explicitly, the effect is

quantified by the coefficient of variation of the information flow at

different firing rates from SX to SY that estimated with different

methods, including NPTE(CP), NTE(CT ), STE(CS ) and

PCMI(CI ). As shown in Figure 7(E), the outputs of the PCMI

and STE methods are very similar, and the influence of firing rate

on them is much more significant in comparison with the NPTE

and NTE methods. Moreover, the NPTE is always less sensitive

than the NTE to the firing rate. The underlying difference is that

the NPTE is calculated in terms of ordinal patterns of spike trains,

while the NTE uses the number of spikes in time intervals. The

increase of the firing rate alters the joint distribution of ordinal

patterns slightly, but modifies the distribution of spike numbers

more significantly. As far as the PCMI and STE are concerned,

the amount of information transferred between spike trains is

estimated by means of the location of individual spikes in each

spike train. Not surprisingly, it is proportional to the firing rate.

Application to a Simulated Network
We select two parts of a simulated network to investigate the

performance of NPTE for characterizing mutual coupling and

interactions between three neurons. As shown in Figure 8(A), two

neurons N13 and N14 are connected through a mutual coupling

with different strengths (denoted by s) and time delays (denoted by

D) on two directions. In Figure 8, it can be seen that the maximum

NPTE estimation from N13 to N14 occurs at the delay of 5 ms,

while the maximum NPTE estimation appears at the delay of

29 ms in the opposite direction. This means that the NPTE

method is able to describe the mutual coupling, with correct

reflection of the strength but small error for the time delay estimate

(1 ms for both directions). Next, we discuss how the NPTE

measure performs in a sub-network of three neurons in which N12

is coupled via a synapse to N4, who is then connected to N1, as

illustrated in Figure 9 (A). The NPTE estimate of these three

pairwise coupling is plotted in Figure 9 (B–D). The causal

relationships from N12 to N4 and from N4 to N1 are described

effectively. At the same time, it can be also seen that there is a

large value for the NPTE estimate from N12 to N1. In other

words, the NPTE method shows an interaction raised by a third

neuron. However, it should be noted that the time delay from N12

to N1 indicated by the NPTE method is 36 ms, which

approximates to the summation of the delays from N12 to N4

and from N4 to N1 (19+5 = 34 ms). In addition, the maximum

NPTE value from N12 to N1 is less than the values from N12 to

N4 or from N4 to N1. Considering these two aspects, the causality

appeared in the direction from N12 to N1 can be reckoned as a

spurious one. Thus, it is reasonable to conclude that the NPTE

method is able to distinguish real causalities from spurious ones.

The underlying idea is explained as follows. For example, if there

is a causal interaction from neuron X to neuron Y, then a portion

of spikes of neuron Y will occur after some spikes of neuron X with

a certain time delay. Suppose that this is hold for neuron Y and

neuron Z. That is to say, some spikes of neuron Z will fire after

certain spikes of neuron X, resulting in a large NPTE estimation

that implies a spurious connection from neuron X to neuron Z. In

fact, only the spikes of neuron Y that contribute to the causal

relationship from neuron Y to neuron Z that also participate in the

generation of causal connection from neuron X to neuron Y, can

lead to a NPTE estimate about this spurious causal relationship.

Consequently, this spurious NPTE estimate is less than the real

ones, and the spurious delay is related to the two real delays. Thus,

if this is observed in a network of three neurons, a spurious

causality can be identified. To summarize, although the NPTE

method cannot eliminate spurious interactions directly in the

computation, it can tell whether interactions are direct or indirect

by comparing the results of three neurons.

Conclusion

We proposed a new measure, called as NPTE, to characterize

the causal interactions between two neural spike trains. This

method allows us to quantify the information flow between spike

trains and estimate the time delay of the interaction with consistent

and robust results for various data lengths. Comparing with the

recently developed information theoretic methods, including

NTE, STE and PCMI, the NPTE shows no more advantage on

variation of coupling strength and independence of data length.

However, the prominent advantage is that the NPTE is less

sensitive to the firing rate of neurons than the others. In other

words, the NPTE is a more reliable method to estimate the

amount of information flow between neural spike trains with

different firing rates. On the contrary, the STE and PCMI are

significantly influenced by the firing rates. The immunity of the

NTE against firing rate is close to the one of NPTE in some cases.

However, the NPTE is superior to the NTE for estimating the

time delay of the interaction between neurons. Although the

resolution of NPTE is not as high as that of STE and PCMI, it is

able to provide an accurate characterization about the time delay.

Moreover, results of the two sub-networks embedded in a

simulated network of 20 neurons show that the NPTE method

can describe the mutual interactions or distinguish spurious

causalities effectively. In addition, it should be noted that the

NPTE takes more running time than that of the other three

methods to gain the advantages. However, the speed of the

algorithm can be improved by using faster CPU and larger

memory or taking advantage of GPU, where the latter is a focus of

our future works. In view of these aspects, the NPTE is a

promising method for the analysis of causal interactions between

spike trains.
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