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Could AMPs and B-cells
be the missing link in
understanding periodontitis?
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1B lymphocytes, Autoimmunity and Immunotherapies (LBAI), Mixed Research Unit (UMR)1227 INSERM,
University of Brest, Brest, France, 2Service d’Odontologie, University Hospital (CHU) de Brest, Brest, France
Periodontal diseases are common inflammatory conditions characterized by

bone loss in response to simultaneous bacterial aggression and host defenses.

The etiology of such diseases is still not completely understood, however. It has

been shown that specific pathogens involved in the build-up of dysbiotic

biofilms participate actively in the establishment of periodontitis. This

multifactorial pathology also depends on environmental factors and host

characteristics, especially defenses. The immune response to the pathogens

seems to be critical in preventing the disease from starting but also contributes

to tissue damage. It is known that small molecules known as antimicrobial

peptides (AMPs) are key actors in the innate immune response. They not only

target microbes, but also act as immuno-modulators. They can help to recruit

or activate cells such as neutrophils, monocytes, dendritic cells, or

lymphocytes. AMPs have already been described in the periodontium, and

their expression seems to be connected to disease activity. Alpha and beta

defensins and LL37 are the AMPs most frequently linked to periodontitis.

Additionally, leukocyte infiltrates, especially B-cells, have also been linked to

the severity of periodontitis. Indeed, the particular subpopulations of B-cells in

these infiltrates have been linked to inflammation and bone resorption. A link

between B-cells and AMP could be relevant to understanding B-cells’ action.

Some AMP receptors, such as chemokines receptors, toll-like receptors, or

purinergic receptors, have been shown to be expressed by B-cells.

Consequently, the action of AMPs on B—cell subpopulations could

participate to B-cell recruitment, their differentiation, and their implication in

both periodontal defense and destruction.

KEYWORDS
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Introduction

Periodontal diseases are inflammatory conditions with an infectious etiology that can

involve various pathogens such as Aggregatibacter actinomycetemcomitans,

Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia, Treponema

denticola, and Treponema forsythia (1). Periodontal diseases are the most common oral
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diseases in the world, with the moderate form affecting 45–50%

of adults and the severe form 9–11% (2, 3). They can be divided

into two main types: gingivitis and periodontitis. Periodontitis

are chronic, multifactorial, immuno-inflammatory diseases

associated with dysbiotic bacterial biofilms. They are

characterized by the progressive destruction of the supporting

apparatus of the teeth, often leading to tooth loss and finally to

bone resorption (4, 5). The appearance and evolution of these

diseases are dependent not only on the pathogenicity of

periodonto-pathogenic bacteria, but also on genetics and

environmental and behavioral risk factors that affect host

susceptibility (1). In addition to being a worldwide public

health concern, these diseases provide a strategic model to

study inflammatory processes. The oral localization of the

periodontium provides access for both clinical assessment and

tissue biopsy, facilitating longitudinal studies. Furthermore, the

mouth is the first place for most interactions between the self

and non-self and is involved in immune system training from

birth with probable heritability of microbiota (6). Any advances

in the understanding of periodontal disease etiopathogenesis

could improve the overall knowledge of chronic inflammation

and some systemic conditions such as cardio-metabolic,

neurodegenerative, and autoimmune diseases and cancer (1).

In the oral cavity, when facing periodontal pathogens, the

innate and adaptive immune systems cooperate to combat this

bacterial attack (7). One mechanism of the innate immune

system to fight oral infections is the release of antimicrobial

peptides (AMPs) (8–10). This appellation gathers small

molecules (between 10 and 60 amino acids) expressed in

animals with, most of the time, cationic properties (11).

Produced by many cells, including neutrophils, macrophages,

dendritic cells, and even lymphocytes, AMPs play an important

role in innate immunity due to their rapid and broad-spectrum

antimicrobial activity (12–15). These molecules are capable of

neutralizing a large number of pathogenic microorganisms,

including bacteria, fungi, parasites, and viruses (16–18). They

have also been shown to perform various biological activities

within the innate and adaptive immune systems (18–23). They

can induce both chemoattraction and/or cell activation, and they

also play a role in inflammation resolution (20). Their known

targets are mainly neutrophils, monocytes, dendritic cells, and,

to a lesser extent, T cells (24). They can also work in synergy with

the cell mediator’s cytokine and chemokine, as has been shown

for HNP1and RANTES (25) or IL1b (26).

AMPs have also been suggested to potentiate the innate

immune response and function as a bridge between innate and

adaptive immunity by regulating B and T lymphocytes and

natural killer cells (27–29). Indeed, an increasing number of

studies have been conducted on the action of AMPs in the

regulation of T-cells (30, 31) mainly with TH17 response linked

to cathelicidins, but few have explored B-cells, more precisely

plasma cells (32). Until recently, the immunomodulatory

functions of AMPs have been poorly studied for periodontitis,
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as most of the approaches were focused on their antimicrobial

roles. The first therapeutical approach to these diseases was to

target pathogenic bacteria, and AMPs are promising candidates

for this purpose (33). However, managing the host reaction

seems to be crucial to reach a potential curative strategy, as the

appearance of the disease cannot be reduced to only a bacterial

presence (34). Furthermore, AMPs are in the frontier between

these two strategies, as they can act on both bacteria and

leucocytes. Recent research on the immune response during

periodontitis has underlined the role of B-cells in both defense

mechanisms and bone resorption (35). Few connections,

however, have been reported between B-cells and AMPs. This

blind spot could be a critical handicap in the understanding of

periodontal disease etiology and, more widely, chronic

inflammatory diseases. The objective of this review is to

answer to the pertinence of studying AMP action of B-cells. In

this purpose, it is first needed to sum up which peptides are

relevant in periodontal disease, what impact B-cells have on

periodontitis, and if they can be a target for AMP. Peptides

sharing both a role in periodontitis and a potential receptor on

B-cells would be promising candidates for further analysis.
Functions of antimicrobial peptides
in periodontal diseases

Oral infections are first managed by the innate immune

system, especially with AMPs. Salivary gland epithelial cells,

neutrophils, monocytes, and potentially other cells secrete these

AMPs in the oral cavity. Their antimicrobial activity against oral

pathogenic bacteria and their biofilms plays a central role in oral

microbiota homeostasis (33). Three major families of AMP are

found in saliva: defensins, cathelicidins, and histatins (34, 36).

AMPs are primarily known for their antibacterial activity

(el imination or inhibit ion of the growth of these

microorganisms). In addition, they show antifungal and/or

ant iv i ra l e ffec ts aga inst a large number of other

microorganisms (37, 38) and even exhibit antitumoral

properties (39). Theses lytic activities are linked to AMPs’

capacity to create pores in their targets.

Independently of their antimicrobial activities, AMPs may

play a role in the inflammatory response and the immune

response, even serving as a link between the innate and

adaptive immune responses (35). Their antimicrobial effect

and their role in the regulation of immune responses are two

aspects of particular interest in relation to periodontal disease.

Natural AMPs have shown antibacterial effects against

periodontal pathogens. Healthy subjects show distinct

levels of natural AMPs compared to those with periodontitis

(40), with most studies reporting higher levels of LL37,

beta defensins, or HNP1, although the result remains

heterogeneous between studies. The most studied AMPs in
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relation to the periodontal state are LL-37 and alpha and beta

defensins (41).

In the literature, several roles have been reported for AMPs

in periodontal disease, such as inhibiting the growth of

pathogenic bacteria (LL37, HBD-1, HBD-2, HBD-3, histatin-2,

HNP1, HNP2, HNP3), promoting periodontal tissue healing

(LL37, HBD-1, HBD-2, HBD-3, histatin-2), promoting bone

healing (HBD-2, histatin-1), and serving as a potential indicator

of the severity of periodontal disease (HBD-2, HNP1, HNP2,

HNP3). Additionally, AMPs have been reported to promote

osteogenic differentiation and reduce bone loss (42). Histatin-5

has been shown to be an inhibitor of host and bacterial enzymes

involved in periodontal destruction (43). Among natural AMPs,

HBD are expressed in the buccal bone (44). HBD have been

shown to promote the proliferation of human mesenchymal

stem cells, osteoblasts, and keratinocytes in cultures (45). In

addition, HBD and histatin-1 promote bone regeneration and

prevent infection (46–48).

All these findings suggest that the AMPs relevant to the

management of periodontal diseases could be LL-37, alpha and

beta defensins, and histatins. In contexts other than the oral

cavity immunity, these AMPs have all been described as immune

modulators. Alpha defensins have been shown to inhibit

monocyte/macrophage-produced pro-inflammatory cytokines

such as IL6 and IL1b and to increase leucocyte recruitment

directly or indirectly. Beta defensins can either be decreased or

increased (49). Similar chemoattraction has been reported for

beta defensins and LL37 with additional impact on immune

cells’ signaling pathways (49). LL37 is strongly connected to

neutrophil extracellular traps (NETs): DNA strands, released by

dying neutrophils, that are covered by multiple proteins and

peptides that play critical roles during both inflammation and

microbial neutralization (50). These NETs activate BAFF

production, which is a major B-cell activator (50). This

activation could be critical, as neutrophils are strongly

connected to periodontal diseases, and B-cells have been

shown to be effectors of a part of periodontitis pathogenesis.
Functions of B-cells in
periodontal diseases

The ontogenesis of B-cells takes place in the bone marrow

from pluripotent hematopoietic stem cells (51). The latter form

lymphocyte progenitors, some of which migrate to the thymus

for the formation of T cells, while the rest remain in the bone

marrow to form B-cells until the immature B stage. During

antigen-independent maturation in the marrow, there are four

distinct stages: the early pro-B cell, the late pro-B cell, the pre-B

cell (precursor B), and the immature B cell. Immature B-cells

then migrate to secondary lymphocyte organs (spleen, lymph

nodes, tonsils, and lymphoid tissues associated with mucous
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membranes) in the form of transitional B-cells (52). These

transitional B-cells transform into either marginal zone cells or

follicular cells. All of these cells undergo a succession of T-

independent or T-dependent differentiation, leading to the

formation of memory cells or plasma cells (52).

Few studies have highlighted the roles of B-cells in

periodontitis. Certain roles of B-cells in periodontitis have

been recently discovered, however. A review of the literature

showed the role of B-cells in periodontitis and the potential

interest in using B-cells as a target for new treatments for severe

periodontitis (53). Additionally, a study carried out by

Demoersman highlighted the crucial role of B-cells in

periodontal disease with an increase of memory B-cells and a

reduction of their regulatory counterpart in severe forms (54). It

has also been shown that anti-B lymphocyte therapy could be

beneficial in improving periodontitis, suggesting a major role of

B-cells in this disease (55). The 2015 study by Abe et al. 2015

suggests that B-cells have a more important role than T cells in

bone resorption (56). It has been reported that, in periodontitis,

the presence of B-cells specific to periodontal pathogenic

bacteria is essential for the establishment of the bone

resorption characteristic of periodontitis (57). Some authors

have also suggested an involvement of B-cells in bone

remodeling (58–60).

Bacterial infection remains important in the etiopathogenesis of

periodontal disease. An immuno-inflammatory response is set up

by the body against this bacterial infection. This reaction is the

origin of the destruction of supporting tissues of the tooth, loss of

attachment, and alveolar bone lysis. Inflammation-induced

osteoclast genesis in periodontal disease involves several pathways

of mechanisms that involve several biological molecules and their

products. Cells of the B lymphoid lineage can contribute to the

physiopathology of bone disorders by regulating osteoclast genesis

in the context of periodontal infection through several pathways of

mechanisms. The molecular mechanism pathways by which cells of

the B lymphoid lineage regulate osteoclast genesis in periodontal

disease have become better understood in recent years. As well as

their antibody secretion, B-cells contribute to the destruction of the

alveolar bone in RANKL-dependent periodontitis (61). B-cells

express RANKL, a protein involved in osteoclast differentiation,

activation, and survival. RANKL then binds to its RANK receptor

expressed by osteoclast precursor cells and preosteoclasts to

stimulate their differentiation into osteoclasts resorbing alveolar

bone (59, 62–65). In periodontitis, the main source of RANKL are

T-cells and B-cells (66), either of which themselves serve as

progenitors of osteoclasts. Normal pro-B-cells may serve as

osteoclast progenitor cells (67).

B-cells express SOFAT, an osteoclastogenic cytokine

independent of RANKL. By stimulating osteoblasts, SOFAT

modulates the production of osteoclastogenic cytokines and

contributes to osteoclast formation and bone destruction in

periodontitis. Human B-cells, plasma cells, and T-cells express
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SOFAT, which is a bone-destroying factor in periodontal disease

lesions (68–70).

Pathogens that breach periodontal tissue express molecular

patterns associated with pathogenic agents (PAMPs) such as

lipopolysaccharides, lipoteichoic acid, peptidoglycan, bacterial

DNA, and double-stranded RNA (71, 72). These PAMPs can be

recognized by receptors such as Toll-like receptors (TLR)

expressed on immune cells: macrophages, Langerhans cells,

dendritic cells, and polymorphonuclear neutrophils. They can

also be recognized by epithelial cells, gingival fibroblasts,

fibroblasts of the periodontal ligament, osteoblasts, osteoclasts

endothelial cells, and even lymphocytes (73, 74). The interaction

between macrophages, dendritic cells, neutrophils, and PAMPs

via TLRs leads to the production of pro-inflammatory cytokines

and chemokines such as TNF-a, IL-1, IL-6 (CXCL-8: IL-8), IL-

12, and IL-18. It should be noted, however, that dendritic cells

act as antigen-presenting cells for B and T cells (19, 75–77).

Neutrophils are one of the first inflammatory cells to arrive at the

site of periodontal inflammation by chemotaxis (78), following

chemoattractant such as IL-8 secreted by oral epithelial cells,

connective fibroblasts, and immune cells (79) and growth-

related gene product-a (80). Neutrophils contain cytoplasmic

granules that in turn contain lytic enzymes and molecules with
Frontiers in Immunology 04
antimicrobial properties such as cathepsins, lactoferrin,

lysozyme, and defensins, which destroy microorganisms (81).

Defensins are AMPs known for their antibacterial activity

(elimination or total inhibition of the growth of these

microorganisms), and several roles have been attributed to

them in relation to periodontal diseases, such as inhibiting the

growth of pathogenic bacteria, promoting the healing of

periodontal tissues, promoting bone healing, and serving as a

potential indicator of the severity of periodontal disease (42).

TNF-a, IL-1, and IL-6 are osteotropic cytokines that stimulate

osteoclast resorption in periodontitis (82) and are found in

higher concentrations in patients with periodontal disease than

in healthy individuals (83).

Cells of the B lymphoid lineage can participate in osteoclast

genesis through two main pathways (Figure 1):

1. The B-cells express RANKL, the main factor involved in the

differentiation, activation, and survival of osteoclasts. TNF-a
secreted by macrophages and dendritic cells can stimulate

osteoblasts, T cells, and B-cells to produce RANKL. In addition,

periodontal ligament fibroblasts and gingival fibroblasts can

regulate osteoclast activity by secreting RANKL (58, 84).

2. The B-cells express SOFAT, which is a bone-destroying

factor in periodontal disease lesions (70), independent of
FIGURE 1

Antimicrobial peptides immunomodulation in periodontitis osteolysis: potential connections with leukocytes. In periodontitis, pathogens triggers
both cytokines (in brown) or antimicrobial peptides (AMPS) (in blue) production. Both mediator’s categories are known to play roles in
leukocytes actions. A crucial step in these diseases is the expression of RANKL and SOFAT. B and T cells, which are the main source of RANKL
and SOFAT, are central in this orchestration of osteoclast differentiation and activity leading to osteolysis. The effect of AMPs in B in this
environment still remain to be determined.
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RANKL. By co-opting osteoblasts to increase production of

osteoclastogenic cytokines , SOFAT can exacerbate

inflammation and promote osteoclast formation and bone

destruction (68).

In all these interactions that occur during periodontal

disease, however, it is not known whether there is a direct

relation between AMPs and B-cells.
Can antimicrobial peptides affect
the function of B-cells in
periodontal diseases?

Most of the effects of AMPs on host cells are mediated via

the specific activation of various cell surface receptors,

membrane channels, or specific intracellular targets and

pathways (85, 86). Relations have been established between the

LL-37 peptide and at least nine receptors of different classes,

including four G-protein-coupled receptors, three receptor

tyrosine kinases, a ligand-gated ion channel, and TLRs (87, 88)

(Figure 2). Several receptors and pathways involved in the

immune functions of human beta defensins have been studied,

such as TLRs, receptors of the purinoceptor family, and

chemokine receptors (85) (Figure 2). Some receptors have

been described for beta defensin, such as CCR6, CCR4, CCR2,

TLR1/2/9, and P2X7 (85). However, specific alpha-defensin

(HNP) receptors have not yet been clearly identified, only a G-
Frontiers in Immunology 05
protein-coupled receptor response has been confirmed so far

(85). B-cell expression of some of these receptors conditioned

their responsiveness to AMPs. Many chemokine receptors

regarded as AMP receptors are expressed on T cells but can

also be found on human B-cells, such as CXCR4 (89), CXCR5,

CXCR3, CCR7, CCR1 (90, 91), CCR2 (92, 93), and CCR6 (94,

95). CCR6 probably plays an important role in B-cell trafficking

in humans and is established as an efficient receptor on human

B-cells (92). B-cells express several TLRs. TLR1, TLR2, TLR4,

TLR5, TLR6, and TLR10 receptors are expressed on the cell

membrane, while TLR3, TLR7, TLR8, and TLR9 are expressed in

the endosomes. Some of them can identify AMPs such as TLR1,

TLR2, and TLR9 (95–100). Their signaling in B-cells is related to

the stage of activation and the tissue situation of the B-cells

(101). It has also been reported that certain receptors of the

purinoceptor family, such as P2X7 and P2Y11, are expressed on

B-cells (102, 103).

Furthermore, the literature also mentions that B-cells

themselves express AMPs such as alpha defensins (HNP-1–3),

HBD-2, and cathelicidin LL-37 in the presence of pathogens

such as Aggregatibacter actinomycetemcomitans (104, 105).

Thus, B-cells can produce some of the AMPs found in

periodontal tissue and potentially react to them. For now,

however, the only clear link between B-cell lineage and their

response to AMPs is the IgG production induced in plasma cells

by LL-37 associated with NETs during systemic lupus

erythematosus (32). If this IgG production is useful to predict

the installation of the disease and participate in host defense.
FIGURE 2

Antimicrobial peptides receptors expression on B-cells. Alpha defensin has been shown to recruit B-cells through a non-identified Protein G
Coupled Receptor. Beta defensin family receptors are more documented with an action of HBD1 and HBD2 on CCR6 and HBD3 via CCR6,
CCR2, CXCR4, P2X7, TLR1, TLR2, and TLR9. LL37 act on a larger number of receptors that can be expressed by B-cells: TLRs1-5, TLRs7-9, FPRL1
P2X7, and P2Y11.
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initially, no direct connection to osteolysis, the major concern in

periodontitis, was described (106). More recently, anti-

carbamylated LL37 autoantibodies have been linked to an

increase in bone resorption in RA (107). Auto-immunity and

periodontitis are connected in many ways. Patients with auto-

immune conditions such as Lupus or RA are known to be more

prone to developing periodontitis (55, 108). Bone destruction in

periodontitis shares similarities with tissue damage observed

during RA and presents a TH17 cytokines overexpression that

can be also found in RA, Lupus psoriasis, and many other auto-

immune conditions (109, 110). In addition, AMPs’ participation

in autoimmunity has been investigated in the past few years.

High concentrations of AMPs have been found in sera of Lupus

patients or the joints of RA patients (107, 111, 112). For now,

AMPs’ immunomodulatory role in autoimmunity is not fully

understood, probably due to the difficulty in overcoming AMPs/

cytokines/chemokines’ roles redundancy combined with dual

detrimental and protective effects (113, 114). Regardless, the role

of autoantibodies against AMPs can be critical in autoimmunity.

LL37/DNA complexes during NETs release can be carbamylated

or citrullinated during autoimmune disease, which can be the

result of oral cavities pathogens such as PG or AA (115, 116).

Modified LL37s can then be recognized by specific

autoantibodies leading to the formation of immune complexes

that have been described in Lupus, auto-immunes vasculitis,

psoriasis, and RA (117–119). The fact that in RA such

autoantibodies participate in osteolysis strengthens the idea of

the implication of AMP in autoimmunity but also in

inflammatory contexts such as periodontitis.

All these elements point to an implication of B-cells by their

production of autoantibodies against AMPs in autoimmunity with, in

parallel, a potential immunomodulatory action that remains to be

investigated. For now, however, no causal relationship has been

established between AMPs’ immunomodulation and B-cells

participation in osteolysis. Presence of autoantibodies against AMPs

could be of interest as an actor of osteolysis and potentially as a

biomarker in diseases associated with bone self-destruction. As

previously mentioned, a large number of AMPs have been

identified in the oral cavity, and several exhibit antimicrobial effects

against periodontal pathogens. They offer a broad spectrum of roles

(antibacterial, antiviral, and/or antifungal or immunomodulation

activities) that are critical in periodontal diseases. These

characteristics make these natural molecules promising candidates

for anti-infection strategies. Moreover, it has been proposed that the

differential regulation of AMPs in periodontal disease makes them

relevant biomarkers for the disease in saliva and gingival fluid (41).

Promising strategies in the treatment of periodontitis can be derived

from AMPs in periodontal diseases. They could be considered as

a potential alternative to traditional antimicrobial therapy

(antibiotics) in periodontal infections (38). Nevertheless, their
Frontiers in Immunology 06
immunomodulatory action must be better understood to avoid any

unwanted effect. In this regard, B-cells’ involvement in AMP

immunomodulation also needs to be known.
Conclusion

As only sporadic information is available on the effect of AMPs

on B-cells, it may be tempting to think that they have no or few

connections. However, the B lymphocyte family consists of various

subtypes with specific patterns of receptors and functions. Global

analysis of lymphocytes tends to be disconnected from functional

reality, and the results are unclear due to the heterogeneity and low

number of each category of cell. The only way to overcome this

limitation is to study each lymphocyte subpopulation. This,

however, has not been done for the immunomodulatory action

of AMPs on B-cells. Only plasma cells and LL37 have been

functionally connected. An in vivo or ex vivo tissue analysis

would be convenient to assess this link due to the small B-cell

subpopulation. In addition, AMPs have been shown to be critical

in both the initiation and the chronicity of inflammation. As AMPs

are already known to influence and participate actively in both the

initiation and the persistence of inflammation (120), it would be

unlikely that they are not involved in periodontitis-related immune

system dysregulation. Recent studies on pathogenesis tend to

involve more and more B-cells in osteolysis processes. An

interaction between B-cells and AMPs could explain the

pathogenic action of B-cells. As they can carry some identified

AMP receptors, they should react to their presence.

A parallel is frequently made between periodontitis and

auto-immune diseases.

In addition, periodontal diseases are chronic inflammatory

conditions with changing inflammatory states (1). Longitudinal

studies are still rare but may be needed to truly understand the

molecular mechanisms. This time-dependent disease activity

could explain why studies on AMP presence in periodontitis

are frequently contradictory, with AMPs such as LL37 or

defensins linked to both protective and pathogenic patterns of

the disease. In a similar way, the action of B-cells depends on the

result of each subpopulation action found at the same time in

tissue. Regulatory B-cells seem decreased or inefficient in

situations involving chronic inflammation, which has been

confirmed in periodontitis (54). The variability of B-cell

subpopulations seems to share some patterns with AMP

presence. Elucidation of the relationship between AMPs and

B-cells could clarify why the immune system participates in

periodontal tissue destruction during its struggle against

pathogens, and may clarified whether or not periodontitis can

be considered as an autoimmune-like condition. Furthermore,

this understanding could open new possibilities for treatments
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involving the targeting of B-cells and/or AMPs to optimize the

immune response and reduce self-damage.
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bactériennes au cours des maladies parodontales [Osteoclasts activation by
bacterial endotoxins during periodontal diseases]. Med Sci (Paris) (2006) 22(6-
7):614–20. doi: 10.1051/medsci/20062267614

63. Hofbauer LC, Heufelder AE. Role of receptor activator of nuclear factor-
kappaB ligand and osteoprotegerin in bone cell biology. J Mol Med (Berl) (2001) 79
(5-6):243–53. doi: 10.1007/s001090100226

64. Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG system in
immunity, bone, and beyond. Front Immunol (2014) 5:511. doi: 10.3389/
fimmu.2014.00511

65. Nagasawa T, Kobayashi H, Kiji M, Aramaki M, Mahanonda R, Kojima T,
et al. LPS-stimulated human gingival fibroblasts inhibit the differentiation of
monocytes into osteoclasts through the production of osteoprotegerin. Clin Exp
Immunol (2002) 130(2):338–44. doi: 10.1046/j.1365-2249.2002.01990.x

66. Belibasakis GN, Bostanci N. The RANKL-OPG system in clinical
periodontology. J Clin Periodontol (2012) 39(3):239–48. doi: 10.1111/j.1600-
051X.2011.01810.x

67. Manabe N, Kawaguchi H, Chikuda H, Miyaura C, Inada M, Nagai R, et al.
Connection between b lymphocyte and osteoclast differentiation pathways. J
Immunol (2001) 167(5):2625–31. doi: 10.4049/jimmunol.167.5.2625

68. Napimoga MH, Demasi AP, Jarry CR, Ortega MC, de Araújo VC, Martinez
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