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ABSTRACT
Background: Promoting catch-up growth in malnourished children
has health benefits, but recent evidence suggests that accelerated
child weight gain increases adult chronic disease risk.
Objective: We aimed to determine how birth weight (BW) and weight
gain to midchildhood relate to blood pressure (BP) in young adults.
Design: We pooled data from birth cohorts in Brazil, Guatemala,
India, the Philippines, and South Africa. We used conditional weight
(CW), a residual of current weight regressed on prior weights, to repre-
sent deviations from expected weight gain from 0 to 12, 12 to 24, 24
to 48 mo, and 48 mo to adulthood. Adult BP and risk of prehyper-
tension or hypertension (P/HTN) were modeled before and after adjust-
ment for adult body mass index (BMI) and height. Interactions of
CWs with small size-for-gestational age (SGA) at birth were tested.
Results: Higher CWs were associated with increased BP and odds
of P/HTN, with coefficients proportional to the contribution of each
CW to adult BMI. Adjusted for adult height and BMI, no child CW
was associated with adult BP, but 1 SD of BW was related to a 0.5-mm
Hg lower systolic BP and a 9% lower odds of P/HTN. BW and CW
associations with systolic BP and P/HTN were not different between
adults born SGA and those with normal BW, but higher CW at 48
mo was associated with higher diastolic BP in those born SGA.
Conclusions: Greater weight gain at any age relates to elevated
adult BP, but faster weight gains in infancy and young childhood
do not pose a higher risk than do gains at other ages. Am J Clin
Nutr 2009;89:1383–92.

INTRODUCTION

Stunting and underweight are related to increased morbidity,
mortality, and poor cognitive outcomes during childhood (1–5).
The promotion of compensatory or ‘‘catch-up’’ growth in mal-
nourished children, a well-established health care practice de-
signed to ameliorate these problems, has recently been questioned
because evidence suggests that rapid weight gain in the first 2 y of
life is associated with an increased risk of being overweight or
obese in later life (6–9). Furthermore, the risk of certain chronic
diseases and related risk factors is increased in individuals who are
relatively small at birth, but relatively large as adults (6, 10–12),
which suggests that postnatal weight gain contributes to the de-
velopment of disease (13).

The long-term consequences of rapid weight gain in infancy and
early childhood in populations with a high prevalence of early

childhood undernutrition are unknown. It is critical to determine
whether any long-term deleterious effects depend on the timing of
rapid weight gain. Evidence from India (14), Guatemala (15), and
Brazil (16) suggests that timing of weight gain affects adult body
composition, which, in turn, is related to chronic disease risk.
These studies show that faster infant and early childhood weight
gain relates more strongly to adult lean mass than to adiposity,
whereas weight gain in later childhood and adolescence contrib-
utes more to adult adiposity.
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We used data from 5 low- and middle-income countries to
examine how birth weight (BW) and weight gain into midchild-
hood relate to blood pressure (BP) in young adults. We study BP
because it tracks into adulthood (17, 18) and is a significant risk
factor for cardiovascular disease. Our objective was to address the
following questions: 1) to what degree are BW and greater than
expected weight gain in early to midchildhood associated with
adult BP; 2) among adults who are the same height and weight,
does it matter when a period of higher than expected weight gain
occurred; and 3) does the association of early childhood weight
gain with later BP differ between those who were born small and
those adequate for gestational age (AGA).

SUBJECTS AND METHODS

Study populations

We used data from 5 birth cohorts in low- and middle-income
countries, united in the Consortium on Health Orientated Re-
search in Transitional Societies (COHORTS). The 5 cohorts in-
clude the 1982 Pelotas (Brazil) Birth Cohort (19), the Institute of
Nutrition of Central America and Panama Nutrition Trial Cohort
(INTC; Guatemala) (20), the New Delhi Birth Cohort (India) (14,
21), the Cebu Longitudinal Health and Nutrition Survey cohort
(CLHNS; Cebu, Philippines) (22, 23), and the Birth-to-Twenty
(Bt20; Soweto-Johannesburg, South Africa) cohort (24) (Table 1).
We refer to these studies subsequently as Pelotas, Guatemala, New
Delhi, Cebu, and Bt20, respectively. All studies were reviewed
and approved by an appropriate ethics committee or Institutional
Review Board.

We pooled individual data from the 5 cohorts. Our main analysis
sample (n ¼ 4335) included participants who were not pregnant
and had height, weight, and BP measured during the most recent
follow-up and weight measured at 0, 12, and 24 mo and during
midchildhood. Except for the Bt20 participants, who were ado-
lescents (mean age: 15 y), all others were young adults. How-
ever, for simplicity, we call these ‘‘adult’’ measures. Our analytic
method required complete child data, so participants missing one

or more child weight measures were excluded (n ¼ 5266). The
large size of the excluded group primarily reflected study designs
in Pelotas, where 33% of the birth cohort was sampled in the first
follow-up by selecting infants born between January and April,
and in Bt20, where a subgroup of those enrolling in the birth cohort
was sampled at 12 mo of age. For selected analyses, the sample is
further reduced because of missing gestational age (n ¼ 280) or
more detailed body-composition data (n ¼ 729).

Outcome variables

BP, the main outcome of interest, was measured with an aneroid
sphygmomanometer in Pelotas, with a mercury sphygmoma-
nometer in Cebu, and with digital devices in Guatemala (model
UA-767; A&D Medical, San Jose, CA), for the Bt20 (Omron M6;
Omron,Kyoto, Japan)and inNewDelhi (Omron711).Appropriate
cuff sizes were used, and the participants were measured while
seated after a 5–10 min rest. For Pelotas, New Delhi and Bt20, we
used the mean of 2 measurements (for Bt20, 3 measurements were
taken but the first was discarded). For Cebu and Guatemala, 3
measurements were averaged. BP was represented as a continuous
variable [focus on systolic BP (SBP), but diastolic BP (DBP) also
reported] or categorized to represent prehypertension and hyper-
tension (P/HTN), defined as SBP� 130 mm Hg or DBP� 80 mm
Hg for adults. Because Bt20 participants were adolescents, we
defined P/HTN for them as SBP or DBP greater than or equal to the
90th percentile of age-, sex-, and height-specific cutoffs as rec-
ommended by the National High Blood Pressure Education Pro-
gram Working Group (25). Antihypertensive medications were
used by ,0.5% of the participants. We included prehypertension
in our outcome because of the young age of the study participants.

Infant and child anthropometric measures

BW was measured by research teams in Pelotas, New Delhi,
and Guatemala. In Cebu, BW was measured by birth attendants
who had been provided with mechanical scales for home births
(60%) or was obtained from hospital records for the remainder. In

TABLE 1

Characteristics of the 5 COHORTS (Consortium on Health Orientated Research in Transitional Societies) studies1

Study Design

Cohort

inception

Initial

sample

Number examined

in the last visit Comments

Pelotas Birth

Cohort, Brazil (19)

Prospective

cohort

1982 5914 4297 Enrolled all children born in the city’s maternity hospitals (.99%

of all births) during 1982. All social classes included.

INTCS, Guatemala (20) Community

trial

1969–1977 2392 1571 Intervention trial of a high-energy and high-protein supplement.

All children aged ,7 y in 1969 and all born between 1969 and

1977 were enrolled and followed until age 7 y or until the study

ended in 1977. Data were collected from mothers during

pregnancy and breastfeeding periods.

New Delhi Birth

Cohort Study,

India (14, 21)

Prospective

cohort

1969–1972 8181 1583 Pregnancies were identified in a population of married women

living in a defined area of Delhi, and the newborns were

enrolled and followed. Primarily middle-class sample included.

CLHNS, Cebu,

Philippines (22, 23)

Prospective

cohort

1983–1984 3080 2032 Pregnant women living in 33 randomly selected neighborhoods

were included; 75% urban. First data collection at 30 wk

gestation. All social classes included.

Bt20 cohort,

Soweto-Johannesburg,

South Africa (24)

Prospective

cohort

1990 3273 2100 Pregnant women with a gestational age of 26–32 wk living

in a delimited urban geographic area were included.

Predominantly poor blacks included.

1 INTCS, Institute of Nutrition of Central America and Panama Nutrition Trial Cohort; CLHNS, Cebu Longitudinal Health and Nutrition Survey; Bt20,

Birth-to-Twenty.
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Bt20, weight was obtained from reliable birth records (26).
Subsequent weights were measured by research teams using
standard techniques (14, 19, 20, 22, 24) and then converted to
weight-for-age z (WAZ) scores using the WHO Growth Stand-
ards (27). The New Delhi weight data contributed to the pooled
data set as values interpolated to exact ages of 12, 24, and 48 mo
by using individual weight curves. Midchildhood weight was
measured at a mean age of 48 mo in Pelotas, New Delhi, and
Guatemala; at 60 mo for Bt20; and at 102 mo in Cebu. To make
midchildhood weight comparable across sites, we imputed 48-
mo z scores for Bt20 and Cebu participants, assuming a linear
change in z score from 24 to 60 or 102 mo respectively, and
back-transformed the resulting z scores into weight (in kg).

Gestational age

Gestational age for most participants was based on a mother’s
report of the date of her last menstrual period and infant birth date.
For Cebu participants with low BW, or whose mothers had preg-
nancy complications, Ballard scores obtained by clinical as-
sessment were used instead. Small for gestational age (SGA) was
defined as a BW below the age- and sex-specific 10th percentile of
the BW distribution published by Williams et al (28).

Anthropometric measures at follow-up

Body mass index (BMI; in kg/m2) was calculated from mea-
sured weight and height at age 15 y in Bt20 and in young adulthood
for the other sites.

Other covariates

Socioeconomic status at birth and in young adulthood was
represented by maternal education (or paternal occupation in
New Delhi) and/or by ownership of various household assets. An
assets score was created for each site (29), and study participants
were characterized by quintiles of these scores. Site-specific
variables considered as potential confounders included race-
ethnicity for Pelotas and Bt20, urban-rural residence for Cebu,
and village of residence for Guatemala (to represent village size
and nutrition intervention study design).

Conditional weight

To eliminate some statistical problems associated with mod-
eling highly correlated weight measures, we used conditional
weight (CW) variables to represent the component of weight at
a given age that is uncorrelated with earlier weight measures (30,
31). CWs were calculated as the residuals from site- and sex-
stratified linear regressions of weight (kg) at a given age on BW
and any prior weights. The regression models also included exact
age at measurement, and squared prior weight terms to account for
nonlinearities. CW is thus the deviation in an individual’s weight
from its expected value, given his or her prior weights. CWs are
estimated by using an individual’s own prior weight data, but age-
and sex-specific population data are used to generate the estima-
tion equation. When a CW variable is included in a multiple
regression with the variables it is conditioned on (BW and any
prior weights), it can be interpreted as change in weight over the
prior interval.

The CW residuals were standardized to allow comparisons
across ages. For comparability in analyses that include CW, we
also expressed BW as an internal sex- and site-specific z score. At
12, 24, and 48 mo, 1 SD of CW at the median corresponded to
about 1.0, 0.7, and 0.9 kg, respectively, and 1 SD of BW cor-
responded to 0.5 kg.

Body composition

We calculated percentage body fat at follow-up using site-
specific methods: bioimpedance and estimated percentage body
fat with a deuterium-validated equation in Pelotas (32); weight,
height, and abdominal or waist circumferences with an equation
validated by hydrostatic weighing in Guatemala (33); dual-
energy X-ray absorptiometry (Hologic Delphi) for the Bt20; and
skinfold-thickness equations based on published conversion ta-
bles (34) validated for Asian populations (35) in Cebu and New
Delhi. Fat mass (kg) was calculated as percentage body fat 3

weight, and lean mass (kg) was calculated as adult weight minus
fat mass.

Analysis

We first assessed unadjusted differences in mean weight at
birth and during childhood in groups with and without P/HTN.
Differences by P/HTN status, stratified by sex and site, were
evaluated by t test. We then estimated linear (for continuous SBP
and DBP) or logistic (for P/HTN) regression models. All models
included age at follow-up, sex, and site. We found no strong
evidence of heterogeneity by sex or site. Gestational age, so-
cioeconomic status, and site-specific potential confounders were
omitted because they were not associated with adult BP and did
not change the coefficients for the variables of primary interest.
We developed a series of models. The first included the BW
z score calculated from the WHO reference and is presented for
comparison with other studies. The second included a site- and
sex-specific internal BW z score and CW at 12, 24, and 48 mo,
similar to the approach used by others (30, 31). We compared
models with 1) no adjustment for adult size, 2) adjustment for
adult BMI, and 3) adjustment for adult BMI and height. Ad-
justment for adult measures addressed whether higher than ex-
pected weight gain at specific ages in childhood related to BP or
odds of P/HTN among adults with the same BMI (or BMI and
height). We adjusted for adult height because it is a strong
predictor of BP in healthy individuals, particularly in adoles-
cents (36), and it is highly related to lean body mass.

The third set of models included adult CW but not BMI,
because adult CW and BMI are very highly correlated. These
models addressed a different question, namely, whether higher
than expected weight at any age (including adulthood) related to
adult BP and odds of P/HTN. To aid in the interpretation of these
models (given the strong association of BMI with BP), we also
estimated a linear regression model to determine how each CW
predicted adult BMI.

We assessed whether CW related differently to BP or odds of
P/HTN in adults who were born SGA compared with those born
AGA by adding to model 2 a binary variable (¼1 if born SGA)
and terms for the interaction of SGA with BW and of SGA with
CW at each age. We tested whether the association of childhood
CW with adult BP differed across the full range of BW by in-
cluding an interaction of BW with each CW.

CHILD WEIGHT GAIN AND ADULT BLOOD PRESSURE 1385



In a separate analysis, we aimed to isolate possible patho-
physiologic effects of excess fatness on BP from physiologic
variation in BP related to height and lean body mass. We first
estimated site- and sex-specific residuals of SBP and DBP pre-
dicted from age, height, and lean mass (representing a deviation
from what would be expected based on these variables) and then
used these residuals as outcomes. This analysis could not be
conducted for Pelotas females because body-composition data
were not available for them.

To assess potential selection bias related to the exclusion of the
large number of Pelotas and Bt20 participants with missing 12-
mo weight measures, we created a 24-mo CW variable condi-
tional only on BW. We tested whether BW and CW at 24 and 48
mo had similar associations with adult SBP and risk of P/HTN in
our main analysis sample (n ¼ 4335) and those excluded only
because of missing 12-mo data (n ¼ 3842). Results were con-
sidered to differ if the P value for the interaction of being in the
analytic sample with BW or CW was ,0.10.

RESULTS

Characteristics of participants in the 5 cohorts

Mean age was near 30 y for the Guatemala and New Delhi
cohorts, whereas participants from Pelotas and Cebu were in their
early 20s, and the Bt20 participants were adolescents. Mean BW
was highest in Pelotas and lowest in New Delhi (Table 2). WAZ
scores varied little by age in Pelotas, whereas Bt20 children
showed initial catch-up from lower WAZ at birth, but thereafter
both cohorts had weight gain patterns that parallelled the WHO
Growth Standard 50th percentile (Figure 1). In contrast, New
Delhi, Guatemala, and Cebu children had declining WAZ scores
in the first year of life. Young adults in Pelotas were the tallest,
whereas Guatemala and Cebu participants were the shortest. Adult
BMI was lowest in the Cebu and Bt20 cohorts (the latter likely
reflected their young age). P/HTN prevalence was higher among
males than among females. Within sites, P/HTN was lowest
among males and females in Guatemala and females in Cebu.

Population mean weight-for-age and later P/HTN

In all cohorts, WAZ scores tended to be higher in infancy and
childhood among thosewho later had P/HTN (Figure 1). By 48 mo,
WAZ scores were significantly higher in those with P/HTN in all
cohorts except Guatemalan males and New Delhi females. In
adults, BMI, on average, was 2.1 6 0.14 (SE) units higher in those
with P/HTN. Lean and fat mass were higher among those with
P/HTN in all cohorts, and percentage body fat was higher in those
with P/HTN in all but Bt20 males (Figure 2). The mean (6SE)
age- and site-adjusted difference in fat mass in adults with and
without P/HTN was 2.81 6 0.16 kg in males and 3.85 6 0.36 kg in
females; whereas the mean difference in lean mass was 3.67 6

0.23 kg in males and 2.44 6 0.23 kg in females.

Multivariable models

BW was not associated with adult SBP, DBP, or odds of P/HTN
without adjustment for adult size (Table 3 and Table 4; model 1A).
After adjustment for BMI (model 1B), BW was inversely asso-
ciated with adult SBP and odds of P/HTN, and the coefficient was
larger and significant with additional adjustment for adult height
(model 1C). BW was inversely related to DBP after adjustment for

BMI alone (20.39 mm Hg/SD; 95% CI: 20.68, 20.10) or BMI
and height (20.46 mm Hg/SD; 95% CI: 20.74, 20.18).

All CWs through midchildhood were strongly associated with
adult SBP without adjustment for adult BMI or height (Table 3;
model 2A). The 12- and 48-mo CW coefficients were .2 times
the 24-mo CW coefficient. Similarly, higher CWs at 12 and 48 mo
were associated with an increased odds of P/HTN (Table 4; model
2A). After adjustment for adult BMI and height (Table 3; model
2C), BW was inversely associated with SBP, whereas the CW
measures were unrelated to SBP. Higher BW and CW at 24 mo
were associated with reduced odds of P/HTN (Table 4; model
2C). Overall, a 1-SD (’0.5 kg) increase in BW was associated
with a 0.5–0.6-mm Hg decrease in SBP and a 9% reduction in
odds of P/HTN. In a DBP model adjusted for adult BMI and
height (comparable with that of model 2C in Table 3), BW
was inversely associated with DBP (20.51 mm Hg/SD; 95%
CI: 20.82, 20.21), but CW measures were unrelated to DBP.

In models that included adult CW with or without adjustment
for adult height (model 3C compared with model 3A in Tables
3 and 4), BW was unrelated to SBP or P/HTN, but all CW
variables were strongly and positively associated with SBP and
P/HTN. Adjustment for adult height (model 3C) increased the
coefficients for the childhood CW terms. Taller adult stature was
related to a lower odds of P/HTN in model 3C. The pattern of
results for DBP was similar.

BW was more highly correlated with adult height (r ¼ 0.25)
than with adult BMI (r ¼ 0.12), with correlations based on site-
and sex-specific z scores. CW at all ages strongly predicted adult
BMI. The sizes of the coefficients relating BW and CW to adult
SBP in model 3C were roughly proportional to the coefficients
relating BW and CW to adult BMI (Figure 3).

Modeling the sex- and site-specific SBP residual as the out-
come, we omitted age, site, and height (because the residual is
uncorrelated with these variables by definition) but included BW
and all CW measures (comparable with model 3A in Table 3).
The SBP residual was inversely related to BW (20.56 mm Hg/
SD; 95% CI: 20.92, 20.21); unrelated to CW at 12, 24, and 48
mo; but positively related to adult CW (0.65 mm Hg/SD; 95%
CI: 0.30, 1.00; P , 0.01). When added to this model, fat mass
was strongly related to the residual (0.19 mm Hg per kg fat
mass; 95% CI: 0.19, 0.25). Results for the DBP residual were
very similar for BW (20.58 mm Hg/SD; 95% CI: 20.88,
20.27) and adult CW (0.77 mm Hg/SD; 95% CI: 0.48, 1.07).

To determine whether the association of BWand CW with BP or
risk of P/HTN differed according to whether an adult was born
SGA, we specified model 2C to include a main effect of SGA and
interactions of SGA with each CW (Table 5). BW was not in-
cluded in these models because it is highly related to SGA. Being
born SGA was associated with higher SBP and an increased odds
of P/HTN, but there were no significant interactions of SGA with
CW at any age. For DBP, there was no main effect of SGA, but
higher CW was associated with higher DBP at 48 mo in those
who were born SGA. In the alternate analysis designed to test
whether CW had the same effect across the full BW distribution,
no BW by CW interaction term was significant for SBP or DBP.

Sample selectivity

The association of BW and CW with adult SBP and odds of
P/HTN was attenuated in our analysis sample compared with the
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sample excluded because of a missing weight measurement at 12
mo (Table 6). The BW coefficient was about half as large in the
analysis sample, and CW at 24 mo and CW at 48 mo estimated
without inclusion of weight at 12 mo were not significantly related
with SBP or of P/HTN in either sample.

DISCUSSION

Among healthy young adults, body size is the strongest de-
terminant of BP. Thus, childhood weight gain is expected to
predict adult BP to the extent that it determines adult body size.
We wanted to determine how rapid childhood weight gain at
specific age intervals through midchildhood related to adult BP
and whether rapid weight gain was important independent of its
contribution to adult size. We used CW to address these questions
because each CW measure is uncorrelated with prior weight,

which allowed for the assessment of the unique contribution of
weight at each age.

In our sample, the associations of BWand CWat 12, 24, and 48
mo with adult BP roughly reflected the relative contribution of
weight gain in these time periods to adult BMI. For example,
children gained about twice as much weight in the first than in the
second year of life. CW at 12 mo had a coefficient ’2 times that
of CW at 24 mo (Table 3). Adult CW (higher than expected gain
from 48 mo to adulthood) had the largest BP coefficient.

When adult size (indexed by BMI and height) was held con-
stant, there was no interval through midchildhood when greater
than expected weight gain contributed to elevated BP. However,
because models adjusted for adult height and BMI exclude adult
CW (because of the high correlation of these variables), we con-
cluded that weight gain after midchildhood is an important con-
tributor to risk of elevated BP. This is consistent with other studies,

FIGURE 1. Mean weight-for-age z scores in males (A) and females (B).
The solid lines represent those without prehypertension or hypertension
(P/HTN), and the dashed lines represent those with P/HTN, defined as
a systolic blood pressure �130 mm Hg or a diastolic blood pressure �80
mm Hg, except for Birth-to-Twenty (Bt20) adolescents (defined as a systolic
or diastolic blood pressure �90th percentile of age-, sex-, and height-specific
cutoffs; 25). Sample sizes were as follows for those with or without P/HTN,
respectively: Pelotas (n ¼ 1208 and 279 for males and n ¼ 107 and 375 for
females), Guatemala (n¼ 27 and 88 for males and n¼ 14 and 86 for females),
New Delhi (n¼ 246 and 345 for males and n¼ 103 and 320 for females), Cebu
(n¼ 431 and 542 for males and n¼ 99 and 746 for females), and Bt20 (n¼ 68
and 100 for males and n ¼ 33 and 118 for females).

FIGURE 2. Mean adult weight of males (A) and females (B) without (first
bar for each site) or with prehypertension or hypertension (P/HTN; second bar
for each site), stratified by lean and fat mass. The upper error bar represents the
SD of the mean fat mass, and the lower error bar represents the SD of the mean
lean mass. Numbers in the upper block of each column represent percentage
body fat (fat mass/total body weight 3 100 6 SD). Pelotas females were
excluded because they had missing body-composition data. Sample sizes
were as follows for those with or without P/HTN, respectively: Pelotas (n ¼
196 and 259 for males), Guatemala (n¼ 26 and 87 for males and n¼ 14 and 85
for females), New Delhi (n ¼ 245 and 344 for males and n ¼ 100 and 318 for
females), Cebu (n ¼ 411 and 485 for males and n ¼ 92 and 638 for females),
and Birth-to-Twenty (Bt20; n ¼ 65 and 97 for males and n ¼ 31 and 113 for
females).
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which showed the importance of heterogeneous growth trajecto-
ries, including a pattern of relative thinness to age 2 y followed by
more rapid growth to age 11 y (12) or excess weight gain after age
7 y (37). Further exploration of other weight and height trajecto-
ries is planned by the COHORTS group.

Consistent with a large body of research (38, 39) and with our
prior metaregression analysis (29), we found significant inverse
associations of BW with adult SBP and DBP and odds of P/HTN
after adjustment for adult BMI and height. The size of these ef-
fects is consistent with previously published studies (equivalent

TABLE 3

Association of birth weight and conditional weight (CW) at 12, 24, and 48 mo with adult systolic blood pressure: coefficients from multivariable linear

regression models using pooled data from 5 birth cohorts (n ¼ 4335)

A. Adjusted for age, sex, site B. Also adjusted for adult BMI C. Also adjusted for adult BMI and height

Coefficient 95% CI P value Coefficient 95% CI P value Coefficient 95% CI P value

Model 1

Birth weight (z score)1 0.11 20.22, 0.45 0.52 20.29 20.61, 0.04 0.08 20.52 20.85, 20.19 ,0.01

Adult BMI (kg/m2) 0.90 0.82, 0.99 ,0.01 0.90 0.82, 0.98 ,0.01

Adult height (cm) 0.16 0.11, 0.22 ,0.01

Model 2

Birth weight (z score)2 0.13 20.22, 0.48 0.46 20.28 20.62, 0.06 0.11 20.57 20.93, 20.22 ,0.01

CW3 12 mo 1.14 0.79, 0.49 ,0.01 0.38 0.04, 0.73 0.03 20.04 20.42, 0.34 0.83

CW 24 mo 0.50 0.16, 0.85 ,0.01 0.06 20.27, 0.40 0.70 20.17 20.52, 0.17 0.32

CW 48 mo 1.23 0.89, 0.58 ,0.01 0.24 20.11, 0.59 0.17 20.03 20.39, 0.33 0.87

Adult BMI (kg/m2) 0.86 0.77, 0.96 ,0.01 0.91 0.82, 0.0 ,0.01

Adult height (cm) 0.17 0.11, 0.24 ,0.01

Model 3

Birth weight (z score)2 0.13 20.21, 0.47 0.45 0.224 20.13, 0.574 0.224

CW 12 mo 1.13 0.79, 1.47 ,0.01 1.264 0.89, 1.634 ,0.014

CW 24 mo 0.51 0.18, 0.84 ,0.01 0.584 0.24, 0.924 ,0.014

CW 48 mo 1.25 0.91, 1.58 ,0.01 1.324 0.98, 1.664 ,0.014

CW adult 3.15 2.83, 3.48 ,0.01 3.204 2.87, 3.534 ,0.014

Adult height (cm) 20.064 0.084

1 z scores computed from the World Health Organization Growth Standard (27).
2 Internal site- and sex-specific z score.
3 CW standardized residual representing greater than expected weight gain in the prior interval.
4 Additionally adjusted for adult height only.

TABLE 4

Association of birth weight and conditional weight (CW) at 12, 24, and 48 mo with adult prehypertension and hypertension:

odds ratios (ORs) from logistic regression models using pooled data from 5 birth cohorts (n ¼ 4335)

A. Adjusted for age, sex, site

B. Also adjusted for adult

BMI

C. Also adjusted for adult

BMI and height

OR 95% CI P value OR 95% CI P value OR 95% CI P value

Model 1

Birth weight (z score)1 0.99 0.93, 1.06 0.81 0.93 0.87, 1.00 0.04 0.91 0.85, 0.98 0.01

Adult BMI (kg/m2) 1.15 1.14, 1.18 ,0.01 1.16 1.13, 1.18 ,0.01

Adult height (cm) 1.01 1.00, 1.02 0.02

Model 2

Birth weight (z score)2 1.00 0.93, 1.07 0.89 0.93 0.87, 1.00 0.05 0.91 0.84, 0.98 0.01

CW3 12 mo 1.20 1.12, 1.29 ,0.01 1.07 0.99, 1.15 0.09 1.03 0.94, 1.11 0.56

CW 24 mo 1.02 0.95, 1.09 0.54 0.95 0.89, 1.02 0.15 0.93 0.86, 1.00 0.05

CW 48 mo 1.18 1.10, 1.26 ,0.01 1.00 0.93, 1.08 0.99 0.98 0.90, 1.05 0.53

Adult BMI (kg/m2) 1.15 1.13, 1.18 ,0.01 1.16 1.14, 1.18 ,0.01

Adult height (cm) 1.02 1.00, 1.03 0.03

Model 3

Birth weight (z score)2 0.99 0.93, 1.07 0.85 1.034 0.95, 1.114 0.474

CW 12 mo 1.21 1.13, 1.30 ,0.01 1.274 1.18, 1.384 ,0.014

CW 24 mo 1.02 0.95, 1.10 0.53 1.054 0.98, 1.134 0.174

CW 48 mo 1.18 1.10, 1.27 ,0.01 1.224 1.13, 1.314 ,0.014

CW adult 1.63 1.52, 1.75 ,0.01 1.664 1.55, 1.794 ,0.014

Adult height (cm) 0.984 0.96, 0.994 ,0.014

1 z score computed from the World Health Organization Growth Standard (27).
2 Internal site- and sex-specific z score.
3 CW standardized residual representing greater than expected weight gain in the prior interval.
4 Additionally adjusted for adult height only.
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to 1.1 mm Hg and a 19% reduction in odds of P/HTN per kg
BW) (38, 40).

Concerns have been raised about the interpretation of BW
associations in models that adjust for BMI measured concurrent
with the BP outcome. Because of the positive association of BW
with adult BMI and of BMI with BP, negative shifts in the BW
coefficients after adjustment for BMI have been attributed to a bias
resulting from ‘‘reversal paradox’’ (41), and the use of CW does
not entirely free us of this concern (42). We opted to present un-
adjusted and adjusted results because, without adjustment for
adult size, an independent effect of timing of weight gain cannot
be estimated. Adjustment for adult BMI showed a significant in-
verse association of BW with adult SBP (models 2C and 3C),
which was strengthened with further adjustment for adult height.
This may reflect the higher correlation of BW with adult height
and lean mass than with BMI or fat mass in our sample. We in-
cluded adult height in our models because it is an important de-
terminant of BP in healthy adolescents and was particularly
relevant for the Bt20 cohort. Height is also an indicator of lean
body mass; thus, adjustment for height may isolate the adverse
effects of adult body fat on BP. It is interesting to note that in model
3C, which included CW through adulthood, taller stature was
associated with lower odds of P/HTN. Ideally, we would like to

have had complete length data for all of the cohorts, so that we
could shed more light on the relative importance of weight gain
and linear growth in childhood.

Given the particular importance in low- and middle-income
countries of promoting early compensatory growth in SGA in-
fants to reduce their risk of morbidity and mortality and to pro-
mote better cognitive outcomes, we tested whether higher CW
related differently to BP in individuals who were SGA. Whereas
SGA was related to higher SBP, the relation of CW to SBP was
not different between adults who were born SGA and those born
AGA, nor did this relation differ across the full range of BWs seen
in our samples. Higher CW at 48 mo was associated with higher
DBP and odds of P/HTN in adults who were born SGA. This
could have been a chance finding or it may suggest that mid-
childhood growth is an important time for development of
risk of elevated DBP in those with a history of prenatal growth
restriction.

Several methodologic aspects of our study merit consideration.
Integration of data from 5 cohorts for a pooled data analysis rai-
ses concerns about the comparability of measures across sites and
whether the relations of interest vary substantially by site. Because
of the variation in the timing of the midchildhood weight mea-
surement, we imputed weight at 48 mo for the Bt20 and Cebu
cohorts. CW coefficients through midchildhood were not sub-
stantially different when the actual 60-mo and 102-mo values were
used for these sites, so we judged that the benefits of including
these children in the analysis outweighed any potential biases
related to imputation. Age at follow-up differed among the sites.
Bt20 participants were adolescents, whereas the other cohorts
included young adults. We addressed this by using a site-specific
definition of P/HTN for Bt20 and adjusted for age in all models. We
found no heterogeneity of effects by site or sex. Alternate models,
which included additional potential confounders, including site-
specific variables, produced no notable differences in the co-
efficients for BW or CW in childhood compared with our more
parsimonious models. Despite substantial differences in infant
and child weight, and adult age, height, BMI and BP, the similarity
across sites of the relations of BW and CW to adult SBP enhances
our confidence that we have identified biologically meaningful
relations.

A final concern was with sample selection bias. Our analysis
sample included a subset of participants with complete growth

FIGURE 3. Coefficients estimated from regressing adult systolic blood
pressure (BP; solid line) or BMI (dotted line) on birth weight and conditional
weight at 12, 24, and 48 mo by using data pooled from the 5 birth cohort
studies (n ¼ 4335).

TABLE 5

Coefficients from models estimating adult blood pressure, accounting for being born small-for-gestational age (SGA) and interactions of SGA with conditional

weight (CW) at 12, 24, and 48 mo, males and females combined (n ¼ 4055)1

Systolic blood pressure Diastolic blood pressure Prehypertension and hypertension

Coefficient 95% CI P value Coefficient 95% CI P value Odds ratio 95% CI P value

SGA 0.80 0.00, 1.60 0.05 0.38 20.30, 1.06 0.27 1.21 1.02, 1.43 0.03

CW2 at 12 mo 0.04 20.40, 0.49 0.85 0.07 20.31, 0.44 0.73 1.05 0.95, 1.15 0.36

CW at 24 mo 20.06 20.47, 0.34 0.76 20.07 20.42, 0.27 0.67 0.92 0.85, 1.01 0.08

CW at 48 mo 20.07 20.49, 0.36 0.76 20.39 20.75, 20.02 0.04 0.94 0.85, 1.03 0.17

SGA 3 CW at 12 mo 20.26 21.06, 0.55 0.53 20.23 20.91, 0.45 0.51 0.89 0.75, 1.05 0.18

SGA 3 CW at 24 mo 20.36 21.16, 0.43 0.37 20.05 20.72, 0.62 0.89 1.05 0.89, 1.24 0.55

SGA 3 CW at 48 mo 0.20 20.57, 0.97 0.62 0.73 0.08, 1.39 0.03 1.16 1.16, 1.37 0.08

Wald test of interactions F(3, 4039) ¼ 0.47, P . F ¼ 0.704 F(3, 4039) ¼ 1.73, P . F ¼ 0.157 v2 ¼ 5.18, P ¼ 0.16

1 Models were adjusted for age at adult measurement, sex, site, adult height, and BMI.
2 CW standardized residual representing greater than expected weight gain in the prior interval.
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data in childhood (required to estimate the full set of CW var-
iables) as well adult anthropometric and BP measurements. It
differs from the full sample of cohort participants owing to at-
trition typical of longitudinal studies and to study design (eg, the
loss of relatively more participants from the Pelotas and Bt20
cohorts). Results may be biased if BW and CW relate differently
to adult BP in the included compared with excluded participants.
Whereas it was not possible to estimate the effects of attrition, we
used CW variables estimated without 12-mo data to compare
selected models in our analysis sample to models run with the
sample excluded owing to missing 12-mo data. BW coefficients
were significantly smaller in our analysis sample, but CWs at 24
and 48 mo were unrelated to SBP or odds of P/HTN in both
samples. The difference in the BW coefficient was accounted for
primarily by the selectivity in the Pelotas sample. It is possible
that seasonality played a role, because the Pelotas participants
with data at 12 mo were those born between January and April.

Investigations of prenatal and early child growth effects on
adult BP have been disproportionately carried out in high-income
countries (39) and most have estimated the effects of weight
gain without attention to the high level of correlation among
weight measures at different ages (43–46). An exception to the
latter is a recent study that used a linear spline random-effects
model to show that higher weight gains in the first 5 mo and
from 21 mo to 5 y were associated with higher BP (47).

Our study makes a unique contribution to the extant literature
with its focusonsamplesfrom5low-andmiddle-incomecountries.
In these settings, where chronic diseases of adulthood are rapidly
emerging as major public health problems, the possible long-term
risks of rapid child growth must be weighed against the well-
established benefits of compensatory weight gain in growth-
restricted children (4, 5). Evidence from our 5 birth cohorts
suggests that higher weight gain in early life is only associated
with elevated adult BP to the degree that early growth predicts
adult BMI. However, at the same level of adult BMI, we found no
association of weight gain from infancy to midchildhood to adult
BP or risk of P/HTN. Furthermore, we confirmed prior studies
showing that reduced fetal growth increases the risk of elevated
BP in later life.

Because of its known association with height and BMI, BP
may be more strongly affected by faster weight gain at any age

than other chronic diseases and risk factors. This possibility will
be tested by future analyses of the COHORTS data set addressing
outcomes related to body composition, glucose concentrations,
and lipid profiles. We will also look into how early growth might
contribute to positive human capital outcomes, including school
attainment and adult height. The evidence thus far suggests
that the positive consequences of faster early weight gain in low-
and middle-income countries outweigh its potential hazards
(29). Nonetheless, prevention of overweight and obesity in chil-
dren and young adults needs to be a priority to reduce the rising
burden of cardiovascular disease in developing and transitional
countries.
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TABLE 6

Association of birth weight and conditional weight (CW) at 24 mo with adult systolic blood pressure (SBP) and risk of

prehypertension and hypertension (P/HTN) in the analytic sample and in the sample missing weight data at 12 mo but no

other covariates1

Analytic sample (n ¼ 4335)

Sample missing weight data

at 12 mo (n ¼ 3926)

Coefficient 95% CI P value Coefficient 95% CI P value

Linear regression SBP2

Birth weight 20.57 20.92, 20.21 ,0.01 21.40 21.86, 20.94 ,0.01

CW3 20.13 20.50, 20.25 0.51 20.56 201.02, 20.10 0.02

Logistic regression P/HTN4

Birth weight 0.91 0.84, 0.98 0.01 0.82 0.76, 0.89 ,0.01

CW 0.99 0.91, 1.07 0.73 0.91 0.84, 0.98 0.02

1 Models were adjusted for age at adult measurement, sex, site, adult BMI, and adult height.
2 F test for interactions of sample with birth weight and sample with CW, P ¼ 0.05.
3 Conditional weight standardized residual representing greater than expected weight gain in the prior interval.
4 F test for interactions of sample with birth weight and sample with CW, P ¼ 0.05.
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