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Summary

Background Establishing objective and quantitative neuroimaging biomarkers at individual level can assist in early

and accurate diagnosis of major depressive disorder (MDD). However, most previous studies using machine learn-
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ing to identify MDD were based on small sample size and did not account for the brain connectome that is associ- Published onfine ot
ated with the pathophysiology of MDD. Here, we addressed these limitations by applying graph convolutional https://doi.org/10.1016/}
network (GCN) in a large multi-site MDD dataset. ebiom.2022.103977

eBioMedicine 2022;78:

Methods Resting-state functional MRI scans of 1586 participants (821 MDD vs. 765 controls) across 16 sites of Rest-
meta-MDD consortium were collected. GCN model was trained with individual whole-brain functional network to
identify MDD patients from controls, characterize the most salient regions contributing to classification, and explore
the relationship between topological characteristics of salient regions and clinical measures.

Findings GCN achieved an accuracy of 81-5% (95%CI: 80-5—82-5%, AUC: 0-865), which was higher than other
common machine learning classifiers. The most salient regions contributing to classification were primarily identi-
fied within the default mode, fronto-parietal, and cingulo-opercular networks. Nodal topologies of the left inferior
parietal lobule and left dorsolateral prefrontal cortex were associated with depressive severity and illness duration,
respectively.

Interpretation These findings based on a large, multi-site dataset support the feasibility and effectiveness of GCN in
characterizing MDD, and also illustrate the potential utility of GCN for enhancing understanding of the neurobiol-
ogy of MDD by detecting clinically-relevant disruption in functional network topology.
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Research in context

Evidence before this study

We performed a comprehensive literature search in
PubMed with the terms (depression” OR “depressive”
OR “depressed” OR “unipolar” OR “MDD") AND (“fMRI”
OR “resting-state”) AND ("machine learning" OR "multi-
variate pattern recognition" OR ‘"classification” OR
“deep learning”) for machine learning studies using rest-
ing-state functional MRI to distinguish patients with
MDD from controls. Substantial previous machine learn-
ing studies were performed using single-site dataset
with small sample size, which leads to huge variability
and poor generability in model performance. One
multi-site study reported classification accuracy of 70%
in identifying MDD patients. However, a relatively basic
model (logistic regression) was used which may not
fully capture the underlying complex pattern in brain
data. Considering the neuropathophysiology of MDD is
highly associated with brain network disruptions, apply-
ing machine learning models based on brain networks
may reach a better performance.

Added value of this study

GCN is one of the most popular graph-based deep
learning models, which can model graph data structure
like networks. In this study, we attempted to examine
reliable and objective performance of GCN on MDD
characterization based on a multi-site dataset with over
1500 participants. The sample size of our study is larger
than previous machine learning publications, enabling
us to obtain robust and generalizable classification per-
formance for MDD. Based on our findings, we found
GCN could achieve better classification performance
compared with other common classifiers, and this
observed performance can remain stable in multiple
validations. Moreover, our study identified the most
salient network patterns contributing to classification,
as well as network topological deficits related to depres-
sion severity and illness duration, further suggesting the
neurobiological and clinical underpinnings of GCN
modeling.

Implications of all the available evidence

GCN may serve as a powerful deep learning model,
which is capable of achieving accurate characterization
of MDD across multiple imaging sites, detecting reliable
and generalizable regional topological deficits related
to clinical measures at individual level, and thus enhanc-
ing the understanding of pathophysiology of MDD.

symptomatic and behavioral assessments. However,
affected individuals with MDD manifest a wide range of
heterogeneous symptoms, which typically lead to inaccu-
rate and delayed diagnosis. In this context, establishing
objective and quantitative biomarkers for the identification
of MDD may not only provide insight into illness

pathophysiology but also lead to the development of biolog-
ically-informed tests for clinical diagnosis and treatment
planning.

One promising biomarker is derived from resting-state
functional magnetic resonance imaging (rsfMRI) techni-
ques that provide quantitative assessment of disrupted
brain function in psychiatric disorders.>>* Substantial
rsfMRI-based evidence has demonstrated that patients
with MDD exhibit abnormal brain function in multiple
cortical and subcortical regions, such as prefrontal cortex,
insula, amygdala, precuneus, and hippocampus.’ 7 The
implementation of machine learning further accelerates
the transition of neuroimaging biomarker analysis from
traditional population-level inferences to predictions about
individual patients that may advance individualized clinical
decisions.”® As shown in Table St, we performed a compre-
hensive literature review of machine learning studies using
rsfMRI measures to distinguish MDD patients and con-
trols. We noted that while there has been an increasing
number of publications, the results were inconsistent with
their reported classification accuracies varied from 61-7%
t0 98-4%.

This dramatic divergence in classification accuracies
can be primarily ascribed to the demographic and clini-
cal heterogeneity across MDD studies that mostly
trained models with small datasets.® As the optimiza-
tion of machine learning models typically requires ade-
quate training data to mount generalizability across
different samples, large sample size is critical to ensure
population-representative model performance and pro-
vide reliable information on the biological underpin-
nings. Kambeitz et al. reported that rsfMRI can
accurately identify depressed individuals with a robust
and consistent accuracy of 84% based on meta-analytic
integration.” Nevertheless, the small sample size of
each included study can still result in a high risk of sys-
tematic overestimation.’® In recent years, the rapid
development of multi-site collaborations has increased
the availability of large-scale datasets, which is critical
for training a reliable and generalizable model. One
multi-site machine learning study has demonstrated
approximately 70% classification accuracy for MDD
using rsfMRI metrics.” This study, however, employed
a simple model (i.e., logistic regression (LR)) which
may not capture complex multivariate patterns within
the brain data. Whether better performance in multi-
site settings can be achieved with advanced models
which capture these patterns remains to be explored.

Model configuration needs to take into account that
the human brain is a highly interconnected network,
and the emergence of psychiatric illness is generally
thought to be underpinned by a disruption of normal
functional integration amongst cortical and subcortical
regions.”” Numerous studies have suggested that MDD
cannot be explained in terms of localized dysfunction
within specific brain areas and is better understood as a
disruption of the brain connectome.”” " However, most
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traditional models adopted previously captured informa-
tion based on independent regional functional meas-
ures instead of modeling functional connectome. As the
graph structure conveys the representation of brain con-
nectomes and captures the brain network topology, the
graph convolution network (GCN) modeling, which
allows for direct convolution over graphs, may be the
optimal model to collect more subtle network-level
information. Unlike traditional convolutional neural
networks limited to Euclidean inputs (e.g., 2D/3D
images), GCN can work on non-Euclidean domains and
implement convolutions on graphs by exploiting the
input node features and neighborhood structure
between nodes to generate new feature maps.'® While a
few studies have validated the successful application of
GCN in the identification of autism spectrum disor-
der,”” Alzheimer’s disease,® and attention deficit hyper-
activity disorder, this approach has not been widely
used in MDD. In addition, as a deep learning model,
GCN can be expected to perform better with the large
multi-center dataset, given the strong learning capabil-
ity of deep learning under big data.*®

In this study, we aimed to apply advanced graph-
based deep learning techniques to characterize individu-
als with MDD in a large dataset of 1586 participants
across 16 sites. Specifically, we trained a GCN model
based on whole-brain functional connectivity networks
to characterize MDD patients as well as MDD subtypes
(i-e., first-episode drug-nayve (FEDN) and recurrent
patients). The most salient brain regions contributing to
the classification were identified, and the relationship
between their network topological metrics and clinical
measures was further explored. Our first hypothesis
was that the application of GCN on brain functional

networks would allow nominally higher classification
performance than other common classifiers including
support vector machine (SVM), multilayer perception
(MLP), LR, random forests (RF), and BrainNetCNN. In
addition, graph-based classifiers can learn discrimina-
tive patterns via neighborhood structures within the net-
work, which enabled the identification of spatially
segregated salient regions at the network level. Thus,
our second hypothesis was that GCN could reveal
regional saliency map showing network topological defi-
cits that might be related to clinical variables.

Methods

Participants

Our study was performed based on 25 datasets from 17
hospitals in the Rest-meta-MDD consortium that
included 1300 MDD patients and 1128 healthy controls
(HC). Demographic and clinical information including
age, sex, illness duration, medication status, episode sta-
tus (i.e., first episode/recurrent), and ry-item Hamilton
Depression Rating Scale (HAMD) were collected at
each site. In this study, we excluded data with poor qual-
ity following standard quality control procedures in the
Rest-meta-MDD consortium (Supplemental Informa-
tion and Fig. S1).*' Finally, 1586 participants (821 MDD
patients vs. 765 HC) were included in our analysis.
According to available clinical data of included patients,
410 were first-episode patients, 208 were recurrent
patients, 308 patients were drug-najve, and 219 patients
were treated before. Detailed demographic and clinical
characteristics of the study population are shown in
Table 1 (for information in each site, see Table S2).

Variable MDD HC p value®
Sample size, N 821 765 -
Age, years, mean + SD 3436 £ 11-55 34.50 £ 13:16 0-815
Sex, N female (%) 522 (63-6%) 453 (59-2%) 0-074
Episode status
First-episode, N (%) 410 (66-3%) - -
Recurrent, N (%) 208 (25-3%) - -
Unknown, N (%) 203 (24-7%) - -
Medication status
Medication-naive, N (%) 308 (37-5%) - -
Treated, N (%) 219 (26:7%) - -
Unknown, N (%) 294 (35-8%) - -
Duration of iIInessb, months, mean + SD 38-81 +60-83 - -
HAMDS, mean + SD 21-26 £ 6:61
HAMA®, mean + SD 1899 £9-14 - -
Table 1: Demographic and clinical characteristics of included multi-site participants.
Abbreviations: MDD, major depressive disorder; HC, healthy controls; HAMD, Hamilton Depression scale; HAMA, Hamilton Anxiety scale.
# P value were calculated using Two-sample t-test (age) and Pearson Chi-Square test (sex).
> Data were available for Ggr of 821 participants.
¢ Data were available for 738 of 821 participants.
4" Data were available for 535 of 821 participants.
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Image acquisition and processing

Resting-state functional MRI and three-dimensional
structural T1-weighted MRI images were acquired from
all participants at each local site. Acquisition parameters
from all sites are presented in Table S3. A unified image
preprocessing protocol was performed using the
DPARSF toolbox.>* Preprocessing steps primarily
included slice timing correction, head motion correc-
tion, normalization, and removal of confounds as
described in detail previously.” We parceled the whole
brain into 160 regions of interests (ROI) according to
Dosenbach’s atlas.”® Time series of BOLD signals from
voxels in each ROI were extracted and averaged. Func-
tional connectivity between each pair of ROIs was evalu-
ated using the Pearson correlation coefficient of the
corresponding time series. Fisher’s z-transformation
was then applied to the correlation estimates yielding a
160 x 160 functional connectivity matrix for each par-
ticipant.

Controlling for nuisance variables

A major challenge of training a neuroimaging-based
classifier is the multiple nuisance variables that are
unrelated to the diagnostic labels. In the multi-site
settings, these nuisance variables are generally
derived from inter-subject demographic heterogeneity
that is known to affect imaging data, such as age and
sex,”>** as well as inter-site confounding effects
including different scanners,” acquisition parame-
ters, and instructions to participants which are diffi-
cult to be removed even by a unified image
preprocessing pipeline. The existence of these nui-
sance variables can make machine learning algo-
rithms erroneously identify the pattern not related to
neuropathological effects of interests and thus impair
the model performance.*® To correct for unwanted
nuisance variables, we firstly regressed out the inter-
subject variance of age and sex effects by using a non-
linear Gaussian process model as described in previ-
ous studies.””?® For the site-varying effects, we
applied ComBat harmonization. ComBat harmoniza-
tion is essentially a model based on multivariate
mixed linear regression, which was originally devel-
oped to adjust batch effects in genomic studies.*®
This method is effective in removing site-related
effects in different modalities from multi-site neuro-
imaging data.’°** Compared with traditional harmo-
nization methods, Combat uses Empirical Bayes to
improve the parametric estimation of biological and
site-varying effects, avoiding overcorrection on impor-
tant biological variance during the correction on site-
varying effects.”® To avoid information leakage which
might inflate the classification performance, we esti-
mated the parameters in above nuisance control pro-
cedures only using the training dataset and
subsequently applied the model to the dataset.

Classification based on graph convolutional network
The pipeline of GCN model is shown in Figure 1. Indi-
vidual whole-brain functional connectivity matrix was
first represented as graph structure G = (V,E,W),
where V and E are sets of nodes and edges, respectively,
and W is the weighted adjacency matrix. Nodes were
defined as the 160 atlas-based brain regions, and node
features reflected vector of nodal functional connectiv-
ity. To determine edges, we applied a k-nearest neigh-
bors (KNN) algorithm to connect each node and its
neighbors. Such graph modelling in GCN is consistent
with previous publication reporting successful GCN
application,** which can fully capture information from
connectivity and avoid introducing additional informa-
tion beyond brain networks in classification.

The core process of GCN model is the spectral graph
convolution filter, which can implement the convolu-
tion operation on irregular graph data instead of typical
Euclidean data (for detailed mathematical theory and
formulation, see Supplemental Information). Similar to
conventional CNN, GCN includes input layer, graph
convolutional hidden layer, global average pooling layer,
and fully connected layer. Each hidden layer is followed
by Rectified Linear Unit (ReLU) activation function to
introduce non-linearity. Fully connected output layer is
activated by a Softmax function to encode output scalars
into the predictive probability of each class. The parame-
ters of GCN were optimized using grid search. Stratified
ten-fold cross-validation and leave-one-site-out (LOSO)
cross-validation were separately applied. For the 10-fold
cross-validation, we split the samples into 10 non-over-
lapping parts. In each iteration of the scheme, one part
was considered as the test set for model evaluation, and
the remaining nine parts were defined as the training
set. The ten-fold cross-validation was stratified to pre-
serve the percentage of samples for each class in each
fold consistent with that in the whole dataset. For the
LOSO cross-validation, in each iteration, data from one
site was used for model evaluation and data from the
remaining sites was used as the training set. Model per-
formance was evaluated in terms of accuracy, sensitiv-
ity, specificity, and area under receiver operating
characteristic curve (AUC) value. Our GCN model was
implemented by using Pytorch Geometric extension
library based on Pytorch 17 (Python 3-7).>> Model
parameter settings can be found in Supplemental Infor-
mation.

In addition to the primary classification between
patients with MDD and HC, we performed a series of
subgroup analyses to distinguish between FEDN
patients and HC, recurrent patients and HC, and FEDN
patients and recurrent patients. For the three subgroup
analyses, sites containing more than 10 patients were
included. Specifically, 227 FEDN patients and 388 HC
from five sites (sites 4, 5, 9, 13, 16), 187 recurrent
patients and 423 HC from six sites (sites 3, 5, 7, 12, 13,
14), and 117 FEDN patients and 7o recurrent patients
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Figure 1. The overall pipeline of GCN classifier distinguishing between individuals with MDD and HC. (a) Constructing graph structure for each participant using whole-brain resting-state
functional connectivity. (b) The architecture and implementation of GCN. Abbreviations: GCN, graph convolutional network; ReLu, Rectified Linear Unit; GAP, global average pooling; MDD,
major depressive disorder; HC, healthy controls.
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from two sites (sites 5, 13) were separately included
(Table S2). The procedures of GCN model training kept
consistent with the primary analysis.

Identifying the most salient regions contributing to
classification

Class activation mapping (CAM) was used to estimate
the contribution of each brain region to GCN classifica-
tion. CAM was originally developed for traditional con-
volutional neural networks (CNN) in computer vision
field, which can localize the discriminative image areas
by estimating the attention of CNN classifier to each
pixel when predicting a particular class.>® Recent intro-
duction of CAM into GCN enables the identification of
discriminative nodes in irregular graphs beyond tradi-
tional image data.** CAM exploits information from the
last graph convolutional layer and fully connected layer,
providing class activation value for each node at the
individual level. We subsequently calculated the average
activation value across all the individuals to reflect the
contribution of each region. Detailed calculation of
CAM is shown in Supplemental Information and
graphically depicted in Fig. S2.

Herein, we reported the top ten salient brain regions
and the corresponding distribution in six functional
subnetworks proposed by Dosenbach et al., including
default mode network (DMN), fronto-parietal network
(FPN), cingulo-opercular network (CON), sensorimotor
network (SMN), occipital network (ON), and cerebellum
network (CN).*?

Post-hoc correlation analysis

To reveal the clinical relevance of GCN model, we
explored the relationship between the identified salient
regions and clinical measures. Considering the network
structure utilized in GCN, we assumed that salient
regions identified by GCN can reflect regional network
topological deficits that may be clinically informative.
Thus, we applied graph theoretical analysis to estimate
the topological profiles of each salient region. Three
nodal topological properties, including degree, between-
ness, and efficiency, were calculated by using the
GRETNA toolbox. Detailed calculation and definition of
nodal topological properties were presented in Supple-
mental Information.

Secondary validation analyses

First, we examined the classification performance in
each site to validate the variability of single-site perfor-
mance based on small dataset. Second, we compared
the performance of GCN with other classifiers, includ-
ing SVM, MLP, LR, RF, and BrainNetCNN.* Third,
considering that there is no consensus in the field
regarding optimal brain parcellation during network
construction, we tested the stability of GCN

performance across two atlases with different numbers
of parcels, including the automatic anatomical labeling
(AAL) atlas (116 parcels) and Craddock atlas (200 par-
cels).’® Fourth, to evaluate the influence of fMRI noise
from head motion on the resulting classification perfor-
mance, we trained classification model based on differ-
ent head motion parameters to find whether only using
noise features can reach significant accuracy. Fifth,
given the imbalanced single-site performance and sam-
ple size across 16 sites, we separately excluded the site
with the best single-site performance and the site with
the largest sample size to validate whether the current
classification performance was biased by these sites.
The procedures of all the secondary validation analyses
are described in Supplemental Information in detail.

Statistics

We used the chi-square test and independent two-sam-
ple t-test to examine significant between-group differen-
ces in categorical and continuous variables reported in
Table 1, respectively. The performance of GCN model
was examined using accuracy, sensitivity, specificity,
and AUC value. The accuracy was determined as the
percentage of correctly classified individuals among all
subjects. The sensitivity and specificity were used to
indicate the percentage of correct classifications in
MDD patients and HC, respectively. For the AUC value,
we plotted ROC curve showing the classification perfor-
mance at all classification thresholds according to true
positive rate (i.e., sensitivity) and false positive rate (i.e.,
1 — specificity). The AUC value was thus calculated as
the area under ROC curve to provide an aggregate mea-
sure of performance irrespective of classification thresh-
olds selection. Pearson correlation or Kendall’s
correlation (non-normal data) was used to assess the sig-
nificance level of post-hoc correlation between topologi-
cal metrics and clinical measures. An FDR corrected p
value < 0-05 indicated significant correlations.

Ethics

This machine learning study was approved by the
Research Ethics Committee of West China Hospital of
Sichuan University (ethical approval number: 2020
(54))- All participants provided written informed con-
sent prior to participation, and data collection at each
site in Rest-meta-MDD was approved by the local Insti-
tutional Review Board. For more detailed information
about the participants, see the previous consortium
publications.*"*?

Role of funding source
The funders had no role in study design, data collection,
data analyses, interpretation, or writing of the paper.
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Results

Classification performance

Under stratified ten-fold cross-validation, GCN achieved
an accuracy of 81-5% (95%CI: 80-5—82-5%) and AUC
value of 0-865 for the classification between MDD
patients and HC. FEDN patients were distinguished
from HC with a classification accuracy of 74-1%
(95%CI: 72:4—75-8%, AUC: 0-686), and recurrent
patients were distinguished from HC with a classifica-
tion accuracy of 78:1% (95%Cl: 76-5—79-7%, AUC:
0-745). When differentiating between FEDN and recur-
rent patients, the classification accuracy was 70-9%
(95%CI: 677—741%, AUC: 0-646). By using the
LOSO cross-validation strategy, the accuracy was 83-1%
(95%CI: 82-2—84-0%, AUC: 0-852) for the classifica-
tion between the overall MDD patients and HC. In the
subgroup analyses, FEDN patients were distinguished
from HC with an accuracy of 683% (95%CI:
66-5—70-1%, AUC: 0-639), recurrent patients were dis-
tinguished from HC with an accuracy of 71:3% (95%CI:
69-5—73:1%, AUC: 0-586), and FEDN patients were dis-
tinguished from recurrent patients with an accuracy of
54-8% (95%CI: 51-3—58:3%, AUC: 0.547) (Table 2).

In the secondary validation analysis, we found that
classification accuracy in each single site varied from
43-2% to 83-3%, confirming the variability of classifica-
tion task with small sample size and the importance of
using large dataset (Fig. S3). Additionally, GCN pro-
vided superior classification accuracy compared with
other commonly used machine learning algorithms,
including linear SVM, RF, MLP, and BrainNetCNN
(Table S4). When using different atlases for parcella-
tion, classification performance remained relatively sta-
ble, with accuracies of 81-1% for the AAL atlas and
78-8% for the Craddock atlas. The classification based
on fMRI head motion noise obtained a poor random
chance performance of 51-3% accuracy, 97-9% sensitiv-
ity, and 1-18% specificity (Fig. S4), suggesting that the
classifier could not learn useful information from the
noise and recognized the whole sample as MDD to min-
imize the training loss. We obtained an accuracy of
77-8% after removing the site with the largest sample
size, whereas discarding the site with the best

performance could still achieve an accuracy of 81-0%,
consistent with the notion that the overall model perfor-
mance was not biased by these individual sites.

Top salient regions contributing to classification

Based on the GCN model, the top ten salient regions
contributing to group differentiation between MDD
patients and HC were primarily located in the DMN,
FPN, and CON, including the anterior cingulate cortex
(ACC), prefrontal cortex, inferior parietal lobule (IPL),
posterior insula, precuneus, fusiform, temporal cortex,
and cerebellum. For the differentiation between FEDN
patients and HC, the most salient regions were primar-
ily in the FPN and CON. For the differentiation between
recurrent patients and HC, saliency pattern was
observed in DMN, FPN, and CON, which was similar to
the main analysis. Finally, the DMN and SMN contrib-
uted to the classification between FEDN and recurrent
patients (Table 3 and Figure 2).

Correlation between topological characteristics of
salient regions and clinical measures

Among the most salient regions identified via GCN, the
left dorsolateral prefrontal cortex (DLPFC) and left IPL
exhibited significant associations with clinical meas-
ures. Specifically, the nodal efficiency of the left IPL was
negatively associated with HAMD scores (r = -0-139,
p = 0-0002 (Pearson correlation)). The nodal degree of
the left DLPFC was negatively associated with illness
duration (r = -0-074, p = 0-0046 (Kendall correlation))
(Figure 3). No significant associations between topologi-
cal characteristics of the salient regions and HAMA
scores were observed.

Discussion

In the current study, we applied GCN to characterize
MDD patients using whole-brain functional networks
based on a large multi-site dataset, which achieved clas-
sification performance with over 80% accuracy outper-
forming common machine learning methods used in
previous studies. When identifying FEDN and recurrent

Model Ten-fold stratified cross-validation Leave one site out cross-validation

ACC SEN SPE AUC ACC SEN SPE AUC
MDD vs. HC 0-815 0-834 0-800 0-865 0-831 0-850 0-829 0-852
FEDN vs. HC 0-741 0-672 0-782 0-686 0-680 0-568 0-723 0-639
Recurrent vs. HC 0-781 0-718 0-822 0-745 0713 0-601 0-739 0-586
FEDN vs. recurrent 0-709 0-743 0-681 0-646 0-548 0-573 0-648 0-547

Table 2: GCN model performance under different classification tasks.

Abbreviations: MDD, major depressive disorder; FEDN, first-episode drug-najve; HC, healthy control; ACC, accuracy; SEN, specificity; SPE, specificity; AUC,
area under receiver operating characteristic curve; GCN, graph convolutional network.
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Rank MDD vs. HC FEDN vs. HC Recurrent vs. HC FEDN vs. recurrent
Brain Region Network Brain Region Network Brain Region Network Brain region Network

1 R dorsal ACC CON L posterior insula CON R dorsal ACC CON L inferior temporal cortex DMN

2 RVLPFC FPN L ACC CON L posterior insula CON R VMPFC DMN

3 LIPL FPN R ventral frontal cortex CON RVLPFC FPN RIPS FPN

4 L posterior insula CON L ventral anterior PFC FPN R inferior temporal cortex DMN L occipital cortex DMN

5 L DLPFC FPN L thalamus CON RVMPFC DMN L anterior PFC DMN

6 R VMPFC DMN R VLPFC FPN L PCC DMN L temporal cortex SMN

7 L precuneus DMN L temporal cortex SMN LIPL FPN R dorsal ACC CON

8 R fusiform CON RIPS FPN R angular gyrus DMN R posterior insula SMN

9 R inferior temporal cortex DMN R middle insula CON R inferior cerebellum CN L parietal cortex SMN

10 R lateral cerebellum CN L occipital cortex ON L occipital cortex DMN L posterior parietal cortex FPN
Table 3: Top salient regions contributing to classification based on graph convolutional network.
Abbreviations: L, left; R, right; MDD, major depressive disorder; HC, healthy control; FEDN, first-episode drug-najve; ACC, anterior cingulate cortex; VLPFC, ventrolateral prefrontal cortex; IPL, inferior parietal lobule; DLPFC, dor-
solateral prefrontal cortex; VMPFC, ventromedial prefrontal cortex; IPS, intraparietal sulcus; PCC, posterior cingulate cortex; DMN, default mode network; CON, cingulo-opercular network; FPN, fronto-parietal network; SMN, sen-
sorimotor network; ON, occipital network; CN, cerebellum network.
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patients, though model performance dropped, the accu-
racies remained at a level above 70%. Different patterns
of salient regions contributing characterization of
MDD, FEDN subtype, and recurrent subtype were
mainly identified within the DMN, FPN, and CON. In
the post-hoc correlation analysis, we found that topolog-
ical profiles of the IPL and DLPFC were significantly
correlated with depressive symptom severity and illness
duration, respectively. These findings highlighted the
relative advantages of using GCN to develop models for
individualized case identification as well as brain dys-
function localization.

Although one previous study has demonstrated the
capability of GCN for distinguishing individuals with
MDD from HC,*° our work has significant advantages.
First, the previous effort only included 29 individuals
with MDD and 44 HC. Such small sample size can lead
to a high risk of overfitting when training a deep learn-
ing algorithm which requires optimization of numerous
parameters, and the variability of classification based on
small dataset has also been suggested in previous publi-
cations and current investigation. Our study therefore
utilized a multi-site MDD dataset containing over 1500
participants to evaluate GCN and included multiple vali-
dation strategies, which could provide more reliable and
generalizable findings. Second, most previous GCN
models constructed graphs at the group level based on
inter-subject phenotypic association, while our GCN
model established individual-level graphs with the simi-
larity between node features. Compared with the group-
level graphs, using image-based individual-level graphs
may better fit the individualized clinical application and
potentially reveal more accurate neurobiological under-
pinnings. Third, subgroup analysis regarding the char-
acterization of FEDN and recurrent patients was
performed in this study, providing evidence on the capa-
bility of GCN for specific subtypes. By exploring salient
regional contribution in each subgroup, shared and dis-
tinct neurobiological mechanisms across subtypes were
further illustrated.

The GCN exhibited superior classification perfor-
mance compared with other common classifiers, paral-
leling previous observations in studies on Alzheimer’s
disease and autism.'® The pathophysiology of MDD is
thought to include a disruption of the brain connec-
tome,*° and the graphs are powerful tools for modeling
brain connectome from neuroimaging data.*' There-
fore, current promising performance of GCN may be
ascribed to the consideration of graph structure to cap-
ture brain connectome information during model train-
ing. In contrast, most traditional classifiers typically
extract and vectorize functional connectivity values as
input, learning information from independent connec-
tions ignoring neighborhood relationships and compli-
cated network structures. Notably, BrainNetCNN,
another method that takes brain networks as input,*”
also achieved better performance compared with the

remaining methods that use connectivity values, sug-
gesting better performance may be achieved using mod-
els based on brain networks not limited to GCN.

To provide neurobiologically informative findings
from our models, we investigated patterns of salient
regions contributing to classification, and the most
salient regions were mainly distributed in DMN, FPN,
and CON areas. This is consistent with previous studies,
which have highlighted the disruption of DMN as a
neural correlate of MDD resulting in abnormal self-ref-
erential processing and rumination.** In addition,
greater connectivity within the DMN can predict the
remission following 8-week antidepressant treatment.*
Altered DMN connectivity has also been reported to be
associated with increased risk for MDD onset in adoles-
cence.** These findings suggest that DMN may play a
critical role in various neurobiological mechanisms of
MDD. The FPN and CON, known as top-down control
system, play an important role in the processes of vari-
ous cognitive functions which may be related to cogni-
tive deficits in MDD  patients.” Mounting
neuroimaging evidence indicates that abnormalities of
these systems are associated with pathophysiology and
potentially serve as treatment outcome predictors in
MDD.#*#*47 Qur study provides further evidence for
the implication of DMN, FPN, and CON areas in MDD,
verifying the plausibility of the current GCN model at
the neurobiological aspect. Moreover, significant rela-
tionships between clinical measures and regional func-
tional topology of the IPL and DLPFC were observed,
supporting the ability of GCN to capture clinically-rele-
vant topological deficits. As both IPL and DLPFC are
key regions of the FPN, FPN may have deeper and spe-
cific involvement in the mechanism of depressive symp-
tom severity and illness duration, which hold the
potential to serve as a promising clinical indicator.

In the subgroup analysis, we observed higher classi-
fication performance for the characterization of recur-
rent patients compared with FEDN patients. Given the
equivalent sample size in these two subgroups, such dif-
ference in performance may result from the long-term
psychopathological development and medication from
multiple depressive episodes in the recurrent depres-
sion group, leading to a pattern of more severe network
disruption relative to controls that increased the inter-
group discriminability.** We noted that distinct saliency
patterns were also identified for different classification
tasks. Specifically, the most discriminative brain regions
between recurrent patients and HC were distributed in
the DMN, FPN, and CON which is similar to the main
analysis, while the most salient regions for differentia-
tion between FEDN patients and HC were only found
in the FPN and CON. Our previous work has concluded
that functional network topological deficits in the MDD
population were primarily driven by recurrent patients
rather than FEDN patients,*° which is in line with the
current machine learning findings. Since the FPN and
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CON remained stable across different classification
tasks, they may serve as generalizable biomarkers of
MDD regardless of illness course and medication status.
The DMN was only identified in the recurrent patients,
suggesting a secondary salient biomarker besides FPN
and CON potentially related to accumulating pathologi-
cal and medication effects during multiple recurrent
depressive episodes.

One previous multi-site machine learning study
reported core abnormal functional connectivity profiles
of prefrontal, limbic and striatal areas within DMN,
FPN, and CON,*° which is in line with our findings.
However, since alterations in the DMN, FPN, and CON
have been associated with multiple psychiatric
disorders’*?, the specificity of our findings for MDD
may be limited. The pattern of these alterations across
disorders and their relation to other networks needs to
be evaluated in future research. We also noted subcorti-
cal areas that have been widely implicated in the patho-
physiology of MDD, such as amygdala and
hippocampus, were not among our salient regions.
Since Dosenbach’s brain functional atlas we used focus
more on intrinsic functional networks instead of ana-
tomical boundaries, it does not differentiate specific
anatomical subdivisions of subcortical structures like
most anatomical atlases did. Future studies are war-
ranted to gain further insight into subcortical features
and revisit this issue in a hypothesis driven fashion.
Moreover, Drysdale et al., further investigated the het-
erogeneity of MDD using unsupervised machine learn-
ing techniques, clustering 4 connectivity-based biotypes
of MDD. Although our findings on FEDN and recurrent
MDD patients provide preliminary insights into specific
clinical subtypes, novel neuroimaging-based subtypes
may further illuminate the heterogeneity of MDD.
Given the large MDD dataset we have, clustering novel
connectome-based MDD subtypes with multi-site data-
set will be the future work in our consortium.

Of note, there are several limitations in the current
study. First, our multi-site dataset was exclusively col-
lected from Chinese participants, so generalization to
other racial/ethnic groups remains to be confirmed.
Second, the current model requires replication on other
independent datasets before any application in clinical
decision-making. Third, the current study only investi-
gated resting-state functional networks. Since other
types of networks from different imaging modalities
have been implicated in the pathophysiology of MDD,
future studies can study gray matter covariance net-
work, white matter connectivity network, or combina-
tion of different networks to find the optimal way for
MDD identification. Fourth, given the age range of
included participants in our current study, our findings
may not apply to pediatric or geriatric depression. Fifth,
although we considered FEDN and recurrent patients
in the subgroup analysis, the ability to assess other con-
founds is limited. As MDD is highly heterogeneous,
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these factors, such as comorbidities, medication, illness
duration and onset should be explored in the future to
further enhance the classification accuracy.

In summary, this study explores the application
value of GCN based on brain functional networks differ-
entiating patients with MDD from HC. Based on a large
multi-site dataset and various validation strategies, gen-
eralizable and reliable classification accuracy of over
80% can be achieved via GCN, indicating that GCN
modeling is promising for the characterization of MDD.
The investigation of saliency patterns contributing to
GCN classification identified the most salient regions
within the DMN, FPN, and CON, validating the plausi-
bility of GCN at the neurobiological aspect. Moreover,
topological deficits of partial top salient regions were
associated with clinical measures such as symptom
severity and illness duration. These findings provide
promising direction towards the application of GCN to
resting-state functional networks, with the ultimate aim
of developing and validating biomarkers for clinical
diagnosis and treatment planning in MDD and other
psychiatric disorders.
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