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ABSTRACT
Data on genome organization and output over time, or the 4D Nucleome (4DN), require synthesis 
for meaningful interpretation. Development of tools for the efficient integration of these data is 
needed, especially for the time dimension. We present the ‘4DNvestigator’, a user-friendly network- 
based toolbox for the analysis of time series genome-wide genome structure (Hi-C) and gene 
expression (RNA-seq) data. Additionally, we provide methods to quantify network entropy, tensor 
entropy, and statistically significant changes in time series Hi-C data at different genomic scales.
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Introduction

4D nuclear organization (4D Nucleome, 4DN) is 
defined by the dynamical interaction between 3D 
genome structure and function [1–3]. To analyze the 
4DN, genome-wide chromosome conformation cap-
ture (Hi-C) and RNA sequencing (RNA-seq) are often 
used to observe genome structure and function, 
respectively (Figure 1a). The availability and volume 
of Hi-C and RNA-seq data is expected to increase as 
high throughput sequencing costs decline, thus the 
development of methods to analyze these data is 
imperative. The relationship of genome structure 
and function has been studied previously [3–7], yet 
comprehensive and accessible tools for 4DN analysis 
are underdeveloped. The 4DNvestigator is a unified 
toolbox that loads time series Hi-C and RNA-seq data, 
extracts important structural and functional features 
(Figure 1b), and conducts both established and novel 
4DN data analysis methods. We show that network 
centrality can be integrated with gene expression to 
elucidate structural and functional changes through 
time, and provide relevant links to the NCBI and 
GeneCards databases for biological interpretation of 
these changes [8,9]. Furthermore, we utilize entropy to 
quantify the uncertainty of genome structure, and 
present a simple statistical method for comparing 
two or more Hi-C matrices.

Materials and methods

An overview of the 4DNvestigator workflow is 
depicted in Figure 2, and a Getting Started docu-
ment is provided to guide the user through the 
main functionalities of the 4DNvestigator. The 
4DNvestigator takes processed Hi-C and RNA- 
seq data as input, along with a metadata file 
which describes the sample and time point for 
each input Hi-C and RNA-seq file (See 
Supplementary Materials ‘Data Preparation’). 
A number of novel methods for analyzing 4DN 
data are included within the 4DNvestigator and 
are described below.

4DN feature analyzer

The ‘4DN feature analyzer’ quantifies and visua-
lizes how much a genomic region changes in 
structure and function over time. To analyze 
both structural and functional data, we consider 
the genome as a network. Nodes within this net-
work are genomic loci, where a locus can be a gene 
or a genomic region at a particular resolution (i.e. 
100 kb or 1 Mb bins). Edges in the genomic net-
work are the relationships or interactions between 
genomic loci.
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Structural data

Structure in the 4DN feature analyzer is derived 
from Hi-C data. Hi-C determines the edge weights 
in our genomic network through the frequency of 
contacts between genomic loci. To analyze geno-
mic networks, we adopt an important concept 
from network theory called centrality. Network 
centrality is motivated by the identification of 
nodes that are the most ‘central’ or ‘important’ 
within a network [10]. The 4DN feature analyzer 
uses degree, eigenvector, betweenness, and closeness 
centrality (step 1 of Algorithm 1), which have been 
shown to be biologically relevant [7]. For example, 
eigenvector centrality can identify structurally 

defined regions of active/inactive gene expression, 
since it encodes clustering information of 
a network [7,11]. Additionally, betweenness cen-
trality measures the importance of nodes in regard 
to the flow of information between pairs of nodes. 
Boundaries between euchromatin and heterochro-
matin, which often change in reprogramming 
experiments, can be identified in a genomic net-
work through betweenness centrality [7].

Functional data

Function in the 4DN feature analyzer is derived 
from gene expression through RNA-seq. Function 
is defined as the log2 transformation of Transcripts 
Per Million (TPM) or Reads Per Kilobase Million 
(RPKM). For regions containing more than one 
gene, the mean expression of all genes within the 
region is used. The 4DN feature analyzer can also 
use other one-dimensional features (e.g. ChIP-seq, 
DNase-seq, etc.). The interpretation of the results 
and visualizations would change accordingly.

Integration of data

Hi-C data is naturally represented as a matrix of 
contacts between genomic loci. Network centrality 
measures are one-dimensional vectors that 
describe important structural features of the geno-
mic network. We combine network centrality with 
RNA-seq expression to form a structure-function 

Figure 1. The 4D Nucleome. (a) representative time series Hi-C and RNA-seq data correspond to genome structure and function, 
respectively. (b) genome structure and function are intimately related. the 4DNvestigator integrates and visualizes time series data to 
study their dynamical relationship.

Algorithm 1: 4DN feature analyzer

Input: Hi-C matrices AðmÞ 2 Rn�n, and RNA-seq vectors 
rðmÞ 2 Rn�1, m ¼ 1; . . . ; T

Output: Low dimensional space YðmÞ and genes in loci with the 
largest structure-function changes

1 Compute degree, eigenvector, betweenness, and closeness 
centrality of AðmÞ , and define as bðmÞdeg , bðmÞeig , bðmÞbet , bðmÞclose, respectively, 
where each bðmÞ 2 Rn�1

2 Compute the first principal component (PC1) of AðmÞ

3 Form the feature matrices XðmÞ ¼ ½bðmÞdeg ; b
ðmÞ
eig ; b

ðmÞ
bet ; b

ðmÞ
close; r

ðmÞ�, where 
XðmÞ 2 Rn�5

4 Normalize the columns of XðmÞ

5 Compute the common low dimensional space YðmÞ

6 Visualize the low dimensional projection YðmÞ or 4DN phase plane

Return: YðmÞ and genes in loci with the largest structure-function 
changes
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‘feature’ matrix that defines the state of each geno-
mic region at each time point (Figure 3A, step 3 of 
Algorithm 1). Within this matrix, rows represent 
genomic loci and columns are the centrality mea-
sures (structure) and gene expression (function) of 
each locus. The z-score for each column is com-
puted to normalize the data (step 4 of 
Algorithm 1).

4DN analysis

The 4DN feature analyzer reduces the dimension 
of the structure-function feature matrix for visua-
lization and further analysis (steps 5 and 6 of 
Algorithm 1). We include the main linear dimen-
sion reduction method, Principal Component 
Analysis (PCA), and multiple nonlinear dimension 
reduction methods: Laplacian Eigenmaps (LE) 
[12], t-distributed Stochastic Neighbor 
Embedding (t-SNE) [13], and Uniform Manifold 
Approximation and Projection (UMAP) [14] 
(Figure 3 C). These methods are described in 
more detail in Supplementary Materials 
‘Dimension Reduction’. The 4DN feature analyzer 
can also visualize the dynamics of genome struc-
ture and function using the 4DN phase plane (step 

6 of Algorithm 1) [3,15]. We designate one axis of 
the 4DN phase plane as a measure of genome 
structure (e.g. eigenvector centrality) and the 
other as a measure of genome function (gene 
expression). Each point on the phase plane repre-
sents the structure and function of a genomic 
locus at a specific point in time (Figure 3B). The 
4DN feature analyzer identifies genomic regions 
and genes with large changes in structure and 
function over time, and provides relevant links to 
the NCBI and GeneCard databases [8,9].

Additional 4DNvestigator tools

General structure and function analysis

The 4DNvestigator also includes a suite of pre-
viously developed Hi-C and RNA-seq analysis 
methods. Euchromatin and heterochromatin com-
partments can be identified from Hi-C [4,16], and 
regions that change compartments between sam-
ples are automatically identified. Significant 
changes in gene expression between RNA-seq 
samples can be determined through differential 
expression analysis using established meth-
ods [17].

Figure 2. Overview of the 4DNvestigator data processing pipeline. within this diagram, 4DN refers to the 4DNvestigator.
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Network entropy

Entropy measures the amount of uncertainty 
within a system [18]. We use entropy to quan-
tify the organization of chromatin structure 
from Hi-C data, where higher entropy corre-
sponds to less structural organization. Since 
Hi-C is a multivariate analysis measurement 
(each contact coincidence involves two vari-
ables, the two genomic loci), we use multivari-
ate entropy as follows:

Entropy ¼ �
X

j
λj ln λj; (1) 

where λi represents the dominant features of the 
Hi-C contact matrix. In mathematics, these 
dominant features are called eigenvalues [19]. 
Biologically, genomic regions with high entropy 
likely correlate with high proportions of euchro-
matin, as euchromatin is more structurally per-
missive than heterochromatin [20,21]. 
Furthermore, entropy can be used to quantify 
stemness, since cells with high pluripotency are 
less defined in their chromatin structure [22]. 
We provide the full algorithm for network 
entropy and calculate the entropy of Hi-C data 

Figure 3. 4DN feature analyzer. (A) 4DN data is input to the 4DN feature analyzer. Top: Structure data (Hi-C) is described using one- 
dimensional features for compatibility with function data (RNA-seq). Bottom: Multiple structural features and function data are 
integrated into the structure-function feature matrix. (B) The 4DN feature analyzer can use structure and function data directly to 
visualize a system’s dynamics using the 4DN phase plane [3,15]. Structure defines the x-axis (left: eigenvector centrality, right: PC1) 
and function defines the y-axis (left: log2(RPKM), right: log2(TPM)), and points show structure-function coordinates through time. 
Left: Maternal and paternal alleles of nine cell cycle genes through G1, S, and G2/M phases of the cell cycle (adapted from [15]). 
Right: Top ten genomic regions (100 kb) with the largest changes in structure and function during cellular reprogramming [7]. (C) 
Multiple dimension reduction techniques can be used to visualize the 4DN feature analyzer’s structure-function feature matrix (from 
left to right: LE, UMAP, and t-SNE). Top: 100 kb regions of Chromosome 4 across six time points during cellular differentiation [28]. 
Bottom: 100 kb regions of Chromosome 11 across three time points during cellular reprogramming [7]. (D) Example output of the 
4DN feature analyzer. The output includes genes contained in loci with the largest changes, and links to their NCBI and GeneCards 
database entries [8,9].

NUCLEUS 61



from multiple cell types in Supplementary 
Materials ‘Network Entropy’.

Tensor entropy

The notion of transcription factories supports the 
existence of simultaneous interactions involving 
three or more genomic loci [23]. This implies 
that the configuration of the human genome can 
be more accurately represented by k-uniform 
hypergraphs, a generalization of networks in 
which each edge can join exactly k nodes (e.g. 
a standard network is a 2-uniform hypergraph). 
We can construct k-uniform hypergraphs from 
Hi-C contact matrices by computing the multi- 
correlations of genomic loci. Tensor entropy, an 
extension of network entropy, measures the uncer-
tainty or disorganization of uniform hypergraphs 
[24]. Tensor entropy can be computed from the 
same entropy formula (1) with generalized singu-
lar values λj from tensor theory [24,25]. We pro-
vide the definitions for multi-correlation and 
generalized singular values, the algorithm to com-
pute tensor entropy, and an application of tensor 
entropy on Hi-C data in Supplementary Materials 
‘Tensor Entropy’.

Larntz-Perlman procedure

The 4DNvestigator includes a statistical test, pro-
posed by Larntz and Perlman (the LP procedure), 
that compares correlation matrices [26,27]. The LP 
procedure is applied to correlation matrices from 
Hi-C data, and is able to determine whether multi-
ple Hi-C samples are significantly different from 
one another. Suppose that CðmÞ 2 R n�n are the 
sample correlation matrices of Hi-C contacts 
with corresponding population correlation 
matrices PðmÞ 2 R n�n for m ¼ 1; 2; . . . ; k. The 
null hypothesis is H0 : Pð1Þ ¼ . . . ¼ PðkÞ. First, 
compute the Fisher z-transformation ZðmÞ by

ZðmÞij ¼
1
2

ln
1þ CðmÞij

1 � CðmÞij

: (2) 

Then, form the matrices SðmÞ such that

SðmÞij ¼ ðn � 3Þ
Xk

m¼1
ðZðmÞij � ZijÞ

2
; (3) 

where, Zij ¼
1
k
Pk

m¼1 ZðmÞij . The test statistic is 
given by T ¼ maxij Sij, and H0 is rejected at level 
α if Tχ2

k� 1;2ðαÞ where χ2
k� 1;2ðαÞ is the chi-square 

distribution with k � 1 degree of freedom, and 
εðαÞ ¼ ð1 � αÞ2=ðnðn� 1ÞÞ is the Šidák correction. 
Finally, calculate the p-value at which Tχ2

k� 1;2ðαÞ. 
We note that this p-value is conservative, and that 
the actual p-value may be smaller depending upon 
the amount of correlation among the variables. 
The LP procedure determines the statistical signif-
icance of any differences between multiple Hi-C 
samples for a genomic region of interest. We pro-
vide benchmark results of the LP procedure with 
other Hi-C comparison methods in 
Supplementary Materials ‘LP Procedure for 
Comparing Hi-C Matrices’.

Results

We demonstrate how the 4DN feature analyzer can 
process time series structure and function data 
(Figure 3A) with three examples (Figure 3B-D). 

Example 1: Cellular Proliferation. Hi-C and 
RNA-seq data from B-lymphoblastoid cells 
(NA12878) capture the G1, S, and G2/M phases 
of the cell cycle for the maternal and paternal 
genomes [15]. We visualize the structure-function 
dynamics of the maternal and paternal alleles for 
nine cell cycle regulating genes using the 4DN 
phase plane (Figure 3B, left). We are interested 
in the importance of these genes within the geno-
mic network through the cell cycle, so we use 
eigenvector centrality as the structural measure. 
This analysis highlights the coordination between 
the maternal and paternal alleles of these genes 
through the cell cycle.

Example 2: Cellular Differentiation. We con-
structed a structure-function feature matrix from 
time series Hi-C and RNA-seq data obtained from 
differentiating human stem cells [28]. These data 
consist of six time points which include human 
embryonic stem cells, mesodermal cells, cardiac 
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mesodermal cells, cardiac progenitors, primitive 
cardiomyocytes, and ventricular cardiomyocytes 
[28]. We analyze Chromosome 4 across the six 
time points in 100 kb resolution by applying 
three dimension reduction techniques to the struc-
ture-function feature matrix: LE, UMAP, and 
t-SNE (Figure 3 C, top). There is a better separa-
tion of the cell types during differentiation using 
UMAP and t-SNE than from LE. The optimal 
methods for visualization and analysis are data 
dependent, so the 4DNvestigator offers multiple 
tools for the user’s own exploration of their data.

Example 3: Cellular Reprogramming. Time ser-
ies Hi-C and RNA-seq data were obtained from 
an experiment that reprogrammed human der-
mal fibroblasts to the skeletal muscle lineage [7]. 
We analyze samples collected 48 hr prior to, 8 hr 
after, and 80 hr after the addition of the tran-
scription factor MYOD1. The ten 100 kb regions 
from Chromosome 11 that varied most in struc-
ture and function are visualized using the 4DN 
phase plane in Figure 3B (right). We also con-
struct a structure-function feature matrix of 
Chromosome 11 in 100 kb resolution. Similar 
to the differentiation data analysis, we use LE, 
UMAP, and t-SNE to visualize the structure- 
function dynamics. These low dimensional pro-
jections show the separation of the three time 
points corresponding to before, during, and 
after cellular reprogramming (Figure 3 C, bot-
tom). We show an example output of the 4DN 
feature analyzer, which highlights genes con-
tained in the genomic loci that have the largest 
structure-function changes through time and 
provides links to the NCBI and GeneCards data-
base entries for these genes (Figure 3D) [8,9].

Discussion

The 4DNvestigator provides rigorous and auto-
mated analysis of Hi-C and RNA-seq time series 
data by drawing on network theory, information 
theory, and multivariate statistics. It also intro-
duces a simple statistical method for comparing 
Hi-C matrices, the LP procedure. The LP proce-
dure is distinct from established Hi-C matrix 
comparison methods, as it takes a statistical 

approach to test for matrix equality, and allows 
for the comparison of many matrices simulta-
neously. Thus, the 4DNvestigator provides 
a comprehensive toolbox that can be applied to 
time series Hi-C and RNA-seq data simulta-
neously or independently. These methods are 
important for producing rigorous quantitative 
results in 4DN research.
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