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# Background. Because of the heterogeneity of hepatocellular carcinoma (HCC) and the complex nature of the tumor micro-
environment (TME), the long-term efficacy of therapy continues to be a clinical challenge. It is necessary to classify and refine the
appropriate treatment intervention decision-making in this kind of tumor.Methods. We used “ConsensusClusterPlus” to establish
a stable molecular classification based on the ferroptosis-related genes (FRGs) expression obtained from FerrDb. +e clinical
features, immune infiltration, DNA damage, and genomic changes of different subclasses were evaluated. +e least absolute
shrinkage and selection operator regression (LASSO) method and univariate Cox regression were utilized to construct the
ferroptosis-related prognosis risk score (FPRS) model, and the association between the FPRS model and HCC molecular
characteristics, immune features, and immunotherapy was studied. Results. We identified two ferroptosis subclasses, C1 with poor
prognosis and a higher proportion of patients in the middle and late stages infected with HBV and HCV, having higher DNA
damage including aneuploidy, HRD, fraction altered, and the number of segments, and higher probability of gene mutation and
copy number mutation. FPRS model was constructed on the basis of differentially expressed genes (DEGs) between C1 and C2,
which showed a higher area under the curve (AUC) in predicting overall survival rate in the training set and independent
verification cohort and could reflect the clinical characteristics and response to immunotherapy of different patients, being an
independent prognostic factor of HCC. Conclusion. Here, we revealed two novel molecular subgroups based on FRGs and develop
an FPRS model consisting of six genes that can help predict prognosis and select patients suitable for immunotherapy.

1. Introduction

Primary liver cancer has been reported to be the fifth-highest
occurring incidence of cancer in the world, which comprises
hepatocellular carcinoma (HCC) (accounting for approxi-
mately 75%–85% of all incidents) and intrahepatic chol-
angiocarcinoma (accounting for approximately 10%–15% of
all incidents) and other rare types [1]. As the most prevalent
type of primary liver cancer, the treatment of HCC has been
restricted by tumor heterogeneity, which greatly limits the

progress of individualized therapy [2]. +e histological
definition of morphological heterogeneity of liver cancer has
been modified and refined in the medical community to help
clinically choose treatment interventions for patients, but
this still does not solve all the problems [3]. Precision
medicine has been suggested to add a new perspective to
individualized cancer diagnosis and targeted therapy by
taking into account the heterogeneity of individual patients
[4]. Precision medicine focuses on the importance of ac-
curately classifying heterogeneous diseases into more
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accurate subsets with the aid of powerful identification
techniques and the incorporation of clinical characteristics.
Furthermore, clinicians should come up with more specific
diagnostic and therapeutic approaches for the disease sub-
type in order to optimize the efficacy and ultimately reduce
side effects [5].

Iron toxicity is an iron-dependent cell death program,
whose primary feature is the accumulation of lethal amounts
of lipid-reactive oxygen species in cells [6]. Over the past few
years, studies have suggested that the liver is prone to ox-
idative damage and iron overload is the cause of liver injury
as well as the progression of disease in most liver diseases [7].
+erefore, ferroptosis has attracted wide attention in a va-
riety of liver diseases, including HCC, hepatic fibrosis, liver
failure, hepatic ischemia-reperfusion injury, and nonalco-
holic steatosis [8]. In hepatocyte-specific Trf knockout mice,
feeding a diet with high iron increased their vulnerability to
liver fibrosis induced by iron death. And ferroptosis sup-
pressants can restore this condition [9]. A study conducted
inmice showed that ferroptosis is an inducer of nonalcoholic
steatohepatitis, leading to liver injury, immune cell infil-
tration, and inflammatory response [10]. Ferroptosis also
mediates acetaminophen-induced acute liver failure [11].
Multiple studies pointed to the induction of ferroptosis as a
possible effective tumor suppressor mechanism and useful
for prognosis prediction in HCC [7]. +e late first-line
therapeutic drug of HCC, sorafenib, has been proved to be a
strong inducer of ferroptosis [12]. Sorafenib increased the
survival rate of HCC patients to a certain degree, but it may
lead to serious harmful impacts and growing resistance
characteristics, resulting in a dismal prognosis [13].
+erefore, it is necessary to identify new molecular markers
of ferroptosis and downstream signaling pathways, which
will aid in the comprehension of the regulatory mechanism
of ferroptosis in the physiopathology of HCC.

At present, there are several systems biology methods to
identify biomarkers related to the prognosis of HCC and
construct gene features. Liang et al. identified a 10-gene
signature in the expression profile of iron death related genes
by LASSO regression analysis [14]. Liu et al. analyzed m6A
methylation related genes and identified five gene markers
with poor prognosis [15]. Xu et al. identified 6-gene sig-
nature by Cox regression analysis [16]. All three groups of
authors tested their gene signature in the internal data set
but did not verify the external independent data set, which
means that identifying robust lncRNA signature is still a
challenge and more queues are needed to verify the
signature.

In this research, we collected samples from four data-
bases, identified two distinct ferroptosis-related subclasses in
HCC patients based on the expression of 111 FRGs obtained
from the FerrDb website, and discussed the clinical, mu-
tation spectrum, and tumor immunological characteristics
between ferroptosis subgroups. In addition, the FPRS model
was constructed to quantify the survival probability of HCC
patients and to predict the response to immunotherapy.
Collectively, this FPRS model may be an excellent predictor
of HCC and may give insight into the development of in-
novative possible therapeutic techniques.

2. Materials and Methods

2.1. Acquiring and Preprocessing Sample Data. RNA-Seq
data containing 365 samples and valid clinical follow-up
information were acquired from TCGA-LIHC (https://portal.
gdc.cancer.gov/). In addition, transcriptome data and survival
messages from 221 cases of GSE14520 [17] and 115 cases of
GSE76427 [18] cohorts were collected from the Gene Ex-
pression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/
). Similarly, the ICGC-LIRI-JP data set in the HCCDB da-
tabase was also used for the collection of HCC data, including
212 samples. TCGA-LIHC served as the training set, while the
other cohort served as the independent verification set. +e
whole work flow chart of this study is shown in Figure S1.

2.2. Collection and Unsupervised Clustering of Ferroptosis-
Related Genes (FRGs). FerrDb (http://www.zhounan.org/
ferrdb) is reported to be the first repository of ferroptosis
modulators and indicators, as well as ferroptosis-disease
connections, which was manually collated [19]. We got 111
FRGs from this website. +en, the FRGs significantly cor-
related with the prognosis of HCC patients were selected
utilizing univariate Cox analysis. According to the levels of
FRGs expression, which is significantly correlated with the
prognosis of HCC, the R packet ConsensusClusterPlus [20]
was used to classify 365 HCC samples from TCGA-LIHC.
And the analysis measured the distance by “Euclidean” and
performed 500 times resampling iteration for both algo-
rithms with 80% of probe sets being subsampled to ensure
the stability of the clustering.

2.3. Computation ofMolecular Features and Immune Cellular
Fraction between Subtypes. Genomic Data Commons Data
Portal provided somatic mutation profiles identified by
VarScan, which were accessible to download [21]. Somatic
mutation frequency of more than 5 percent was regarded to
be appropriate for comparing values across different sub-
types [22]. +e “maftools” package [23] of R software was
employed to display the mutation spectrum of each subtype.
+e relative abundance of 22 different immune cells in
distinct subgroups in two HCC cohorts was calculated by
executing the CIBERSORT algorithm [24]. +e stromal,
immune, and ESTIMATE scores of each sample were
evaluated by ESTIMATE [25] to determine the degree of
immune cell infiltration of each subtype.

2.4. Differential Expression Analysis between Molecular
Subclasses. +e Limma package was employed to identify
differentially expressed genes (DEGs) between distinct
subgroups in the TCGA-LIHC data set [26]. +e genes
having an absolute log2 fold change (|logFC|)> 1.0, false
discovery rate (FDR)< 0.05, and Pvalue <0.01 were defined
as DEGs. +e “clusterProfiler” package of R [27] was applied
to implement the Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways analysis
on DEGs between distinct subtypes and the critical value was
adjusted as P< 0.05.
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2.5. Establishment and Evaluation of Ferroptosis-Related
Prognosis Risk Score (FPRS) System. Univariate Cox re-
gression analysis and the least absolute shrinkage and se-
lection operator (Lasso) Cox regression analysis were
applied to build the prognostic risk model based on DEGs
between distinct subtypes, which was performed using R
packet (http://www.rstudio.org) “glmnet.” +e specific
formula was as follows: HPRS�Σβi× Expi, where β is the
Cox regression coefficient of the corresponding gene, i refers
to the prognostic related FRGs, and Exp is the prognostic
FRGs expression level. Similarly, the accuracy of FPRS
model was verified in two independent validation sets. +e
cut-off point of FPRS in each cohort was obtained according
to R packet “survminer.” Patients who were larger than the
threshold value were categorized into a high-risk group, and
those less than the threshold value were categorized into a
low-risk group.+e Kaplan–Meier curve was used to display
the overall survival (OS) of the sample, and the logarithmic
rank test was utilized to determine the statistical difference.
+e “timeROC” package of R was applied for the generation
of receiver operating characteristic (ROC) curve, and the
prediction accuracy of the model was examined by calcu-
lating the area under the curve (AUC) of one-, three-, and
five-year OS.

2.6. >e Function of Different FPRS Was Analyzed by Gene
Set Enrichment Analysis (GSEA). HALLMARK GSEA was
performed to estimate the biological signaling pathways in
different risk groups [28]. And single-sample GSEA
(ssGSEA) was conducted in the TCGA-LIHC cohort uti-
lizing the “GSVA” package of R to study molecular differ-
ences between samples with different FPRS.

2.7. Genomic Correlations with the FPRS. Aneuploidy
scores, homologous recombination deficiency (HRD),
fraction altered, number of segments, and tumor mutation
were derived [29]. +e differences in these five indicators
between the 2 risk groups were examined by Wilcoxon test.
+e correlation between FPRS and the above five genomic
variables was evaluated by Pearson’s correlation analysis.

2.8. Prediction of Response to Different Treatments. Immune
checkpoint expression data were obtained from the His-
gAtlas database [30] and compared between TCGA-LIHC
risk groups. Immunophenoscore (IPS) can be computed in
an unbiased way utilizing machine learning algorithms on
the basis of 4 primary gene types (immunomodulators,
MHC molecules, effector cells, and immunosuppressive
cells) that influence immunogenicity [31]. We acquired the
IPS of HCC from the TCIA database (https://tcia.at/home)
[32] and compared the IPS of the distinct FPRS risk group in
TCGA-LIHC to evaluate the responsiveness to immune
checkpoint blocking therapy. +e Tumor Immune Dys-
function and Exclusion (TIDE, http://tide.dfci.harvard.edu/)
algorithm was run in three cohorts to identify the TIDE
score difference between the low- and high-risk groups. We
employed the pRRophetic algorithm to estimate the

response to sorafenib, docetaxel, paclitaxel, and cisplatin
identified by the half-maximal inhibitory concentration
(IC50) for each TCGA-LIHC sample on the Genomics of
Drug Sensitivity in Cancer (GDSC) database.

2.9. Statistical Analysis. All statistical analyses and data
visualization were conducted in R (https://www.r-project.
org/, version 3.6.3). And all calculated P values were two-
tailed; P< 0.05 was considered significant.

3. Results

3.1. Two Ferroptosis Clusters in HCC Were Identified by
Consensus Clustering Based on FRGs. Univariate Cox re-
gression analysis of 111 FRGs selected from FerrDb showed
that 38 FRGs were considerably correlated with the prog-
nosis of HCC patients. According to the expression level of
these 38 FRGs (Supplementary Table 1), 365 samples in
TCGA-LIHC were clustered (Supplementary Table 2). +e
cumulative distribution function (CDF) of distinct clus-
tering techniques from k� 2 to 9 and the relative variations
of the area under CDF curves demonstrated that the area
under the CDF chart tended to be stable when k� 2
(Figures 1(a) and1(b)).+erefore, HCCwas divided into two
ferroptosis clusters, namely, C1 and C2 (Figure 1(c)). In the
TCGA-LIHC cohort, an obvious difference in prognosis
between the two ferroptosis clusters was shown, and the
prognosis of C2 was significantly stronger than that of C1
(Figure 1(d)). Survival analysis in ICGC yielded the same
results (Figure 1(e)). Heat maps of the expression of 38
prognostic FRGs in two ferroptosis clusters showed that
most prognostic FRGs were overexpressed in C1
(Figure 1(f )).

3.2. Association of Ferroptosis Clusters with Clinical Features.
Next, the relationship between two ferroptosis clusters and
clinicopathological factors was studied. +e proportional
distribution maps of different clinical bed characteristics are
generated. In the TCGA-LIHC cohort, the two ferroptosis
clusters did not exhibit any obvious differences in age (age
≤60 and age >60), gender (female and male), life status (alive
and dead), M stage (M0 and M1), N stage (N0 and N1), and
fibrosis (negative, portal fibrosis, fibrous septa, nodular
formation, and cirrhosis) distribution. And the distributions
of grade (G1, G2, G3, and G4), AJCC stage (stage I, stage II,
stage III, and stage IV), and Tstage (T1, T2, T3, and T4), viral
etiology (negative, HBV, HCV, and HBV+HCV), and life
state (alive and dead) between C1 and C2 in the TCGA-
LIHC cohort were significantly different. Among them, C2
samples were often from the AJCC stage, M stage, N stage, T
stage, survival patients with low tumor grade and hepatitis C
virus (HCV), and hepatitis B virus (HBV) infection
(Figure 2(a)). In the ICGC cohort, a significant difference
was shown between C1 and C2 only in the proportion of
different AJCC stages. In the C1 subtype, stage II and stage
III occupy the absolute majority of this subtype in a nearly
equal proportion. However, more than half of the samples of
the C2 subtype were in stage III. No significant differences
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were identified in age, gender, viral etiology, fibrosis, and
alcohol consumptions, and smoking between the two sub-
types in this cohort (Figure 2(b)).

3.3. Comparisons of the Somatic Variation between Two
Ferroptosis Clusters. To further investigate the molecular
mechanism behind the classification of ferroptosis subtypes,
mutation spectra of two ferroptosis subtypes were ana-
lyzed. +e ferroptosis subtypes were associated with
measures of DNA damage, including aneuploidy, HRD,
fraction altered, and the number of segments. Compared
with C1, C2 had a lower aneuploidy score, HRD, fraction
altered, and the number of segments. Nevertheless, no
significant differences were identified in tumor mutation
burden (TMB) between C1 and C2 (Figure 3(a)). Onco-
Print of gene mutation distribution between C1 and C2
patients showed a significant association between the

ferroptosis subtype and somatic mutations. +e relative
frequency of 20 altered genes in C1 was high. In addition, in
terms of copy number variation (CNV), C1 had a higher
frequency of copy number amplification and deletion than
C2 (Figure 3(b)).

3.4. Differences in Immune-Related Characteristics of Fer-
roptosis Subtypes. To examine the immune heterogeneity
between two ferroptosis subtypes, the immune character-
istics of two ferroptosis subtypes were analyzed. +e
abundance of 22 different kinds of immune cells in TCGA-
LIHC and ICGC cohort was computed utilizing the
CIBERSORT and compared between groups of ferroptosis
subtypes. In the TCGA-LIHC cohort, M0 macrophages,
regulatory T cells, helper follicular T cells, and activated
memory CD4 Tcells were strongly enriched in C1, while the
cells significantly enriched in C2 included monocytes,
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Figure 1: Consensus clustering analysis based on the prognosis on FRGs in HCC. (a)+e cumulative distribution function (CDF) of distinct
clustering methods from k� 2 to 9. (b) +e relative alterations of the area under CDF curves with the index from 2 to 9. (c) Clustering heat
map of TCGA-LIHC samples with the index k� 2. (d) Kaplan–Meier curves for ferroptosis clusters prognosis in TCGA-LIHC cohort. (e)
Kaplan–Meier curve of OS between two ferroptosis clusters. (f ) +e expression heat map of 38 prognostic FRGs in two ferroptosis clusters.
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resting memory CD4 T cells, naive B cells, M1and M2
macrophages, and resting mast cells (Figure 4(a)). In the
ICGC cohort, activated memory CD4 T cells and M0 mac-
rophages, naive B cells, and resting dendritic cells have

significantly different abundances in C1 and C2 (Figure 4(c)).
By comprehensive analysis of stromal, immune, and ESTI-
MATE scores of two ferroptosis subtypes in each cohort, C1
was greatly elevated as opposed to C2 (Figures 4(b) and 4(d)).
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Figure 2: Correlation of ferroptosis clusters with clinical features. (a) +e clinicopathological distribution diagram of two ferroptosis
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3.5. Identification of Genes Associated with Ferroptosis
Phenotype. To identify ferroptosis phenotypes related genes,
the differential expression analysis of two ferroptosis sub-
types was carried out (FDR <0.05 and | log2FC |> log2 (2)),
and 324 upregulated differentially expressed genes (DEGs)
and 274 downregulated DEGs were identified for the first
time. Among them, the top 5 genes with the highest ex-
pression in C1 are SPP1, AFP, PKM, CD24, andMYBL2, and
the top 5 genes with the highest expression in C2 are TAT,
CYP2A6, SLC10A1, CYP3A4, and HPD. +e functional
enrichment analysis of the DEGs between the two ferrop-
tosis subtypes was carried out, respectively. In TCGA-LIHC,
the top GO terms of DEGs included cell division, immune
cell activation, cell migration, and cytokine activity
(Figure 5(a)). Moreover, all the pathways generated from
KEGG analysis were associated with immune responses

(Figure 5(c)). For the ICGC cohort, all DEGs-enriched GO
terms and KEGG pathways were correlated with the
anabolism of cancer cells (Figures 5(b) and 5(d)). Univariate
Cox regression analysis illustrated that 137 genes had
prognostic significance in 598 DEGs (Figure 5(e)), which
were included in LASSO analysis. +e best parameter based
on 5-time cross-validation was 13 (Figures 5(f) and 5(g)).
+e stepAIC in the MASS package reduced the number of
genes from 13 to 6 and calculated each gene’s risk value in
the optimal model as shown in Figure 5(h).

3.6. Generation and Validation of a Risk Scoring Model Based
on Six FRGs. +e expression and coefficient of 6 FRGs were
used to construct the ferroptosis prognosis model, which was
used to calculate the risk value of HCC samples and rank them.
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Figure 3: Difference of the somatic variation between two ferroptosis clusters. (a) Relation of DNA damage with ferroptosis subgroups in
TCGA-LIHC cohort, including aneuploidy score, HRD, fraction altered, number of segments, and tumor mutation burden; Wilcoxon test.
(b) OncoPrint of gene mutation and CNV distribution between C1 and C2 patients. Fisher’s test, ∗∗P< 0.01, and ∗∗∗∗P< 0.0001.
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According to the cut-off point, 203 samples were classified into
the low-FPRS group and 162 samples into the high-FPRS
group.+e risk plots of TCGA-LIHC illustrated the expression,
survival status, and risk values distribution of the 6 FRGs of
each HCC patient (Figure 6(a)). +e Kaplan–Meier survival
curve showed obvious differences in OS among TCGA-LIHC
groups (Figure 6(b)).+e area under the curve (AUC) for one-,
three-, and five-year OS was 0.77, 0.732, and 0.76, respectively
(Figure 6(c)). In ICGC and GSE14520 external validation sets,
the survival advantage of low-risk samples was considerably
greater as opposed to that of high-risk samples (Figures 6(d)
and 6(f)). ROC curve showed that the FPRS model can ef-
fectively predict one-, three-, and five-year OS of HCC patients
in the ICGC cohort and GSE14520 cohorts (Figures 6(e) and
6(g)). Furthermore, we also compared the expression distri-
bution of six FRGs in two molecular subtypes. It can be

observed that CDCA8, SPP1, S100A9, EPO, and FTCD are
significantly overexpressed in C1 and CFHR3 is significantly
overexpressed in C2 (Figure S2(a)). In addition, among the six
FRGs, CDCA8, SPP1, S100A9, and EPO were significantly
positively correlated with FPRS, and FTCD and CFHR3 were
significantly negatively correlated with FPRS (Figure S2(b)).
We used the string database to analyze the interaction between
the six FRGs. It can be observed that there is no direct in-
teraction between the six FRGs, suggesting that these genes
may independently participate in different biological processes
(Figure S2(c)).

3.7. >e Manifestations of FPRS in Different Clinicopatho-
logical Features and Subtypes. When we studied the rela-
tionship between FPRS and clinical features, it was
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Figure 4: Immune-related features in each ferroptosis subtype. (a) Each immune infiltrating cell abundance of the two ferroptosis subtypes
in the TCGA-LIHC cohort. (b) Differences in stromal, immune, and ESTIMATE scores between the two ferroptosis subtypes in the TCGA-
LIHC cohort. (c) +e abundance of 22 immune infiltrating cells per ferroptosis subtypes in the ICGC cohort. (d) Stromal, immune, and
ESTIMATE scores of each ferroptosis subtype in ICGC cohort. ∗P< 0.05; ∗∗P< 0.01; ∗∗∗ P< 0.001; ∗∗∗∗P< 0.0001.
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established that the FPRS was associated with pathological
characteristics in TCGA-LIHC datasets, including T stage,
AJCC stage, grade, viral etiology, and survival status. In
addition, the distributions of FPRS were substantially varied

between the two molecular subgroups (Figure 7(a)). We
found that, in the ICGC cohort, FPRS was significantly
correlated with the AJCC stage, life status, and molecular
subtypes, but not with age, sex, smoking, viral etiology, and
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Figure 5: Recognition of genes associated with ferroptosis phenotype. (a) Top 10 GO terms of DEGs between two ferroptosis subtypes in
TCGA-LIHC. (b)+e KEGG pathways of DEGs between two ferroptosis subtypes in TCGA-LIHC. (c) All DEGs-enriched top 10 GO terms
in ICGC cohort. (d) All DEGs-enriched top 10 KEGG pathways in ICGC cohort. (e) Univariate regression between DEGs and HCC
prognosis. (f ) Distribution of LASSO coefficients of 137 genes with prognostic value. (g) 5-time cross-validation was used to select the best
parameters in the model. (h) +e coefficient of each gene in the optimal model.
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Figure 6: Generation and evaluation of risk scoring models based on six FRGs. (a) +e risk plots of TCGA-LIHC showed the expression,
survival status, and risk values distribution of the 6 FRGs of each HCC patient. (b) Kaplan–Meier curve for the OS of HCC patients in low-
and high-risk groups in the TCGA-LIHC cohort. (c) ROC curves for the predictive significance of risk scores for OS at 1, 3, and 5 years in the
TCGA-LIHC cohort. (d) Kaplan–Meier survival analysis between low- and high-risk patients in the ICGC cohort. (e) ROC curve was
employed to examine predictive efficacy of the FPRS model over one, three, and five years in the ICGC cohort. (f ) Kaplan–Meier curves of
the FPRSmodel for HCC patients in various risk groups in the GSE14520 cohort. (g) Time-dependent ROC curves for the FPRSmodel in the
GSE14520 cohort.

Journal of Oncology 9



fibrosis of HCC patients (Figure 7(b)). In the GSE14520
cohort, FPRS was related to the AJCC stage and cirrhosis
(Figure 7(c)).

3.8. Comparison of Molecular and Immune Characteristics
Using FPRS. We identified the relationship between FPRS
and genomic changes. We found that the two risk groups
have significantly different performance on aneuploidy

score, HRDs, fraction altered, and the number of segments.
High-FPRS samples had significantly higher levels of these
DNA damage-related variables (Figure 8(a)). Correlation
analysis also illustrated that FPRS had a positive correlation
with the score, HRDs, fraction altered, and the number of
segments (Figure 8(b)). Furthermore, the overall somatic
mutation rate, copy number amplification, and deletion in
high-FPRS samples were greatly elevated as opposed to the
ones in low-FPRS samples (Figure 8(c)).
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Figure 7: Association between FPRS and clinicopathological characteristics. (a) +e violin plot showed the FPRS distributions according to
age, gender, AJCC stage, grade, viral etiology, fibrosis, survival state, and molecular subtype in the ICGC cohort. (b) Correlation between
FPRS and pathological features of samples in the GSE14520 cohort, including age, gender, AJCC stage, HBV viral status, and cirrhosis.
Wilcoxon test was utilized for comparing the two groups, and the Kruskal-Wallis test was utilized for the differences between the two
groups. ∗P< 0.05; ∗∗P< 0.01; ∗∗∗P< 0.001; ∗∗∗∗P< 0.0001. (c) +e relationship between FPRS and pathological features of samples in the
GSE76427 cohort.
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Figure 8: Molecular characteristics analysis between the high-FPRS and low-FPRS groups. (a)+e difference of DNA damage-related index
between high-FPRS and low-FPRS groups; Wilcoxon test. (b) Pearson’s correlation analysis of FPRS and DNA damage-related indexes. (c)
OncoPrint of somatic mutation and CNV distribution between low-FPRS and high-FPRS groups; Fisher’s test; ∗∗∗P< 0.001; ∗∗∗∗P< 0.0001.
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To further study the immunological differences between
distinct FPRS groups, the relative abundance of 22 different
kinds of immune cells was computed utilizing CIBERSORT.
+e results showed that 16 kinds of immune cells showed
significantly different estimated proportions in high-FPRS
and low-FPRS groups and the proportion of immune cells
enriched in the low-FPRS group was higher (Figure 9(a)).
+e stromal score of the low-FPRS group was greatly ele-
vated in contrast to that of the high-FPRS group, while the
immune score was greatly decreased than in high-FPRS
group (Figure 9(b)). FPRS was also related to the levels of
resting CD4 memory T cell, activated CD 4 memory T cell,
neutrophils, regulated Tcells, resting dendritic cells, and M0
macrophages (Figure 9(c)). FPRS was closely related to
CNVs, DNA damage, and immune characteristics of HCC
patients.

3.9. >e Application of FPRS in Predicting Immune
Chemotherapies. To determine whether FPRS can predict
the response of HCC patients to immune checkpoint in-
hibitor (ICI) therapies, 21 immune checkpoint-related genes
were obtained from HisgAtlas database [30] and their ex-
pression in high-FPRS and low-FPRS patients was analyzed.
17 immune checkpoint-related genes were found to have
differential expression between low- and high-FPRS sam-
ples, and the expression level of 17 immune checkpoint-
related genes in high-FPRS samples was greater in contrast
with that in low-FPRS samples (Figure 10(a)). In addition,
the applicability of different FPRS samples to anti-CTLA4
treatment, anti-PD1 treatment, anti-CTLA4, and anti-PD1
combined therapy was compared by IPS. +e findings
showed that the IPS of the low-FPRS group treated with anti-
CTLA4 was relatively higher, indicating that the patients
with low FPRS had a better therapeutic effect on anti-CTLA4
(Figure 10(b)). +e high-FPRS patient had a greatly elevated
TIDE score as opposed to that of the low-FPRS patient in the
TCGA-LIHC cohort and ICGC cohort, indicating that a
greater trend for immune escape was illustrated by the high-
FPRS patient group, which may fail to respond to ICI
treatment (Figures 10(c) and 10(d)). It is noteworthy that no
significant differences were identified in the TIDE score
between low-FPRS and high-FPRS groups in the GSE14520
cohort (Figure 10(e)). In addition, when evaluating the
sensitivity of the two FPRS groups to sorafenib, docetaxel,
paclitaxel, and cisplatin, we found that patients with high-
FPRS had a greater sensitivity to sorafenib, docetaxel, and
cisplatin, while patients with low FPRS had a greater sen-
sitivity to paclitaxel (Figure 10(f)).

3.10. FPRS Combined with Clinicopathological Features of
Nomogram Improves Prognosis and Survival Prediction.
To construct a more effective nomogram model using the
FPRS model and other clinicopathological information,
multivariate and univariate Cox regression analysis showed
that FPRS was an independent prognostic indicator of HCC
(Figures 11(a) and11(b)). We established a nomogram in-
cluding FPRS and several other clinical factors (AJCC stage
and T stage) to anticipate OS of HCC patients and observed

that FPRS made the greatest contribution to the survival
prediction of nomogram (Figure 11(c)). +e calibration
curve illustrated that the anticipated probabilities of no-
mogram’s one-, three-, and five-year OS were very close to
the actually observed probabilities (Figure 11(d)). Decision
curve analysis confirmed that the net income of FPRS and
nomogram was considerably greater in contrast with that of
the extreme curve and showed the strongest predictive
ability of OS compared with other clinicopathological fea-
tures (Figures 11(e) and 11(f)).

4. Discussion

Owing to the variability of HCC and the tumor microen-
vironment (TME) complexity, determining the long-term
effectiveness of HCC continues to be a critical issue in
clinical practice [33]. It is necessary to classify and refine the
appropriate treatment intervention decision-making in this
kind of tumor [34]. In addition, the effectiveness of sorafenib
in treating advanced HCC strongly encourages the classi-
fication of HCC patients [34]. Several transcriptional group-
based classifications were widely accepted in HCC [35–37]
but lack genomic analysis. Recent studies have focused on
defining different HCC categories based on more detailed
biological characteristics to ensure maximum benefit and
minimum toxicity for specific treatments [38]. Given the
nonnegligible regulatory effect of sorafenib on ferroptosis,
we revealed the molecular subclasses of HCC from the
perspective of ferroptosis.

Transcriptome, genomic, and clinical data of 912 HCC
samples were retrieved from TCGA, ICGC, and GEO. Based
on the expression of 111 ferroptosis significantly associated
with HCC prognosis, HCC samples from each cohort were
separated into two heterogeneous subclasses, with signifi-
cant differences in OS between the two subclasses. By
comparing the clinical, genomic, and immune characteris-
tics between the two subgroups, we recognized that, in C1
with poor prognosis, there were more patients with ad-
vanced stage and infection with HBV and HCV, higher rates
of DNA damage including aneuploidy, HRD, fraction al-
tered, and the number of segments, and higher probability of
gene mutation and copy number variation. To some extent,
these results reveal the reason for the poor prognosis of C1,
because the TME cell components of HCC are mainly
composed of HCC cells, HCC-related fibroblasts, endo-
thelial cells, and immune cells. +e TME cell components of
HCC are mainly composed of HCC cells, HCC-related fi-
broblasts, immune cells, and endothelial cells [33]. Among
them, immune cells are most often studied, because the
infiltration levels of immune cells can largely reflect the
applicability of patients to immunotherapy [39]. HCC pa-
tients with C1 had higher levels of M0 macrophages, reg-
ulatory T cells, helper T cells, and activated memory CD4
T cells infiltration and higher immune score. In C2, there is
strong infiltration of resting memory CD4 T cells, naive
B cells, monocyte, resting mast cells, and M1and M2
macrophages. +erefore, there was strong heterogeneity
between C1 and C2, including clinical, molecular, and
immunological features.
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Additionally, we developed and validated a prognostic
model called FPRS, which is composed of CDCA8, SPP1,
EPO, S200A9, FTCD, and CFHR3 in three independent
cohorts. It shows considerable effect in predicting the OS
probability of HCC samples and can reflect the clinical
characteristics of different patients. It is an independent
prognostic factor for HCC. FPRS model assigned each
sample with a specific risk score, and patients were sub-
divided into different risk groups according to such score. In
line with our expectations, the prognosis of high FPRS was

considerably unfavorable in contrast with that of low FPRS.
Notably, from the study of Teresa Davoli, we learned that
copy number aberration contributed more to immune
characteristics than tumor mutation load and the low
burden of copy number increase/loss is related to the re-
sponsiveness to immunotherapy [40]. Indeed, our results
also found that the overall somatic mutation rate, copy
number amplification, and deletion in low-FPRS samples
were significantly lower than those in high-FPRS samples
and low-FPRS samples were more effective in anti-CTLA4
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Figure 10: +e role of the FPRS model in the prediction of immune/chemotherapeutic benefits. (a) Expression of 21 immune checkpoint-
related genes in low-FPRS and high-FPRS patients. (b) +e effect of different FPRS samples on IPS of anti-CTLA4 therapy, anti-PD1
therapy, and anti-CTLA4 and anti-PD1 combined therapy. (c) +e violin chart illustrated the difference in TIDE scores between high FPRS
and low FPRS in the TCGA-LIHC cohort. (d) In the ICGC cohort, the difference of TIDE score between low-FPRS and high-FPRS samples.
(e) In the GSE14520 cohort, the performance of TIDE score on high FPRS and low FPRS. (f ) Differential chemotherapeutic response
between low-FPRS and high-FPRS groups based on IC50 available in the TCGA-LIHC database. Wilcoxon test; ∗P< 0.05; ∗∗P< 0.01;
∗∗∗P< 0.001; ∗∗∗∗P< 0.0001.
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therapy at immune checkpoints. Moreover, we predicted
that patients who have low FPRS had a greater sensitivity to
paclitaxel, while patients who have high FPRS had a greater
sensitivity to sorafenib, docetaxel, and cisplatin.

In summary, on the one hand, our study revealed two
ferroptosis subclasses, which showed heterogeneity in
prognosis, clinical characteristics, genetic events, and im-
mune characteristics. On the other hand, a classifier called
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Figure 11: Nomogram of FPRS combined with clinicopathological features. (a) Univariate Cox regression analysis of the clinical variables.
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the FPRS model has been developed and validated, which
may help predict the prognosis and select patients suitable
for immunotherapy.
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