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Smallholder poultry production dominated by indigenous chickens is an important
source of livelihoods for most rural households in Ethiopia. The long history of
domestication and the presence of diverse agroecologies in Ethiopia create unique
opportunities to study the effect of environmental selective pressures. Species
distribution models (SDMs) and Phenotypic distribution models (PDMs) can be
applied to investigate the relationship between environmental variation and phenotypic
differentiation in wild animals and domestic populations. In the present study we used
SDMs and PDMs to detect environmental variables related with habitat suitability and
phenotypic differentiation among nondescript Ethiopian indigenous chicken populations.
34 environmental variables (climatic, soil, and vegetation) and 19 quantitative traits were
analyzed for 513 adult chickens from 26 populations. To have high variation in the
dataset for phenotypic and ecological parameters, animals were sampled from four
spatial gradients (each represented by six to seven populations), located in different
climatic zones and geographies. Three different ecotypes are proposed based on
correlation test between habitat suitability maps and phenotypic clustering of sample
populations. These specific ecotypes show phenotypic differentiation, likely in response
to environmental selective pressures. Nine environmental variables with the highest
contribution to habitat suitability are identified. The relationship between quantitative
traits and a few of the environmental variables associated with habitat suitability is non-
linear. Our results highlight the benefits of integrating species and phenotypic distribution
modeling approaches in characterization of livestock populations, delineation of suitable
habitats for specific breeds, and understanding of the relationship between ecological
variables and quantitative traits, and underlying evolutionary processes.

Keywords: chickens, local adaptation, niche and agroecology, species distribution models (SDMs), phenotypic
distribution models (PDMs), phenotypic differentiation, breeds and ecotypes, poultry genetics and breeding
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INTRODUCTION

Smallholder farmers in Africa keep scavenging poultry as a
source of affordable animal protein and a means of income.
The sustainability of this type of poultry production in tropical
low-and medium-input systems depends on the availability of
adaptive genotypes that can produce and thrive under adverse
conditions such as climatic extremes, high prevalence of tropical
diseases and parasites, and periodic feed shortage. The presence
of selective pressures in these environments has led to adaptation
of indigenous chicken populations to production constraints
(Bettridge et al., 2018).

Local adaptation refers to local individuals having higher
fitness in their environment than individuals from elsewhere
(Williams, 1966). Environmental heterogeneity is known to be
one of the main drivers of within species diversity and local
adaptation (Darwin et al., 1858). Understanding the drivers of
local adaptation provides essential information for designing
research and development programs aiming at improving
productivity while retaining resilience. A starting point in
genetic improvement of the existing local chicken populations
or in considering the introduction of new genotypes is to
understand how the environment is driving local adaptation
(Bettridge et al., 2018). This knowledge would allow breeding
of indigenous ecotypes that are more productive under village
conditions while retaining locally acceptable morphological and
adaptive traits (Dana et al., 2010; Muchadeyi and Dzomba, 2017;
Birhanu et al., 2021).

Present day African chickens are a result of an intricate
interplay between domestication and natural selection. Ethiopia
is an ecological microcosm of Africa, with a rich geomorphology,
where people closely interacted with the environment and
practiced agriculture for millennia. Because of its cultural
diversity, geographical position, complex topography, and
varying climatic patterns, the country harbors rich domestic
animal biodiversity. The earliest osteological evidence of
domestic chicken in Africa (921–801 BCE) was recovered
from Ethiopia (Woldekiros and D’Andrea, 2017). The
geomorphological landscape of the country is characterized
by wide range of elevation (from –155 m to 4,620 m.a.s.l.) and
diverse climate (Billi, 2015).

Recent technological advances in remote sensing and GIS,
increased availability of environmental data, and improved
computational power facilitate the understanding of the selective
forces associated with local adaptation. Species distribution
models (SDMs), implemented in MaxEnt (Phillips et al.,
2006) and similar software, predict distribution of a species
based on presence-only data, estimate the contribution of
environmental variables, and help identify suitable habitats in
current and future environments. Gheyas et al. (2021) and
Lozano-Jaramillo M. et al. (2019) applied SDMs to produce
suitability maps of Ethiopian chickens and identify important
environmental variables associated with habitat suitability in
chickens, without relating ecological differences with phenotypic
variation among study populations. When used alone, SDMs
treat a species as an evolutionarily homogenous entity and fail
to consider possible population differences pertaining to local

adaptation (Hampe, 2004). SDMs also make assumptions in their
modeling approach (Wiens et al., 2009) which necessitate their
combined use with additional approaches, such as phenotypic
distribution models (PDMs).

Phenotypic distribution models use associations between
phenotypes and environmental variables to map the phenotypes
of populations within that species’ distribution (Michel et al.,
2017). These phenotype-environment associations, are well
documented for natural populations of several wild plant and
animal species (Bergmann, 1848; Clausen et al., 1940; Mayr, 1942;
Cain and Sheppard, 1954; Langerhans, 2008; Phillimore et al.,
2010; Maloney et al., 2012; Michel et al., 2017; Smith et al., 2017)
and can be applicable to predict phenotype distribution among
domestic animals.

Phenotypic differentiation represents the fraction of
phenotypic variance between populations over the total
phenotypic variance and helps understand evolutionary
processes shaping populations (Storz, 2002; Leinonen et al.,
2006; Schmid and Guillaume, 2017). With the exception of
Lozano-Jaramillo A. et al. (2019) who applied PDMs to predict
performance of improved chicken strains, distribution models
have seldom been applied in indigenous livestock to identify
environmental factors associated with phenotypic differentiation
and to define their ecotypes. In contrast to introduced strains
which have been subjected to intense artificial selection in a
relatively short period of time, indigenous populations have
been exposed to natural selection over multiple generations
which permits a better understanding of evolutionary processes.
Even with natural populations of animals, correlation between a
phenotype and environment could be spurious if PDM are used
on their own (Etterson and Shaw, 2001; Michel, 2011; Michel
et al., 2017) and this requires their combination with additional
analytical approaches, such as SDMs.

To overcome possible limitations in the use of SDMs in
domesticated species like livestock, where humans may have
interfered in the geographic distribution of the study species,
we have taken corrective measures in our study design. Our
sampling strategy was elaborate enough to ensure environments
potentially habitable by chickens are included in sufficient
sample size, while those uninhabitable are excluded in the
sampling frame. We targeted random mating, nondescript
indigenous chicken populations from separate livestock market-
sheds, clustered along environmental gradients, to maximize
ecological and phenotypic variation between sample populations.
We followed a novel approach integrating SDMs with PDMs
through generalized additive models (GAMs) to identify the
most important environmental variables contributing to habitat
suitability and evaluate their relationships with phenotypic
differentiation among Ethiopian indigenous chicken populations.

MATERIALS AND METHODS

Sampling Strategy
A hybrid strategy, maximizing both environmental and
geographical representativeness of sampling sites, increases
statistical power by reducing false discovery rates caused by
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demographic processes and confounding effects (De Mita
et al., 2013; Lotterhos and Whitlock, 2015; Selmoni et al.,
2020). We used a hybrid sampling strategy that covered the
target area, ensuring high environmental variability, wide
geographic distributions, and considering the demographic and
biotic processes influencing the Ethiopian indigenous chicken
populations (Figure 1). Chickens were sampled from four spatial
gradients with a minimum distance between gradients of 500 km.
Each gradient comprised three environmental clusters, primarily
delineated based on elevation (400–1,800; 1,800–2,400; and
2,400–3,500 m.a.s.l.).

While we did not consider administrative regions in Ethiopia
in our sampling strategy, we would like to describe the
four regions covered in the present study (Amhara, Oromia,
Benishangul-Gumuz, and Southern regions) to give a brief
view of the geographic landscape. Gradient-I stretched from
the Rift valley lowlands of northeastern Ethiopia (McConnell,
1967), along the territories of Afar region to the highlands
of Wollo province within Amhara region. Gradient-II, starts
from the Rift valley lowlands in central Ethiopia, crosses the
highlands of Hararghe, including Mount Gara Muleta, and
stretches to eastern Ethiopia within Oromia region. Gradient-
III stretches from the highlands of northwestern Ethiopia and
goes down to the lowlands along the Ethiopian–Sudanese border
within Benishangul-Gumuz region. Gradient-IV spans from the
highlands of western Ethiopia in Oromia region to the lowlands
along the Ethiopian–Kenyan border in Southern region. Areas
around the national borders of Ethiopia have low elevation,
which gradually culminate to highland plateaus in the center
of the country creating a striking contrast in agroecology
(Ethiopian Mapping Authority, 1988). Geographic coordinates
and phenotypic measurements were not taken from areas which
are not habitable by chickens because of their unconducive
environments (below 400 and above 3,500 m.a.s.l.).

We made sure that clusters within a gradient were distant
by at least 100 km and the target chicken populations were
sampled from households which visit isolated, i.e., not connected
livestock market-sheds. The concept of market-shed refers to

FIGURE 1 | Topographic map of Ethiopia depicting the 26 indigenous chicken
sample populations.

a geographic area, where households therein are in sufficient
proximity to exchange their animals in various ways (e.g., sale,
gift), most commonly traveling on foot. Each cluster along the
spatial gradient constituted two to three populations. A total
of 26 populations were sampled (Figure 1 and Supplementary
Table 1). The sampling frame is spatially evenly spread to capture
high inter- and intrapopulation environmental and quantitative
trait variability. The research design integrating SDMs and PDMs
is presented in Figure 2.

The sample locations in our study covered 13 out of the
total of 18 agroecological zones (MoA, 1998; Tadesse et al.,
2006) in Ethiopia. Agroecological zonation utilizes biophysical
attributes of soil, terrain, and climate to organize land-use types
or production systems into relatively homogenous units (Hurni,
1998). The five agroecologies that were not covered, are areas
where chickens have either not been reared due to extreme
climates, cannot be kept at all (e.g., water bodies, undisturbed
forests), or have only been recently introduced.

Environmental Data
A total of 34 environmental variables were selected for their
potential effects on chicken adaptive evolution. Data on these
variables was extracted from online databases (Supplementary
Table 2). The environmental data included bioclimatic (n = 24),
vegetation (n = 2), and soil (n = 8) variables. Values for
bioclimatic variables (temperature, precipitation, solar radiation,
and water vapor pressure) in different seasons were obtained
from WorldClim database1 at a spatial resolution of 30 s (∼1 km2;
Fick and Hijmans, 2017) based on mean values of 30 years
(1970–2000). Cropland extent at 30-m resolution was attained
from Global Food Security Analysis-Support Data (Xiong et al.,
2017). The SoilGrids system at 250 m resolution with standard
numeric soil properties (organic carbon, bulk density, cation
exchange capacity, pH, soil texture fractions at 15–30 cm depth
was accessed from ISRIC database; Hengl et al., 2015, 2017). In
addition to the 34 environmental variables elevation data was
downloaded from DIVA-GIS2 (Hijmans et al., 2001; Farr et al.,
2007) at a spatial resolution of 30 s (∼1 km2).

Species Distribution Models
Species distribution models (also called niche, envelope, or
bioclimatic models) associate georeferenced observations of
a biotic response variable – typically species occurrence or
abundance – with multiple environmental predictors using a
broad array of statistical learning methods to describe species’
niches (Elith and Leathwick, 2009; Franklin, 2010; Elith and
Franklin, 2013; MacKenzie et al., 2017). MaxEnt is a general-
purpose machine learning algorithm developed to model species
distributions from presence-only records (Phillips et al., 2006).

For every population, a single geographic coordinate was
taken at the center of the village during sampling of chickens.
Coordinates from nine additional grids (1.44 km2), covering
a total of 12.96 km2, were then drawn around a recorded
location and extracted using Google Earth Pro v 7.3.2 to ensure

1http://www.worldclim.org/; version 2
2http://www.diva-gis.org/gdata
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FIGURE 2 | Workflow for integrated species and phenotypic distribution modeling to detect population differentiation and define ecotypes of indigenous chickens.

high representation of environmental variability affecting the
population (Gheyas et al., 2021). This way the total number
of “presence” or “occurrence” points used in SDMs for the
26 sample populations comprised 260 coordinates. Different R
software packages: “sp” (Pebesma et al., 2012), “raster” (Hijmans
et al., 2015), “rgdal” (Bivand et al., 2015), “maptools” (Bivand
et al., 2021), “rgeos” (Bivand et al., 2017), and “dismo” (Hijmans
et al., 2017), were used to extract, read, and visualize geospatial
data. Dimension and extent of the grids were corrected and
homogenized for 1 km2 based on the WGS84 geodetic reference
system (Decker, 1986).

Selection of Environmental Variables
To constrain model complexity and increase the performance
of SDMs, the highest contributing set of uncorrelated
environmental variables were identified and Maxent’s
regularization multiplier was fine-tuned using the R package
“MaxentVariableSelection” (Jueterbock et al., 2016). The
predictive performance of the most important environmental
variables was measured using test gain in MaxEnt v.3.4.1 (Phillips
et al., 2006; Phillips and Dudík, 2008).

Configuration of Model Parameters
Species-specific tuning of model parameters can improve the
performance of MaxEnt model compared to the default settings
(Elith et al., 2011; Radosavljevic and Anderson, 2014). The large
set of feature types was subsequently reduced to the optimal
subset to improve model fit and the optimum regularization
multiplier for model training was identified by the R package
“ENMeval” (Muscarella et al., 2014) by using spatial blocks
method (Radosavljevic and Anderson, 2014). Regularization
refers to smoothing the model, making it more regular, to avoid
fitting too complex a model. It is a common approach in model
selection and penalizes coefficients (the betas) to values that

allow both accurate prediction and generality (Tibshirani, 1996;
Elith et al., 2011).

Species’ responses to environmental covariates or independent
variables (e.g., temperature, elevation) tends to be complex and
usually requires fitting of non-linear functions (Austin, 2002).
In machine learning algorithms this is achieved by applying
transformations of the original covariates into features. MaxEnt
currently has six feature classes: linear, product, quadratic, hinge,
threshold, and categorical (Elith et al., 2011). We built models
with regularization multiplier values ranging from 0.5 to 4.0
(increments of 0.5) and with six different feature combinations
(H, LQH, HQP, HQC, LQHP, LQHPT; where L, linear; Q,
quadratic; H, hinge; P, product; and T, threshold); this resulted
in 48 individual model runs. The parameter configuration
with the lowest delta AICc value was chosen to run the
model (Supplementary Table 3). To reduce the influence of
sampling bias, we included a bias file (Phillips et al., 2009) and
preferentially sampled pseudo background points from areas
near our presence points based on kernel density function
(Venables and Ripley, 2002).

Tests of Niche Similarity
A niche is a description of the conditions in which a species
maintains a viable population. Populations in a species that are
adapted to a specific local habitat or niche show genetically
induced phenotypic differences in response to environmental
selective pressures and are regarded as “ecotypes” (Müntzing,
1971; Knüpffer et al., 2003). Niche similarity between one
or more pairs of populations was measured according to
Warren et al. (2008). Raster files (.ASCII) of predicted habitat
suitability produced by MaxEnt in logistic output (no probability
and complete probability of presence designated by 0 and 1,
respectively) were used as inputs to perform correlation test
by ENMTools (Warren et al., 2010). Correlation tests were
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used to cluster sampling sites on the selected environmental
variables and build dendrogram through hierarchical clustering
with R package cluster (Maechler et al., 2013). The grouping
of sampling locations into environmental niches was based
on “Euclidean” distance. Different clustering methods (Ward’s
minimum variance method, complete linkage, average linkage,
and single linkage) were compared. Visualization of the cluster
memberships of locations of populations based on niche
similarity, measured by correlations tests on the most important
environmental variables, was accomplished using the R package
factoextra (Kassambara and Mundt, 2017).

Quantitative Trait Data
A total of 19 phenotypic traits (Supplementary Table 4),
selected for their potential role in adaptation in chicken based
on available literature, were measured on 513 adult chickens
(380 hens and 133 cocks) from the 26 nondescript indigenous
chicken sample populations. We had three environmental
clusters (lowland: 400–1,800; midaltitude: 1,800–2,400; and
highland: 2,400–3,500 m.a.s.l.) stretching across each of the four
elevational gradients in this study. A total of 12 environmental
clusters from the four elevational gradients were included. Each
environmental cluster is represented by two randomly selected
chicken populations, except in two instances where we took
three populations. A population refers to the total number of
nondescript indigenous chickens available in an administrative
village. Adult chickens were selected randomly for phenotyping
through transect walk across villages. This method entailed
walking along a defined path (transect) across a village and
sampling one chicken from each farming household until a total
of 15 hens and five cocks were measured.

The age of the chickens was estimated by interviewing owners
to confirm that females were in their second clutch (7–8 months-
of-age) and males were above 12 months-of-age. The researchers
also visually appraised cocks (roosters) for presence of well-
developed spurs. One chicken was sampled per household.
Under rare circumstances (n = 9 households), two chickens were
sampled per household when farmers proved their animals have
no family relationship.

Live bodyweight of individuals was taken in the morning on
fasting chickens. Accurate morphological measurements were
made by using different tools (digital balance, measuring tapes,
and image processing software) Supplementary Table 4. The
pictures of individual chickens taken in a sheltered environment
to achieve appropriate resolution were digitally analyzed using
ImageJ (Rasband, 1997). To reduce systematic error, the same
operator measured all chickens, which were held in the same
position by a technician. A steel ruler was placed in the
background of every picture as a distance reference.

Selection of Quantitative Traits
A multivariate test of differences between populations with
stepwise selection (Klecka et al., 1980) was performed through
linear discriminant function analysis (SAS, 2002) to identify the
traits which were most useful in classifying populations. Principal
component analysis (PCA) was run with R “stats” package on

quantitative trait data to see how much percent of the variation
is explained by the first nine principal components (PCs).

Clustering of Nondescript Chicken
Populations Into Ecotypes
The 26 nondescript Ethiopian chicken populations sampled in
this study are heterogenous in terms of qualitative traits (e.g.,
coat color, comb shape, and feather pattern) and quantitative
traits. We used the most discriminant quantitative traits, which
are most useful because of their variability, to group populations
into ecotypes. We expect that populations of chickens within
the same niche are affected by similar environmental variables
and cluster into the same ecotype. The phenotypic values of
these traits were analyzed by the average silhouette method
to decide on the optimal number of clusters. The average
silhouette method measures how well each experimental unit
lies within its cluster and is less ambiguous than the elbow
method to decide on the number of clusters (Rousseeuw, 1987;
Kaufman and Rousseeuw, 2009).

Different hierarchical clustering methods (Ward’s minimum
variance method, complete linkage, average linkage, and single
linkage) were compared via R packages “cluster” (Maechler
et al., 2013) and “factoextra” (Kassambara and Mundt, 2017) to
make a valid comparison of population memberships between
dendrograms produced on similarity of phenotypes. We used the
same approach for clustering of environmental and phenotypic
data to avoid any possible bias associated with the use of
different tools.

Phenotypic Distribution Models
While species can vary genetically and phenotypically across
their range and populations can be locally adapted, SDMs
assume that all populations respond homogenously to the range
of environmental conditions experienced by the whole species
(Bolnick et al., 2003; Atkins and Travis, 2010; Fitzpatrick and
Keller, 2015; Hällfors et al., 2016). PDMs on the other hand,
do capture the response of quantitative traits as a function
of environmental conditions (Michel et al., 2017; Smith et al.,
2017; Lozano-Jaramillo A. et al., 2019). We used PDMs to
study variation within quantitative traits in response to the most
important set of environmental variables identified by SDMs.
The association of these environmental variables with habitat
suitability were evaluated for their individual effect on each of
the discriminating traits. The relationship between quantitative
traits and environmental variables was expected to be non-linear
(Zuur et al., 2007; Oddi et al., 2019). The assumptions of classical
statistical approaches such as generalized linear models (GLM)
are violated when responses are non-linear, variances change with
predictors, or ecological processes operate at spatio-temporal
scales (Zuur et al., 2009; Bolker et al., 2013).

Exploration of phenotypic and environmental data was
initially carried out to understand their distribution, variance
structure, and linearity or non-linearity of trend and to choose
appropriate analytical methods. GAMs were selected because
they are particularly useful for analyzing relationships explained
by complicated shapes, such as hump-shaped curves (Crawley,
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2012).The R package “mgcv” (Wood and Augustin, 2002) was
used to fit GAMs (Hastie and Tibshirani, 1990). Model validation
was made based on Akaike information criterion (AIC) values.

The response of each quantitative trait was predicted
as a function of ecotype, niche, and the six SDM-selected
environmental variables. The GAM included ecotypes and
their respective niches as linear terms and the environmental
covariates as smoothing parameters. The notation for the GAM
smoothing in a Gaussian model is as follows (Hastie and
Tibshirani, 1990; Wood and Augustin, 2002).

g
(
E

(
yi

))
= α+ βj + γm + fk(Xki) . . . ,

Where
(
E

(
yi

))
is one of n observations of the response trait, g

is the Gaussian distributed exponential family with identity link
function, α is the intercept, βj is a linear parameter for ecotype
(1,2,3), γm is a linear parameter for environmental niches (1,2,3),
fk are the smoothing terms based on non-parametric predictor
covariates Xki (the shape of the predictor functions which will be
fully determined by the data structure).

Estimation of smoothing parameters effects (environmental
variables) was done by restricted maximum likelihood as random
effects (Wiley and Wiley, 2019) with Gaussian process smooth
(bs = “gp”) in the GAMs model (Wood, 2012).

Partial dependence plots (PDPs; Friedman, 2001) are the most
popular approach for visualizing the effects of the predictor
variables on the predicted outcome during supervised machine
learning applications (Apley and Zhu, 2020). A PDP can show
whether the relationship between the target and a feature is
linear, monotonic, or more complex. PDPs exhibiting the effects
of environmental factors with estimated p-value on a phenotype
were produced by using the R package “mgcViz” (Fasiolo et al.,
2020) at 95% confidence interval.

RESULTS

Environmental Variables Contribute to
Habitat Suitability
Optimum Model Parameters
ENMeval identified HQP (Hinge, Quadratic, and Product)
features with regularization-multiplier = 3.0 as the best parameter
combination. This had the lowest deltaAICc value and was
chosen to produce suitability maps by MaxEnt (Figure 3A).
Compared to the default (Figure 3B), the model fit with
the optimum parameters predicted larger areas as most
suitable for poultry production (Figure 3C). The areas least
populated by chickens include the extreme lowlands (below
400 m.a.s.l.), with prohibitively high temperature, high solar
radiation, low precipitation, and high relative humidity; and
the extreme highlands (above 3,400 m.a.s.l), with prohibitively
low temperatures. The extreme highlands are frosty and hence
not habitable both by livestock and humans. Ethiopian lowland
pastoral areas are affected by recurrent drought and have
generally sparse livestock population (Tilahun and Schmidt,
2012). Agreement between the results of the present study and
the census report (CSA, 2017) and other literature indicating the
distribution of livestock (Tilahun and Schmidt, 2012) confirm

that those areas in the country which are shown as least suitable
in the habitat suitability maps produced by SDMs are indeed
unsuitable for the study species. Sedentary systems in central
Ethiopia have conducive environmental conditions for chickens
while pastoral systems (hot, dry areas, with strong solar radiation)
along the borders of the country do not (Getahun, 1978; Bayou
and Assefa, 1989; CSA, 2017; Mirkena et al., 2018; Gebrechorkos
et al., 2019). The choice of livestock species to rear is also
culturally embedded over generations.

Most Contributing Environmental Variables
Species distribution models identified the most important
environmental variables associated with distribution of chickens
(Figure 4). Correlated variables (| r| > 0.6) and those with a
relative contribution score below 4% were removed to restrict
multicollinearity driven effects in projecting species ranges
(Dormann et al., 2013; Brun et al., 2019). Out of 34 environmental
variables, nine were retained as most important in determining
habitat suitability and can be regarded as potential drivers of
local adaptation in Ethiopian indigenous chickens. The first five
variables with the highest contribution included soil clay content,
precipitation of the warmest quarter, precipitation of the coldest
quarter, and temperature seasonality.

Jackknife test was run to compare the relative importance of
the nine selected environmental variables (Figure 5). The test
showed that precipitation of the coldest quarter and water vapor
pressure in May have the highest gain when used in isolation,
and therefore are the most useful variables for predicting the
distribution of the species on occurrence data. On the other
hand, the environmental variable that decreases gain the most
when omitted is solar radiation in May, meaning it has the most
important information that is not present in other variables.

Distinct Niches Are Associated With
Distinct Ecotypes
Populations of animals adapted to a specific environment or
niche are regarded as ecotypes. Clustering of sample chicken
populations into phenotypically homogenous groups and an
overlap of the clustered populations with niche classification
based on their respective environments was used as a basis to
define ecotypes. The number of chicken ecotypes was determined
through Silhouette method using phenotypic data (Figure 6A).
The optimal cluster in the present study, the one that maximized
the average silhouette from a range of possible k values, was
k = 3. The same clustering method (Ward, 1963) was used to
make a valid comparison of population memberships between
dendrograms produced on similarity of niches (Figure 6B) and
on similarity of phenotypes (Figure 6C).

Populations were clustered into three environmental niches
based on correlation test (Figure 6B). Ward’s method had
the strongest clustering structure for clustering on niche
overlap (Ward = 0.89). The agglomerative coefficients for the
other approaches (complete linkage = 0.78; average linkage
(UPGMA) = 0.68; and single linkage = 0.36) was lower. At a cutoff
value of 5.0, reading the plot from left to right, niche-I comprised
11 sampling locations, while niche-II and niche-III comprised six
and nine locations, respectively.
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FIGURE 3 | Model configuration and habitat suitability maps for Ethiopian indigenous chicken populations. (A) AICc values for analyzed feature combinations using
different regularization-multipliers ranging from 0.5 to 4.0. Feature combinations include one or more of the following types: L, linear; Q, quadratic; H, hinge; P,
product; and T, threshold. (B) Map produced using default settings of MaxEnt. (C) Map produced using optimum parameters (HQP features with
regularization-multiplier = 3.0) identified by ENMeval.
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FIGURE 4 | Environmental variables of importance and their percent contribution predicted by MaxentVariableSelection.

FIGURE 5 | Gains of the variables in the Maxent model (Jackknife test) for Ethiopian indigenous chickens. Turquoise bars: model gain without corresponding
variables; blue bars: model gain with only the corresponding variables; red bars: total gain using all the variables.

Variation in Quantitative Traits
Before classifying the 26 sample chicken populations into
ecotypes through hierarchical clustering based on similarity for
quantitative traits, we reduced the number of traits through
discriminant analysis (Table 1). Out of 19 quantitative traits
(Supplementary Table 4), eight (BL, WS, CL, CW, BW, EW,
WW, and KL) had the highest discriminant function because of
their high variation between populations. Except wattle width
(p < 0.05), the remaining seven of these eight discriminant
traits showed highly significant phenotypic variation (p < 0.0001
to p < 0.01) between female sample chicken populations.

The GLM analysis combining data from both sexes revealed
all the discriminating quantitative traits varied significantly
between sexes (p < 0.0001) except for beak length (p = 0.1738).
The partial r-square indicates body length (BL) had the
highest discriminatory effect out of all traits retained in the
models in both sexes. Only two quantitative traits (BL and
BW) were found useful (p < 0.0001) for classifying male
sample chicken populations. This might be related with their
lower sample size or a different structure of morphological
variation among male sample populations compared
to females.
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FIGURE 6 | Dendrograms of clusters to group 26 Ethiopian indigenous
chicken populations (hierarchical agglomerative clustering, Ward’s minimum
variance method). (A) Plot of statistics for deciding appropriate number of
clusters based on phenotype. (B) Dendrogram based on niche overlap
statistic (I) between suitability maps. The red line at a cutoff value of 5.0
produces three niches. (C) Dendrogram based on the most discriminating
phenotypes. The red line at a cutoff value of 8.0 produces three distinct
ecotypes.

A subset of quantitative traits that best revealed the
differences among chicken populations (Table 1) were then
used for clustering. Ward’s hierarchical clustering rendered the
highest agglomerative coefficient (Ward = 0.81) for clustering
of populations on phenotypic similarity compared with the
other approaches [complete linkage = 0.71; average linkage
(UPGMA) = 0.58; and single linkage = 0.49; Figure 6C]. The
cutoff value at 8, indicated by horizontal line, resulted in three
clusters. A PCA on quantitative trait data showed that the first
three PCs explain 75.7% of the phenotypic variation among

TABLE 1 | Stepwise selection summary indicating most discriminating traits for
adult male and female Ethiopian indigenous chicken sample populations.

Sex Quantitative trait Partial R-sq. F value Pr > F

Hens BL 0.4761 13.51 <0.0001

WS 0.2934 6.15 <0.0001

CL 0.2274 4.34 <0.0001

CW 0.1766 3.15 <0.0001

BW 0.1741 3.08 <0.0002

EW 0.1677 2.93 <0.0003

WW 0.1184 1.63 <0.0214

KL 0.1534 1.93 <0.0014

Cocks BL 0.7756 14.52 <0.0001

BW 0.4856 3.9 <0.0001

BL = body length (mm); WS = wingspan (mm); CL = comb length (mm); BW = body
weight(g); EW = earlobe width (mm); WW = wattle width (mm); and KL = beak
length (mm).

TABLE 2 | Ecotype of Ethiopian indigenous chicken populations defined on
phenotype and their respective niches as identified by species distribution models.

Ecotype Populations Distributed within
the same niche

Distributed
outside the niche

I Fura, Dalecha, Birbirsa,
Bengo, Almeshmesh,
Badu, Didibe Kistana,
Gazo, Meket, Weltane,
Wahelo, Weledelelo

Fura, Dalecha,
Birbirsa, Bengo,
Almeshmesh,
Badu, Didibe
Kistana, Gazo

Meket, Weltane,
Wahelo, Weldelelo

II Lafinfedo, Hato,
Melkajebdu, Arabo,
Burkitu Obora

Lafinfedo, Hato,
Melkajebdu,

Arabo, Burkitu
Obora

III Ebech, Shama, Parzeit,
Gema, Zigh, Tumi,
Rifenti Chabir, Sorobo,
Gocha,

Shama, Parzeit,
Zigh, Tumi, Rifenti
Chabir, Sorobo

Ebech, Gema,
Gocha

populations (PC1 = 43.1%, PC2 = 19.5%, and PC3 = 13.2%)
supporting our grouping of chicken populations into three
ecotypes (Supplementary Table 5).

A summary of cluster analyses (Table 2) shows that most of the
populations of a specific ecotype are distributed within the same
niche while only a few of them distributed elsewhere. Eight out of
12 populations from ecotype-I, three out of five populations from
ecotype-II, and six out of nine populations from ecotype-III were
correctly classified into their respective niches.

Matching between chicken ecotypes and different
environmental classification methods was performed to establish
a logical association between phenotypic distinctiveness and
environmental selective pressures (Table 3). The environmental
classification methods included SDMs, conventional (Dove,
1890), Official (MoA, 1998), and gradient-based agroecological
classifications. The highest level of correct classification was
performed by SDMs (64.5%), followed by environmental
gradient (elevational cline) classification (57.3%). The higher
correct classification level obtained by the SDM approach,
suggests the potential influence of the selected environmental
variables (n = 9) on shaping adaptive variation among Ethiopian
indigenous chicken ecotypes.
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TABLE 3 | Comparison of methods to classify environments of Ethiopian indigenous chicken ecotypes (n = 3).

Classification method Criteria for
classification

No. of
classes

No. of populations correctly classified (%) Total no. of populations
correctly

classified (%)

Ecotype-I Ecotype-II Ecotype-III

SDM Niche similarity 3 8 (66.7) 3 (60.0) 6 (66.7) 17 (64.5)

*Conventional AEs Climatic classes (altitude, temperature,
precipitation)

3 6 (66.7) 3 (33.3) 4 (50.0) 13 (50.0)

§ Official AEs Temperature, soil type, plant growing
period/moisture condition, land use

13 3 (33.3) 3 (33.3) 2 (25.0) 8 (30.7)

Environmental gradient Elevational clines in distinct geographies 4 5 (55.5) 6 (66.6) 4 (50.0) 15 (57.3)

*Conventional agroecological classes (AEs) comprise three groups measured in m.a.s.l.: I = lowlands (400–1,800); II = 1,800–2,400; and III = 2,400–3,500 (Dove, 1890).
§ Official AEs represent standard agroecologies of Ethiopia (MoA, 1998).

Environmental Variables Contribute to
Phenotypic Differentiation
Having noticed that populations have differentiated distinctly
in specific environments, we focused on predicting phenotypic
values of ecotypes for the most discriminant quantitative traits
within their respective niches under the influence of the selected
environmental variables. Prediction of quantitative traits with
GAMs in each of the three Ethiopian indigenous chicken ecotypes
is presented in Table 4. Significant p-values were obtained for
all the nine SDM identified environmental variables except for
soil clay content. Five environmental variables (Bio18, Bio19,
WVPM, and WVPA) had significant effect on differentiation of
multiple traits. The traits selected by discriminant function for
their usefulness in classification of populations into ecotypes had
also the highest model fit (R-square adjusted values) explaining
their importance in studying the influence of environmental
variables on adaptive phenotypic variation.

Ethiopian indigenous chicken ecotypes identified by SDMs
showed significant quantitative trait variation (Table 5).
Populations in ecotype-I had the smallest measurement for all
traits while ecotype-II had the largest measurements for most
traits. It is not possible to tell from the present results alone
whether the performance exhibited by ecotypes is primarily
attributable to their niche or their genetic background.

Habitat suitability maps for Ethiopian indigenous chicken
ecotypes (Figure 7) illustrate ideal environmental conditions
that vary spatially between ecotypes. Chickens of ecotype-I
(Figure 7A) are mainly distributed in central and northwest
Ethiopia, ecotype-II (Figure 7B) are distributed in the west
and southwest, while ecotype-III (Figure 7C) are distributed
in eastern and northeastern Ethiopia. Areas of the country
characterized by adverse environmental conditions due to their
extreme temperature, high solar radiation, and low precipitation
are shown as least suitable. This result conforms to the
available census data which shows regions in the country with
more friendly climate to chickens are more populated by the
species (CSA, 2017).

The response of adult live body weight (BW) and BL in female
indigenous chickens to some of the significant environmental
variables (p < 0.001) are presented in Figures 8, 9. The

relationship between BW and solar radiation, and BW and water
vapor pressure in May (kPa) is linear while its relationship with
isothermality is non-linear (Figure 8). Isothermality quantifies
how large the day-to-night temperatures oscillate relative to
the annual oscillations. An isothermal value of 100 indicates
the diurnal temperature range is equivalent to the annual
temperature range, while anything less than 100 indicates a
smaller level of temperature variability within an average month
relative to the year (O’Donnell and Ignizio, 2012). Our results
suggest that BW is less influenced by smaller temperature
fluctuations within a month relative to the year. On the other
hand, solar radiation above 18,000 kJ/m2/day is stressful and
has negative and linear effect on female BW. The relationship
between bodyweight and mean temperature of the coldest quarter
is more complex, showing that the mean temperatures during the
coldest 3 months of the year is less useful to examine how this
variable affects adult live BW.

A non-linear relationship is noted between BL and water vapor
pressure in August (kPa), and between BL and precipitation
of the coldest quarter (mm/m2). Temperature seasonality had
a negative and linear relationship with this trait. Temperature
seasonality is a measure of temperature change over the course
of the year. Our result indicates that higher standard deviation
in the mean monthly temperature is associated with smaller BL,
a trait which is strongly correlated with live BW. Precipitation
of the coldest quarter is a quarterly index which approximates
the total precipitation that prevails during the 3 months of
the year. Accelerated mean change in BL, in the context of
the model was seen up to 700 mm/m2 of precipitation in
the coldest quarter. Precipitation above this threshold might
be related with less availability of scavenging feed resources
and more prevalence of diseases and parasites, having adverse
effects on this trait. Biologically speaking, water vapor pressure
is a function of temperature and pressure. Negative relation is
noted between this environmental variable and BL, probably
because of the stressful situation (e.g., lower feed intake) it
creates on the animals. A non-linear reduction was observed in
BL for higher soil clay content above 20% which may have a
relationship with the type of vegetation and land use pattern in
those areas (Figure 9).
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TABLE 4 | Prediction of quantitative traits with Generalized Additive Models (GAMs) in Ethiopian indigenous chicken ecotypes (n = 3).

Trait 1Fixed effects/linear term Random effects/ smoothing term Model fit

Bio3 Bio4 Bio11 Bio18 Bio19 SRM WVPM WVPA SCC df AIC R-sq.(adj) Deviance explained (%)

BL Ecotype Niches * * *** * *** *** 14.9 1538.7 0.65 66.7

WS Ecotype Niches *** *** * * *** 13.6 1643.65 0.55 56.5

CL Ecotype Niches * 8.0 2583.4 0.21 22.3

CW Ecotype Niches *** *** 9.3 2140.3 0.10 11.9

BW Ecotype Niches * ** * *** *** 12.5 -121.2 0.45 46.5

EW Ecotype Niches *** . *** *** 16.3 1656.8 0.25 28.2

WW Ecotype Niches * ** ** 10.0 2034.7 0.12 14.3

KL Ecotype Niches * ** . ** 11.9 1724.0 0.05 7.6

Akaike information criterion (AIC) is a goodness of fit measure (likelihood or log-likelihood) that penalizes for complexity number of parameters or degree of freedoms).
BL = body length; WS = wingspan; CL = comb length CW = comb width; BW = body weight; EW = earlobe width; WW = wattle width; and KL = beak length.
Bio3, Isothermality; Bio4, Temperature seasonality; Bio11, Mean temperature of coldest quarter; Bio18, Precipitation of warmest quarter; Bio19, Precipitation of coldest
quarter; SRM, solar radiation of May; WVPM, water vapor pressure of May; WVPA, water vapor pressure of August; SCC, soil clay content.
1Linear effect of ecotype is significant for all discriminating phenotypes.
Significance codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.”.

TABLE 5 | Quantitative trait variation in Least Square Mean (Standard Error) among adult female Ethiopian indigenous chickens of different ecotypes defined by
integrating SDMs with PDMs.

Ecotype* LSMean (S.E.)

Hens (n = 380) Cocks (n = 133)

BW BL WS CL CW EW WW KL BW BL

I 1.01
(0.01)b

35.46
(0.22)c

38.78
(0.22)b

21.3
(0.62)c

7.95
(0.36)b

8.96
(0.2)b

16.89
(0.31)c

16.32
(0.20)

1.31
(0.05)b

38.89
(0.52)b

II 1.31
(0.02)a

39.13
(0.23)a

41.88
(0.24)a

30.21
(0.65)a

10.18
(0.37)a

10.9
(0.2)a

19.4
(0.32)a

16.46
(0.21)

1.78
(0.05)a

44.34
(0.54)a

III 1.28
(0.02)a

38.48
(0.24)b

42.03
(0.24)a

25.22
(0.66)b

8.82
(0.38)b

10.4
(0.20)a

18.48
(0.33)b

16.65
(0.22)

1.82
(0.05)a

44.49
(0.57)a

BW = body weight (g); BL = body length(mm); WS = wingspan(mm); CL = comb length(mm); CW = comb width(mm); EW = earlobe width(mm); WW = wattle width(mm);
and KL = beak length(mm). a,b,cMeans with different superscripts within the same column are significantly (p < 0.05) different. *Ecotypes were highly significant from
each other (p < 0.0001) for all phenotypic measurements except for KL in hens (p = 0.5393).

DISCUSSION

Sustainable livestock production particularly in the tropics
requires adaptive genotypes which can withstand the undesirable
effects of climate change and produce optimally (Fleming
et al., 2017; Bettridge et al., 2018). Ecological variables vary
in terms of their influences on organisms as inducers of local
adaptation. Knowledge of ecological factors responsible for
adaptive variation should be the first step to design selective
breeding programs on indigenous livestock, plan crossbreeding
with improved genotypes, or introduce new genotypes from a
different environment (Fleming et al., 2017; Bettridge et al., 2018;
Birhanu et al., 2021; Gheyas et al., 2021).

We have applied distribution models to identify the most
important environmental factors associated with habitat
suitability and phenotypic differentiation in indigenous
populations of chickens. Previous studies indicated that
populations differentiate phenotypically and genetically in
response to the environment (Schmid and Guillaume, 2017;
Smith et al., 2017). A tight relation is expected between
environmental elements (e.g., precipitation, temperature,

radiation, and elevation) and livestock population dynamics
(Alemayehu and Getu, 2016; Getachew et al., 2016) in Ethiopia.

Precipitation of the warmest and the coldest quarters, soil clay
content, temperature seasonality, solar radiation, water vapor
pressure, and mean temperature of the coldest quarter, were
identified by SDMs as the most important variables associated
with habitat suitability in Ethiopian indigenous chickens.
Precipitation is associated with types and amounts of crops
cultivated; availability of scavenging feed resources and edible
soil fauna; disease prevalence, and predation. Precipitation and
temperature were also identified as most important contributors
to local adaptation in African chickens (Fleming et al., 2017;
Bettridge et al., 2018; Gheyas et al., 2021). The BW of Horro,
Koekoek, Sasso, and SRIR chickens distributed to different
regions of Ethiopia was best predicted by variables associated
with temperature and precipitation (Lozano-Jaramillo A. et al.,
2019). Clay content is a proxy for soil fertility and has
impacts on feed availability for poultry. Through their physical
and chemical properties, clay minerals can be expected to
have more nutrient reserves in the tropics (Landon, 2014;
Kome et al., 2019).
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FIGURE 7 | Suitability maps of three Ethiopian chicken ecotypes. Colors
toward red spectrum indicate more suitable conditions. (A) Ecotype-I.
(B) Ecotype-II. (C) Ecotype-III.

All the nine environmental variables selected for their
association with habitat suitability by SDMs had significant
effects on differentiation of quantitative traits. The influence of
isothermality (Bio3), temperature (Bio4 and Bio11), precipitation
(Bio19), solar radiation, and water vapor pressure on trait
differentiation may be related with adaptive physiology of
chickens, in terms of their biological response to extremes in

relative humidity and heat stress. Lozano-Jaramillo A. et al.
(2019) and Alemu et al. (2021) have also observed effects
of precipitation and temperature on improved chicken breeds
introduced to smallholder farmers in Ethiopia.

We classified the Ethiopian indigenous chicken sample
populations into three ecotypes and compared their respective
performances. Homogenous clusters for measured quantitative
traits and their overlaps with distinct niches were used to define
ecotypes. Unlike previous efforts made to group Ethiopian
indigenous chicken populations on qualitative phenotypes such
as comb shape, and feather color (Melesse and Negesse, 2011;
FAO, 2012; Negassa et al., 2014; Getachew et al., 2016; Overdijk,
2019), the definition of ecotypes in the present study integrated
phenotypic and environmental information. This process
included identification of the most contributing environmental
variables for habitat suitability, grouping of sample locations
into specific niches based on their environmental similarity, and
selection of the most useful quantitative traits for population
classification purposes.

Phenotypic distribution models, in a form of non-linear
GAMs were demonstrated as an innovative approach to integrate
environmental and phenotypic information and study their
relationships. GAMs relax the assumptions of linear models such
as GLMs and achieve acceptable goodness of fit. Such a non-
linear data structure would have been missed otherwise (Wiley
and Wiley, 2019). PDMs were used to complement predictions
of SDMs in studying responses of prairie grass to climate change
(Smith et al., 2017).

The use of SDMs is unchartered territory for livestock
scientists. Limitations are expected in their use on domesticated
species because of human interference influencing the natural
distribution of the study populations. While existing SDMs alone
do not seem appropriate to study breeds recently introduced
into a new environment artificially, the models are applicable for
those studying local adaptation among indigenous populations
of livestock which have lived in their environment for hundreds
of generations or more and have experienced significant selective
pressures. Predictive ability of machine learning algorithms on
domesticated species can be improved if they incorporate more
data in addition to presence–absence information and harness
sophisticated algorithms. Boosted regression trees and random
forests as well as generalized additive and linear mixed models
have improved prediction of SDMs in other species (Shirk et al.,
2018).

Several evolutionary processes shape genetic and phenotypic
differentiation, including the joint effects of environment
(phenotypic plasticity), gene flow, and natural selection (Schmid
and Guillaume, 2017). It is not clear from the present study
whether the phenotypic differentiation that ensued between
indigenous chicken ecotypes is the result of differentiation
in allele frequencies. An integrated framework including
environmental, phenotypic, and genomic analysis is needed to
unravel the genetic basis of phenotypic differentiation among
populations and ecotypes of these chickens. If the phenotype is
directly influenced by the environment, genetic, and phenotypic
differentiations can be decoupled (Crispo, 2008; Schmid and
Guillaume, 2017). Improvements in predictive ability of models
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FIGURE 8 | Generalized additive model partial dependence plots for live body weight (kg) in female indigenous chickens. Each plot shows a covariate and the partial
dependence of adult live body weight in the context of the model. The y axis shows the mean of observed change in live body weight and the x axis the covariate
interval. The blue line represents the 95% confidence interval; Red line, mean of observed change in live body weight; s, smoothed variable; and ( ), effective degrees
of freedom.

FIGURE 9 | Generalized additive model partial dependence plots for body length (mm) in female indigenous chickens. Each plot shows a covariate and the partial
dependence of adult live body weight in the context of the model. The y axis shows the mean of observed change in live body length and the x axis the covariate
interval. The blue line represents the 95% confidence interval; Red line, mean of observed change in live body weight; s, smoothed variable; and ( ), effective degrees
of freedom.
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is also achieved when SDMs are used along with phenotypic
and genomic information in landscape genetics and genomics
studies (Joost et al., 2007; Gotelli and Stanton-Geddes, 2015;
Razgour, 2015).

The present study demonstrated how SDM-identified
environmental information can be integrated with PDMs to
define ecotypes, predict quantitative traits, and understand the
ecological roots of phenotypic differentiation. Considering the
environmental influences of economically important quantitative
traits, such as live BW, improves the estimation of breeding
values and assists in the development of improved breeds suited
to smallholder farmers. Differences in performance among
ecotypes in the different niches will also mean evaluations
of performance and yield stability across environments are
pertinent in breeding and development programs designed for
low- and medium-input poultry production systems of the
tropics. Prospects of further use for SDMs and PDMs in livestock
include definition of agroecologies, estimation of genotype
by agroecology interactions, multi-environment performance
evaluations, and prediction of performance under present and
future production scenarios (e.g., climate change).
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