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Abstract: Objective: Most neurological diseases are usually accompanied by changes in the oculomo-
tor nerve. Analysis of different types of eye movements will help provide important information
in ophthalmology, neurology, and psychology. At present, many scholars use optokinetic nystag-
mus (OKN) to study the physiological phenomenon of eye movement. OKN is an involuntary
eye movement induced by a large moving surrounding visual field. It consists of a slow pursuing
eye movement, called “slow phase” (SP), and a fast re-fixating saccade eye movement, called “fast
phase” (FP). Non-invasive video-oculography has been used increasingly in eye movement research.
However, research-grade eye trackers are often expensive and less accessible to most researchers.
Using a low-cost eye tracker to quantitatively measure OKN eye movement will facilitate the general
application of eye movement research. Methods & Results: We design an analytical algorithm to
quantitatively measure OKN eye movements on a low-cost eye tracker. Using simple conditional
filtering, accurate FP positions can be obtained quickly. The high-precision FP recognition rate is of
great help for the subsequent calculation of eye movement analysis parameters, such as mean slow
phase velocity (MSPV), which is beneficial as a reference index for patients with strabismus and other
eye diseases. Conclusions: Experimental results indicate that the proposed method achieves faster
and better results than other approaches, and can provide an effective algorithm to calculate and
analyze the FP position of OKN waveforms.

Keywords: low-cost eye tracker; optokinetic nystagmus; waveform analysis

1. Introduction

Eye movement related research has brought considerable contributions to various
fields such as visual and detection science, psychology and neurobiology [1-3]. Therefore,
robust non-invasive eye detection and gaze tracking are critical for developing human-
computer interaction, neurological disease diagnosis, and understanding human emotional
states. Electrooculography, scleral search coil systems, and video eye diagrams are all
common methods of measuring eye movement. In recent years, these methods have
been used more and more frequently in video-ophthalmology due to their non-invasive
advantages [4,5]. Optokinetic reflex, which is driven by the optokinetic system, consists
of the slow involuntary eye movements induced by a large, moving, visual field. It is a
basic mechanism to stabilize the image of the outside world on the retina in a moving
environment. If the visual field keeps moving continuously, optokinetic nystagmus (OKN)
will occur. OKN is composed of slow pursuing eye movements, “slow phase” (SP), and
the resetting saccades, “fast phase” (FP). The production of OKN depends on the integrity
of several neural pathways, including retinal photoreceptors, afferent pathway of retinal
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ganglion cells, lateral geniculate body, occipital lobe, cerebellar flocculus, paramedian
pontine reticular formation, and the efferent pathway of the ocular motor neurons. Any
dysfunction of these pathways may lead to change in the OKN.

Video-oculography has been used increasingly in eye movement research because of
its advantages of non-invasiveness. There have been several models of high-sampling rate,
high-resolution, research-grade eye trackers for current eye movement research. These
models are often expensive and operate in closed-source software, which limits their
clinical application.

In the current research literature, several methods for gaze estimation have been
developed, which can generally be divided into two categories: appearance-based methods
and feature-based methods. Appearance-based methods often depend on the quality and
diversity of training data, and the generalization ability of regression algorithms. Methods
using low-resolution images under different environmental conditions [6-9] are proposed,
which address the gaze estimation problem by learning a mapping function directly from
eye images to gaze directions. The difficulty faced by these methods is that the appearance
of the eyes depends not only on the shape of the subject’s own eyes, but also on the angle
and direction of gaze, variability in head posture, imaging conditions, etc., so they are
usually not accurate enough in clinical trials. Feature-based methods extract local features
(such as contours, eye corners, and eye reflections) and are widely used in gaze estimation.
These methods derive eye features from high-resolution eye images by magnifying the
subject’s eye. There are two main problems with these methods. The first is that since
the mapping function is different for each subject and system configuration, a tedious
calibration process must be performed before each test to obtain the necessary parameters.
The second problem is that, once the eye positioning calibration is performed, the subject’s
head must remain stationary, otherwise there will be considerable errors between the actual
orientation and the system’s estimated orientation.

Efficient eye localization is an important key to obtain accurate gaze estimates. A novel
complete representation (CR) pipeline with two novel eye center localization methods [10]
is proposed. The first method employs geometric transformations to estimate the rotation
difference between two faces (original and newly generated frontal faces) and employs an
unknown localization strategy to predict CR centers. The second method is based on image
translation learning, using CR-region to train a generative adversarial network (CR-GAN)
and accurately generate and localize the eye center. A novel iris ripple filter [11] is proposed
to improve the accuracy and robustness of gradient localization. In addition, a new depth
correspondence point conversion method is also proposed, which can effectively solve
the instability problem of CR-GAN in the process of eye generation and the positioning
accuracy of eyeballs with subtle changes. GazeNet [12], an appearance-based depth gaze es-
timation method based on a 16-layer VGG deep convolutional neural network, is proposed.
A new implicit calibration method [13] is introduced that exploits four natural constraints
during eye gaze tracking, which helps formulate implicit calibration as a constrained
unsupervised regression problem and can be solved by the hard-EM algorithm.

With the vigorous development of related research, more and more low-cost video-
based eye trackers have been developed for future development of clinical applications [14].
In this study, we use a low-cost eye tracker to quantitatively measure OKN eye movement.
We develop an algorithm to detect the slow and fast phases of OKN. In the process of
eye movement recording, unnecessary noise generation or eye movement often occurs
due to the subject’s fatigue or distraction, which affects the analysis of eye movement
signals. The proposed algorithm can eliminate the interference caused by head movement
and eye wandering, and optimizes the detection results of FP. In order to verify whether
the performance of the proposed method meets the expected results, we compare the FP
detection results with the results manually annotated by professional physicians. The
experimental results show that our results are almost consistent with the results judged by
these physicians.
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2. Materials and Methods

We designed a series of dynamic stripe videos of OKN stimuli at different speeds,
and recorded the subjects’ eye-tracking data by using a low-cost eye-tracking device in
a dark and undisturbed experimental environment. In order to reduce the measurement
error caused by head shaking, a chin rest was used to fix the subject’s head position during
the experiment and a black facial shield was used to reduce the noise signal during the
experiment. Figure 1 shows an overall overview of the experimental environment and
the composition of the eye tracker. Technically explained, gaze tracking is the process of
determining the point-of-gaze (POG), observing the visual axis of the subject’s computer
screen or eyes in 3D space. The video ophthalmology system obtains the subject’s eye
signal from an eye-tracking instrument and sends it to the personal computer for signal
processing, in order to estimate the subject’s gaze direction based on the information
obtained from the eye area and possible head pose.

Experimental
environment settings

(screen distance, fixed position)

Pupil position OKN test

—  Subject test . —* -
J correction (data collection)

— Data analysis

(c)

Figure 1. (a) Test environment for collecting OKN data. The eye tracker was placed beneath the
screen. A chin rest was used to stabilize the subject’s head and a black facial shield was used to
reduce noise signal during the test; (b) The screen displayed the dynamic OKN stimuli and the eye
movement signal was captured by the eye tracker; (c) The experimental process.

2.1. Materials

Eighteen healthy adults were recruited for this study. The participants did not have
any neurological or ophthalmic damage. The subjects underwent a complex test, and the
measured signals collected overt OKN signatures for these 18 subjects. The study was
approved by the Institutional Review Board at the Ditmanson Medical Foundation Chiayi
Christian Hospital and complied according to the term of the Declaration of Helsinki [15].
All participants signed an informed consent form for study participation and were informed
that they had the right to opt out.

The visual stimulus was displayed on a 32 inches curved LCD monitor (VX3218,
ViewSonic, Brea, CA, USA) at a frame rate of 150 Hz. Participants were seated on a
chair, with a chin rest, with their eyes at 65 cm from the monitor. The dimensions of the
viewing area were 69.8 cm horizontally and 39.3 cm vertically, which equals to viewing
angles of 56.5 degrees horizontally and 33.6 degrees vertically at the distance of 65 cm.
The OKN responses were elicited with a square-wave grating alternative black and white



Healthcare 2022, 10, 1281

40f13

vertical stripes of 3.5 cm width (equal to 3.1 degrees) moving horizontally. The participants
were instructed to look at the moving patterns binocularly. In a test session, the monitor
displayed moving stripes in one direction for 20 s, followed by a blank screen for 15 s, and
then moving stripes in the opposite direction. The participants were asked to close their
eyes during the blank screen period. The visual stimuli were displayed with the stripes
moving at speeds of 10, 20, 30, and 40 degrees per second subsequently. The whole test
session lasts for 5 min. Elicited eye movements were recorded using a video-based eye
tracker (GP3HD, Gazepoint, Vancouver, Canada) that captured the eye movements at a
sampling rate of 150 Hz. The eye movements of both eyes were captured simultaneously.

2.2. Proposed OKN Eye Movement Measure System

After a series of experiments and data collection, the data is preprocessed and its
characteristics are determined. The original physiological signal is usually mixed with
many interference factors. OKN with noise includes the failure of the machine to detect
pupils, the deviation of the subject’s gaze position, etc. These may cause errors in the
processing of the signal, which limits the performance of subsequent analyses, so it is
necessary to filter out the noise in the signal through the steps of data preprocessing.

The OKN response alternates between compensatory slow phases (SP) in the direction
of retinal sliding and saccadic fast phases (FP) in the opposite direction. We refer to the
condition of FP generation proposed by Kei Kanari et al. (2017) [16]: the displacement
slope between two points must be higher than a certain threshold. First, the collected
signal is segmented and compared with its adjacent data points to find the location of the
maximum and minimum values. Then, the method of judging the slope is used to correct
and fine-tune the data points that meet the conditions after screening, and then the correct
position of FP can be found, as shown in Figure 2.

GP3 record signal

v

Filter out abnormal
data points

h 4

Find signal
extreme value

4

Judge by slope

v

Get FP position

Figure 2. Flowchart of proposed FP position detection.

The algorithm, Algorithm 1, is as follows (wherein the matrix is the data point of the
maximum/minimum value of the signal, after connecting the points into a line, and the
subsequent calculation is performed by judging the slope).
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Algorithm 1 Proposed FP position detection

for i = 1: length (X)

find maximum/minimum of points to matrix U
end
for i = 1: length (U)

if (U’s slope meet M)

find highest and lowest points of FP

end
end
is the input data
is the slope threshold
is the matrix after find maximum/minimum of points from input

CEXoNouwwN=

The detailed processing steps are as follows:

2.2.1. Abnormal Data Points Filtering

The causes of noise include environmental human factors and biological human factors.
Environmental human factors refer to the interference caused by the environment and the
operation of the equipment when the subject is measuring the signal; biological human
factors refer to the physiological state of the subject, such as eye fatigue, head movement,
etc., resulting in this interaction.

Before the experiment, the subjects are asked to focus on the center of the computer
screen, but staring at the computer screen for a long time will still cause the subjects’ eyes
to fatigue, and the eyes will drift, the reaction will become sluggish and the subjects will
blink frequently. These disturbances will cause deviations in the subsequent processing
of signals. Even if the collected signals have an OKN response, this may be because the
subjects’ eyes are not looking at the same range, as shown in Figure 3a, or because of zoning
out, looking elsewhere. The magnitude of eye movement changes greatly, as shown in
Figure 3b. Various reasons make it difficult to find the highest or lowest point of the fixed
frequency of the signal.

LPCX

110 115 120 125 130
TIME(s)

(a)

Figure 3. Cont.
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Figure 3. (a) Unable to look at the same level; the drop from the starting position is too large; (b) The
eyeball drifts involuntarily, and a signal with excessive displacement is detected.

The procedure of filtering out abnormal data points is listed in Algorithm 2. It was
found that the extreme values of displacement in the signal are often found in data far from
the initial central fixation point (computer screen). In the experimental video, the distance
between the eyes is corrected by 20 degrees on the left and right sides of the computer
screen width, which is equivalent to a distance of about 0.031 mm between the pupils of
the two eyes. We first obtain the positions of the subjects’ eyes fixed at 20 degrees to the
left and right of the computer screen width when performing binocular correction, and
calculate the value of the subjects’ gaze at the center of the computer screen. The width
of the computer screen is about 30 degrees on the left and right, which is equivalent to a
distance of about 0.046 mm (0.031*3/2) between the pupils of the two eyes. That is to say,
when the pupil displacement of the left and right eyes exceeds the central fixation point
plus or minus 0.023 mm (0.046/2), it means that the subject’s eyes have looked away from
the computer screen, or the measurement is disturbed. The data at this time are outliers
and should be deleted and not included in the processing. An example of noise filtering is
shown in Figure 4.

Algorithm 2 Proposed filter out abnormal data points

1 delete (LPCX > (CL + 0.023))
2 delete (LPCX < (CL — 0.023))
3 delete (RPCX > (CR + 0.023))
4 delete (RPCX < (CR — 0.023))

LPCX: is the X-coordinates of the left eye

RPCX: is the X-coordinates of the right eye
CL: is the central fixation point of the left eye
CR: is the central fixation point of the right eye
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Figure 4. (a) Original data; (b) Noise filtered data.

2.2.2. Signal Extrema Search

Using the signal length as the threshold, the data points in the signal are gradually
compared, and the data point is compared with its neighboring data points. When a
data point is larger than the previous data point, it means that the maximum value has
been found. When a data point is smaller than the previous data point, it means that the
minimum value is found. The locations of these data points are the places where SP and FP
phenomena are speculated to occur. However, considering that there are many fluctuations
in the signal, and due to factors, such as nystagmus, the movement of the eyeball may be
slightly changed instantaneously, so it may not be possible to obtain an accurate extreme
value. To improve the accuracy when judging extreme values, this method is designed so
that the gap between two adjacent extreme values must be greater than a certain threshold
(the displacement amplitude of the eyeball must be greater than 0.001 mm). That is to say,
when a certain extreme value is searched, the pupil displacement amplitude of this point
should be at least a certain distance from the last searched extreme value, otherwise it will
not be included in the processing. This method can be used to filter the phenomenon of the
signal not being smooth due to nystagmus, and more accurately predict the highest and
lowest points when the FP phenomenon occurs.

2.2.3. Judging by the Slope

OKN is composed of the SP generated by the eyeball following the direction of
stimulus movement, and the FP that is opposite to the direction of stimulus movement. We
can observe that the positions of extreme data points detected in Figure 5 all occur at the
alternation of the waveform of the eye movement signal. After obtaining the data points of
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all extreme values, the maximum values and the minimum values are divided two by two
into groups to form a line, which represents the occurrence of SP and FP phenomena, as

shown in Figure 6.

LPCX

0.36

0358 —

LPCX move

0.344 ! ! !
212 214 216 218 220 222 224 226 228 230 232
TIME(s)

Figure 5. The gap (red-circled) between two adjacent extreme values is too small to be processed.
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Figure 6. (a) Left-shifted striped OKN test; (b) Right-shifted striped OKN test.

In order to correctly judge FP, we further examine the slope when FP occurs, and fine
adjustments and corrections are made to facilitate other subsequent OKN studies. The
slope is the ratio of the difference between the pupil displacement and its time difference
to indicate the degree of inclination. The function of the slope is to correctly judge and
distinguish SP and FP phenomena, so as to avoid misjudgment caused by confusion. We
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use the slopes of the detected maxima and their adjacent minima, as well as the dynamic
streak film stimulus orientation of the trial, to judge SP versus FP phenomena.

The OKN test in this experiment is a dynamic fringe film that shifts left and right at
various speeds. In Figure 5, the movement trajectory of the subject’s eye gaze position in
the OKN test can be observed with a left and right displacement. The OKN phenomenon
connected by the extreme values has a positive slope when the stimulus movement direction
is moving to the left. (The SP phenomenon is a positive slope, which means that the subject’s
eye movement direction is to follow the stimulation direction to the left in the video. The
negative slope here is the FP phenomenon, which means that the subject’s eyeball resets
the saccade movement). Conversely, when the direction of the stimulus is moving to the
right, it exhibits a negative slope.

3. Experimental Results and Discussion
3.1. Quantitative Measurement of Elicited OKN

Professional physicians were asked to assist in manually marking the correct location
of FP occurrence, as shown in Figure 7a, and made an overlapping control map to compare
the location of FP occurrence screened out by our proposed method with the location
marked by physicians (blue dots) to verify the correctness of the proposed method. The
results show that the proposed method can find out the FP occurrence position of 99% of
OKN . The reason for not full identification is that some special signals are difficult to filter,
which is explained in detail in C. For normal OKN signals, 100% of the locations where FP
occurs can be selected.

0.382 Lpex

0.38 |
0378
0.376
0374

0372

LPCX move

037

0388~

0.366

0.364
105 130

0.382

0.38
0.378
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e
w
I
x|
T

o

@

]
T

0.368 -

0.368 -

0.364
105 130

Figure 7. Results of proposed method. (a) Results marked by physicians; (b) The results of this
method were compared with those marked by physicians.
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3.2. Comparisons with the State-of-the-Art Approaches

The traditional experimental method adopts the method of Fourier transformation
combined with band-pass and high-pass filtering, and uses the Welch method [17] to split
the signal and perform spectrum analysis. The formula is shown in (1). The frequency
at which the OKN phenomenon occurs can be observed approximately in the range of
2~4 Hz, as shown in Figure 8. The callback of this frequency control GP3HD is in line with
the subject’s current saccade state, that is to say, in the experimental setting, the subject has
an OKN phenomenon of about 2 to 4 times per second.

2
_ 1 L |m-1 y
Pper(w) = MUL Y xiy(n)dy(n)e /™ 1)
i=1| n=0

Spectral Analysis (FFT with Welch method)

Power Spectrum
w

Figure 8. Fourier transformation with Welch method; the maximum spectral response is about
2~4 Hz.

Fourier transformation is then used to find out the frequency of FP phenomenon; the
formula is shown in (2). In the peak detection part, high-pass and band-pass FIR filtering is
used first, then an adjustable threshold is set for filtering, the filtered peak is found, and the
adjacent maximum and minimum values are found according to their positions. It can be
observed from Figure 9 that it is easier to find the position of the FP using the results of
high-pass filtering, but its disadvantage is that a threshold must be set as a condition for
screening the correct point. Otherwise, some FP points may be missed.

X | & i . i
S(k) = > +) (xi cos (27‘(Tk> + b; sin <27TTk) ) (2)
i=1

Table 1 shows the comparison between our proposed method and other methods.
At first, we thought that we only needed to use Peak finding [18] to accurately find the
instantaneous high point when FP occurs, but this method is very susceptible to noise
interference and causes misjudgments, resulting in lower accuracy. The application of
Fourier transformation and filtering [19] depends on the judgment of the set value, and
high-pass filtering was selected exclusively by professional researchers as the easiest, so
the accuracy rate is lower and the filtering is higher, and the FP points can be selected
more correctly.
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Figure 9. (a) Original signal; (b) Band-pass filtered signal; (c) High-pass filtered signal.
Table 1. FP recognition rate of each method in OKN and OKN with noise.
Methods Normal OKN Signals p-Value OKN Signals with Noise p-Value
Peak Finding [14] 0.43 <0.001 0.35 <0.001
FFT plus Band-Pass
Filter [20] 0.96 <0.05 0.86 <0.01
FFT plus High-Pass
Filter [20] 1 >0.05 0.91 <0.05
Our Pre";;l]s Method 1 >0.05 097 <0.05
Proposed Method 1 - 0.99 -

According to observation, no matter what the OKN recognition rate is, under the
condition of long-term testing the subjects will generate uncontrolled noise, and these
disturbances will cause deviations in the subsequent processing of the signal, thereby
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affecting the accuracy rate. The proposed method has already filtered out the abnormal
data points in the original signal, and screened the position of FP by the slope and the
magnitude of the eyeball displacement. Only the issue of dull gaze has not been completely
resolved, and the FP judgment of OKN under normal conditions and the method of FFT
coupled with high-pass filtering can successfully find the accurate FP point, and the result
of FP judgment of OKN with noise is also the best.

3.3. Research Contributions and Limitations

When OKN detection is applied in clinical practice, it most often requires quite ex-
pensive instruments, and such a heavy burden makes it difficult for clinical applications
to proceed smoothly. The main results are: (1) OKN detection using low-cost instruments;
(2) the accurate FP position is of great help in calculating and analyzing the eye disease
status of the subjects. Using simple conditional filtering, accurate FP positions can be
obtained quickly.

This method can find the exact FP position without error in a stable situation where the
eyeball is not largely stalled. Because of the irregular occurrence of abnormal nystagmus
and sluggishness, these data samples are not included in the FP/SP reference values.
Although the proposed method can currently filter out these irregular signals, the FP
accuracy of the complete signal identification will still decrease due to these irregular states
in the subjects.

4. Conclusions and Future Work

Accurate and detailed eye movement analysis will be an important reference to help
understand eye diseases. The main method used in many eye movement measurement
equipment is “pupil center corneal reflection” (PCCR) [22]. This method uses a near-
infrared light source to illuminate the subject’s eyes, combines the bright and dark pupil
effects to obtain the position of the center of the pupil, and estimates the gaze direction
from the vector formed by the subtraction between the corneal reflections [23,24]. However,
these methods have high requirements for equipment; in addition to cost issues, they also
require complex and calibrated system settings, which are usually difficult to apply in
general clinical practice.

To solve this problem, we develop an effective algorithm to recognize FP position
in the OKN waveform using a low-cost eye tracking device. The algorithm can filter out
irregular signals, reduce noise, and locate the position of FP correctly on a low-cost eye
tracker. The experimental results indicate that our method’s results are almost consistent
with the results judged by professional physicians. This proves that correct FP detection
results can also be obtained using a low-cost eye tracker. Accurate FP recognition is crucial
to the subsequent calculation of various OKN eye movement parameters, including mean
slow-phase velocity, and the gain derived from the ratio of induced slow-phase velocity to
the velocity of the stimuli. This helps us gain a deeper understanding of eye diseases and
drives the development and possibilities of other related research areas.

In future work, with these important parameters of OKN eye movement, we can estab-
lish the baseline data of health subjects under different stimuli velocity and different stimuli
direction. With these baseline data, the characteristics of OKN response of subjects with
oculomotor disorders, including paralytic strabismus, congenital nystagmus, or acquired
nystagmus, will be established. It is expected that an affordable low-cost eye tracker will
become a more readily available diagnostic tool for general daily clinical practice. Applying
these findings in the clinic can also benefit more patients and improve their lives.
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