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Variable rather than extreme slow 
reaction times distinguish brain 
states during sustained attention
Ayumu Yamashita1,2,3*, David Rothlein1,2, Aaron Kucyi4, Eve M. Valera5,6, Laura Germine5,7, 
Jeremy Wilmer8, Joseph DeGutis2,5,9 & Michael Esterman1,2,9

A common behavioral marker of optimal attention focus is faster responses or reduced response 
variability. Our previous study found two dominant brain states during sustained attention, and 
these states differed in their behavioral accuracy and reaction time (RT) variability. However, RT 
distributions are often positively skewed with a long tail (i.e., reflecting occasional slow responses). 
Therefore, a larger RT variance could also be explained by this long tail rather than the variance 
around an assumed normal distribution (i.e., reflecting pervasive response instability based on 
both faster and slower responses). Resolving this ambiguity is important for better understanding 
mechanisms of sustained attention. Here, using a large dataset of over 20,000 participants who 
performed a sustained attention task, we first demonstrated the utility of the exGuassian distribution 
that can decompose RTs into a strategy factor, a variance factor, and a long tail factor. We then 
investigated which factor(s) differed between the two brain states using fMRI. Across two independent 
datasets, results indicate unambiguously that the variance factor differs between the two dominant 
brain states. These findings indicate that ‘suboptimal’ is different from ‘slow’ at the behavior and 
neural level, and have implications for theoretically and methodologically guiding future sustained 
attention research.

Although sustaining attention over time is important for our everyday life, evidence suggests our attention 
fluctuates from moment to moment despite our efforts to maintain optimal focus. Previous studies have found 
significant individual differences in sustained attention ability in the healthy population, and have related these 
differences to real world outcomes such as driving accidents, school performance, and memory encoding1–5. Fur-
thermore, impairments in sustained attention are common in a diverse range of clinical populations such as atten-
tion-deficit/hyperactivity disorder (ADHD)6–8, major depressive disorder9, schizophrenia10, bipolar disorder11, 
post-traumatic stress disorder12–15, early-life trauma16, and traumatic brain injury17. Therefore, revealing the 
neural and cognitive mechanisms required to sustain optimal attention is an important issue in modern society.

To better characterize sustained attention, attentional states have been behaviorally estimated using response 
accuracy17–19 and reaction time (RT) to stimuli6,20–23. In particular, RT is frequently used in a variety of cognitive 
tasks regardless of the difficulty of the cognitive tasks. For example, previous studies found that fast RTs frequently 
occur before commission errors, thought to reflect lapses due to impulsiveness or mindlessness. This interpreta-
tion is also consistent with the result which shows that fast RTs are associated with task-unrelated thoughts17,20,23. 
On the other hand, slow RTs frequently occur before omission errors, thought to reflect more severe attentional 
lapses due to task disengagement20. Therefore, both fast RTs, which are interpreted as impulsivity and mindless 
automatic responding, and slow RTs, which are interpreted as disengaged/inefficient processing of stimulus infor-
mation, are related to inattention. As an alternative to the speed of RT, intra-individual variability of RT has been 
recognized as an important indicator of sustained attention21,24,25. Attention fluctuates between stable/accurate 
(in-the-zone) and variable/error-prone (out-of-the-zone) states21,26. Furthermore, one of the most consistent 
manifestations of ADHD is the high prevalence of intra-individual RT variability6,8.
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From the viewpoint of the RT distribution across task trials, the mean of the RTs represents the response 
speed while the variance of the RTs represents the intra-individual variability. Sustained attention tasks vary 
considerably. They include simple reaction time tasks such as the psychomotor vigilance task (PVT), which do 
not have a response deadline, and continuous performance tasks (CPT) such as sustained attention to response 
task (SART) and gradual onset CPT (gradCPT), which have an implicit deadline for a response as the trials 
follow in rapid succession. Given this implicit response deadline in CPTs, which does not allow extremely slow 
responses, mean and variance had been the main focus of research using these tools. While RT mean and vari-
ance are intuitive and useful, these parameters are usually inappropriate because, despite response deadlines, 
RT distributions rarely conform to Gaussian distribution. RT distributions are typically positively skewed with 
a long tail indicating more extreme slow responses than would be found in a Gaussian distribution. That is, a 
large RT variance could be fully accounted for by the long tail factor of the RT distribution. Hence, we believe 
that distinguishing the distributional drivers of RT variability is important to better tease apart the informa-
tion contained in RT distributions and their relationship to sustained attention. The exGaussian distribution is 
commonly used to decompose RTs into μ and σ, that, respectively, describe the mean and standard deviation 
(variability) of the Gaussian distribution, and an independent exponentially distributed variable, τ, that accounts 
for the positive skew (Fig. 1c–e)27,28. Theoretically, mean RT = μ + τ, and RT variance = σ2 + τ2. Among the three 
ex-Gaussian parameters, a previous study of sustained attention in ADHD in adolescents showed τ was specifi-
cally positively associated with omission errors, suggesting more frequent disengagement-based attention lapses; 
μ was significantly negatively associated with commission errors suggesting an impulsive, or mindless response 
style29. Further, this study and others found that ADHD was not associated with generalized RT slowing, which 
is characterized by μ, but rather was associated with both the long tail factor of slower RT, which is character-
ized by τ, and with the variance factor, which is characterized by σ29,30. However, there are still only a few studies 
applying exGaussian distribution to RTs in sustained attention tasks such as continuous performance task22,29–31. 
Therefore, in the first part of this study, we examined the relationship between exGaussian parameters and sus-
tained attention performance using a big dataset including over 20,000 participants.

In the second part of this study, we used these tools to investigate the neural mechanism of sustained attention. 
In our previous study, we observed two dominant brain states during sustained attention task using functional 
magnetic resonance imaging (fMRI)32. One state (State1) was characterized by activation of frontoparietal net-
work subsystem A (FPNA), default mode network (DMN) and limbic network, and the other state (State2) was 
characterized as activation of frontoparietal network subsystem B (FPNB), dorsal attention network (DAN), 
salience network (SN), somato-motor (SMN) and visual network. RT variance was lower and accuracy was 
higher during State1 than during State2, suggesting State1 was optimal and State2 was suboptimal. However, 

Figure 1.   Two alternative hypotheses and exGaussian distributions. (a) Illustration of large variance hypothesis. 
(b) Illustration of long tail hypothesis. (c) exGaussian distributions with different μ (μ = {0, 1, 2, 3}, σ = 1, τ = 1). 
(d) exGaussian distributions with different σ (μ = 0, σ = {0.25, 0.50, 0.75, 1.0}, τ = 1). (e) exGaussian distributions 
with different τ (μ = 0, σ = 1, τ = {1, 2, 3, 4}).
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since this study assumed a Gaussian RT distribution, it is not known whether the difference in RT variance 
between brain states was due to the variance factor or the long tail factor. Determining which factor(s) differ 
between brain states is important for better understanding the mechanisms of sustained attention. For example, 
differences in the variance factor, on the one hand, suggests attentional/brain states reflects variability across 
the entire empirical RT distribution, including both impulsive fast RT and slow RTs (Large variance hypothesis; 
Fig. 1a). Previous studies suggest this factor may represent exploration in the environment to gather information 
or adjust cognitive control settings33. On the other hand, differences in the long tail factor suggests attentional/
brain states reflects only more infrequent and extremely slow RTs suggesting occasional attention lapses (Long 
tail hypothesis; Fig. 1b)22,29,34. Here, by comparing exGaussian parameters between these two brain states, we can 
help resolve this ambiguity present in many studies, including our recent work. For the purpose of replication, 
we tested each of these two hypotheses using two different independent fMRI datasets.

Materials and methods
Overview.  We conducted our analyses with three datasets. In all datasets, all participants performed a grad-
CPT. The gradCPT is a well-validated test of sustained attention, previously used to define attentional states by 
reaction time variability fluctuations over time2,21,26. Dataset1 consists of gradCPT behavioral data from 21,406 
participants between 10 and 70 years old who performed one session of 4 min gradCPT with an interstimulus 
interval (ISI) of 800 ms obtained via the website testmybrain.org2. Dataset1 was used to investigate the rela-
tionship between exGaussian parameters and sustained attention performance. Dataset2 consists of gradCPT 
behavioral data with fMRI from 16 participants who performed three runs of 8 min gradCPT with ISI of 800 ms 
in MRI scanner21. Dataset2 was used to investigate the difference in exGaussian parameters between brain states. 
Dataset3 consists of gradCPT behavioral data with fMRI from 29 participants who performed four runs with 
thought probes of 9 min gradCPT with ISI of 1300 ms in MRI scanner35. Dataset3 was used to replicate the 
results in the Dataset2.

Behavioral analysis.  gradual onset continuous performance task.  The gradCPT contained 10 round, gray-
scale photographs of mountain scenes and 10 of city scenes. These scenes were randomly presented with 10% 
mountain and 90% city trials, without allowing the identical scene to repeat on consecutive trials. Scene images 
gradually transitioned from one to the next, using a linear pixel-by-pixel interpolation, with each transition oc-
curring in 800 ms (fast version; Dataset1 and Dataset2) or 1300 ms (slow version; Dataset3). Participants were 
instructed to press a button for each city scene, and withhold responses to mountain scenes. Response accuracy 
was emphasized without reference to speed. However, given that the next stimulus would replace the current 
stimulus in 800/1300 ms, a response deadline was implicit in the task. In the Dataset1, the order of presented im-
ages was the same for all participants, but in the Dataset2 and 3, the order of presented images was randomized 
individually. This method is the same as the one used in our previous studies21,32.

Calculation of reaction time.  RT was calculated relative to the beginning of each image transition, such that an 
RT of 800/1300 ms (slow and fast versions) indicates a button press at the moment image n was 100% coherent 
and not mixed with other images. A shorter RT indicates that the current scene was still in the process of tran-
sitioning from the previous, and a longer RT indicates that the current scene was in the process of transitioning 
to the subsequent scene. So, for example, an RT of 720/1170 ms would be at the moment of 90% image n and 
10% image n − 1, and so forth. On rare trials with highly deviant RTs (before 70% coherence of image n and after 
40% coherence of image n + 1) or multiple button presses, an iterative algorithm maximized correct responses 
as follows. The algorithm first assigned unambiguous correct responses, leaving few ambiguous button presses 
(presses before 70% coherence of the current scene and after 40% coherence of the following scene or multiple 
presses occurred on < 5% of trials). Second, ambiguous presses were assigned to an adjacent trial if 1 of the 2 had 
no response. If both adjacent trials had no response, the press was assigned to the closest trial, unless one was 
a no-go target, in which case subjects were given the benefit of the doubt that they correctly omitted. Finally, if 
there were multiple presses that could be assigned to any 1 trial, the fastest response was selected. Slight varia-
tions to this algorithm yielded highly similar results, as most button presses showed a 1–1 correspondence with 
presented images21.

Estimation of exGaussian distribution parameters.  We estimated exGaussian parameters of RTs (μ, σ, τ) using 
only correct commission responses (press to city image) for every participant. To estimate parameters, we used 
maximum likelihood estimation method implemented in ScyiPy version 1.5.236. As a comparison, we further 
estimated the parameters of the Gaussian distribution (μnormal, σnormal) in the same way. We compared which 
distribution fit the data better by comparing the R-squared values between the actual data and the simulated 
data obtained using the estimated parameters. Note, we found almost half of participants had negative skewness 
in their RT distribution, which indicates the long tail for fast RT, in Dataset1 (11,291 of 21,406 participants). 
Since the assumed exGaussian distribution is not appropriate for negative skewed distributions, we estimated 
exGaussian parameters (μ, σ, τ) using flipped RT distribution (reverse the positive and negative values of RT) for 
participants with negative skewness. In this way, we were able to improve the goodness of fit for participants with 
negative skewness (Supplementary Fig. S1). When we integrate the parameters with the participants with posi-
tive skewness, we flipped the value of μ, but used σ and τ to put them on the same scale. Therefore, τ was initially 
interpreted as the long tail of the RT distribution regardless of which direction in the Dataset1. We note that 
interpretation of the negative skewness is difficult, as a very slow RT is possibly regarded as a fast RT in the next 
trial due to the nature of the gradCPT. To support this idea, we found significant difference in mean RT between 
individuals with positive skewness versus negative skewness (Positive skewness: mean RT = 850 ms; Negative 
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skewness: mean RT = 888 ms, t21404 = 40.9, p < 0.001, Hedges’ g = 0.56, two sample t-test). From this result, we can 
speculate that a very slow RT from individuals with slower RTs on average is likely to be regarded as a fast RT 
on the next trial (and omission error to current trial). This may explain why individuals with negative skewness 
had slower mean RT. However, a previous study shows the existence of a type of error called anticipation that 
indicates pressing a button in anticipation of a stimulus resulting in a very fast RT20. Thus, it is difficult to inter-
pret whether the negative skewness really represents frequent fast RTs in the Dataset1, or rather slow RTs to the 
previous stimulus. Given this ambiguity, we also conducted the analyses of Dataset1 separately for both positive 
and negative skewed participants, which revealed mostly consistent results, albeit with some differences. Thus, 
to avoid this ambiguity, for Dataset2 and Dataset3, as most of participants had positive skewness (81% and 86%, 
respectively), participants with negative skewness were excluded from the analysis so that the long tail factor can 
be interpreted as slow RTs unambiguously. We found mean RTs were significantly slower in Dataset1 than those 
in the Dataset2, which had the same ISI (Dataset1: mean RT = 871 ms; Dataset2: mean RT = 744 ms, t21420 = 7.49, 
p < 0.001, Hedges’ g = 1.89, two sample t-test). From this result, we can speculate that this is the reason why there 
were many participants with negative skewness in Dataset1 with the same logic as above, which could be driven 
by technical differences in response collection (web vs. lab)2. Note that when we included participants with nega-
tive skewness in the analysis by estimating exGaussian parameters using flipped RT method described above, the 
pattern of the results did not change in Dataset2 and Dataset3 (Supplementary Fig. S2).

Calculation of accuracy.  In addition to RT related performance, we also calculated accuracy of response to 
investigate the relationship with exGaussian parameters in Dataset1. Trials in which participants erroneously 
inhibited a button press to city images were considered omission errors. Trials in which participants erroneously 
responded to mountain images were considered commission errors. We calculated the Pearson correlation coef-
ficient between exGaussian parameters (μ, σ, τ) and the rate of  omission and commission errors, respectively.

fMRI analysis.  The following descriptions were exactly the same methodology as in our previous study32.

Preprocessing.  A preprocessing of the fMRI data was performed using FMRIPREP version 1.3.037. Preprocess-
ing steps were realignment, coregistration, segmentation of T1-weighted structural images, normalization to 
Montreal Neurological Institute space. For more details of the pipeline, see http://​fmrip​rep.​readt​hedocs.​io/​en/​
latest/​workf​lows.​html.

fMRI signal extraction from brain networks.  We used the 400 regions of interest (ROIs) that were defined as 
4-mm spheres around the center coordinates38. The blood oxygen level dependent (BOLD) signal time courses 
were extracted with spatial smoothing using an isotropic Gaussian kernel of 6 mm full-width at half-maximum 
from these 400 ROIs.

We removed several sources of spurious variance from 400 ROIs’ signal time courses by using linear regression 
with eighteen regression parameters, including six motion parameters, an average signal over the whole brain, 
five event-related task regressors on the BOLD response time course and six physiological noise regressors. To 
account for task events (commission error, correct omission, correct commission, and omission error) and trial-
to-trial RT, we estimated five BOLD response time courses of each event type by using hemodynamic_models 
function implemented in Nistat (https://​nista​ts.​github.​io/). To account for the physiological confounding, we 
extracted six physiological noise regressors by applying anatomical CompCor (aCompCor)39. We obtained a 
mask to exclude signals with a cortical origin by eroding the brain mask and ensuring that it contained sub-
cortical structures only. Six aCompCor components were calculated within the intersection of the subcortical 
mask and union of the CSF and WM masks calculated in T1-weighted image space after their projection to the 
native space of functional images in each session. Finally, to account for variance and mean differences across 
run and participant, we standardized the BOLD signal time course for each ROI (shifted to zero mean and 
scaled to unit variance) after noise regression. These ROIs were then classified into seven functionally different 
brain networks that were determined in the previous studies38. A recent study identified two distinct subsystems 
within the FPN. FPNA exhibited stronger connectivity with the DMN than the DAN, whereas FPNB exhibited 
the opposite pattern40. Therefore, we split the FPN into FPNA and FPNB using Yeo’s 17 network38 and classified 
into eight functionally different brain networks in the end. For each participant, we then calculated eight time 
series that represented the activity of these brain networks by averaging BOLD signal time courses in the 400 
ROIs corresponding to those brain networks. Note, using the voxel-wise network average time series instead of 
the ROI-wise network average produced nearly identical patterns of results.

Pairwise maximum entropy model.  The pairwise Maximum entropy model (MEM) was applied to the preproc-
essed BOLD signals as follows in the same manner as that employed in previous studies41–46. To conduct this 
analysis, we used open Energy Landscape Analysis Toolkit (https://​sites.​google.​com/​site/​ezaki​takah​iro/​softw​
are). For each network activity time series, the obtained BOLD signals were binarized with a threshold that 
was defined as the time-averaged activity of the network activity. We then concatenated BOLD signals from 
all runs and all participants for each network activity. In this method, the binarized activity σ t

i  at network i 
and discrete time t represents either active or inactive (+ 1 or 0). The activity pattern at time t is described by 
Vt =

[

σ t
1 , σ

t
2 , . . . , σ

t
N

]T where N is the number of the networks. In our case, the number of the networks was 
eight. The k th brain activity pattern is described by Vk 

(

k = 1, 2, . . . , 2N
)

 . The probability distribution of the 
k th brain activity pattern ( Vk ) with the largest entropy follows the Boltzmann distribution, when the empiri-
cal activation of network i, �σi� = (1/T)

∑T
t=1σ

t
i  , and the empirical pairwise interaction between networks 
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i and j, �σiσj� = (1/T)
∑T

t=1σ
t
i σ

t
j  are estimated from the data, where T is the number of volumes47. That is, 

P(Vk) = eE(Vk)/
∑2N

l=1e
−E(Vl) , where E(Vk) is the energy of activity pattern Vk and is given by

,σi(Vk) is the binarized activity (+ 1 or 0) at network i under activity pattern Vk . We estimated hi and Jij by 
maximum likelihood estimation to adjust the model-based activation of network i,�σi�model(= hi ) and the model-
based pairwise interaction between networks i and j,〈σiσj〉model

 (= Jij ) toward the empirical activation 〈σi〉 and 
the empirical pairwise interaction 〈σiσj〉,�σi�model =

∑2N

l=1σi(Vl)P(Vl) and �σiσj�model
=

∑2N

l=1σi(Vl)σj(Vl)P(Vl) . 
The likelihood was maximized by a gradient ascent scheme. Please see the previous study for more details how 
to estimate hi and Jij42,

We confirmed whether the pairwise MEM accurately fit to the data by calculating Pearson’s correlation coef-
ficient between empirical appearance probability and model appearance probability P(Vk) . Empirical appearance 
probability of brain activity pattern Vk is calculated by (1/T)

∑T
t=1z

t
k , where zt is a K-dimensional binary variable 

having a 1-of-K representation in which a particular element ztk is equal to 1 and all other elements are equal to 
0. The values of ztk therefore satisfy ztk ∈ {0, 1} and 

∑

k z
t
k = 1 , and we see that there are K ( = 2N ) possible brain 

activity patterns for the vector zt at time t according to which element is nonzero. In non-technical terms, this 
confirms whether the model successfully fit the data.

Energy landscape analysis (Definition of brain state).  The energy landscape is defined as a graph of brain activity 
patterns Vk with the corresponding energy E(Vk) as done in the previous studies41,42,45,46. We first exhaustively 
searched for local energy minima that has the smallest energy value among those of all the N adjacent patterns. 
Two brain activity patterns are regarded as adjacent if they take the opposite binary activity at just one brain 
region. Thus, we can discover some local minimum brain activity patterns. Therefore, the number of brain states 
(local minimum brain states) is determined in a data-driven manner. We then summarized all brain activity pat-
terns into local minimum brain states in the following manner. We first selected a starting brain activity pattern 
k among the 2N brain activity patterns. Then, if any of its neighbor patterns has a smaller value of energy than 
pattern k, we moved to the neighbor pattern with the smallest energy value. Otherwise, we did not move, which 
implied that pattern k was a local minimum. We repeated this procedure until arriving at a local minimum. The 
starting pattern k was regarded to belong to the local minimum brain state that was finally reached. We estimated 
the corresponding local minimum brain state for all brain activity patterns, so that we could estimate the time 
series of brain states from the time series of brain activity patterns.

exGaussian parameters in each brain state.  We observed two dominant brain states during the sustained atten-
tion task using the energy landscape analysis32. State1 was characterized by activation of FPNA, DMN and lim-
bic network, and State2 was characterized as activation of FPNB, DAN, SAN, SMN and visual network. After 
defining these brain states, all participants had a brain state transition time series and a RT time series. Thus, 
RTs were gathered for each brain state, and exGaussian parameters were estimated using the RTs for each brain 
state in each participant. To account for the hemodynamic response lag, we shifted the time labels of the brain 
states backwards by 5 s. To statistically investigate the difference in parameters between brain states, we con-
ducted two-tailed paired t-tests and calculated Hedges’ g as the effect size48,49. We did not control for multiple 
comparisons for this analysis, because we confirmed its reproducibility by performing the same analysis on two 
independent datasets.

Details in each dataset.  Dataset1.  We included 21,406 volunteers between the ages of 10 and 70 years 
(mean = 30.48, sd = 13.27) in the analyses. Participants were visitors to TestMyBrain.org, a cognitive testing web 
site where members of the public participants in research studies in exchange for individualized feedback about 
their performance2,50,51. Data from repeat participation were excluded. Overall, 25,274 participants completed 
the task, and 21,406 passed quality control measures (missing data or technical problems)2. Among technical 
problems, we chose to exclude testing sessions that exceeded 10% error in the average stimulus presentation 
time, that is, the time it took for a new image to transition from 0 to 100% opacity. Other participants were 
excluded for “tune-outs,” defined as intervals of 30 s or more without a response. Of the 21,406 participants that 
were included, there was a nearly equal ratio of males and females (11,540 males, 9827 females, 39 unknown). 
The study and all analyses were approved by the Committee for the Use of Human Subjects at Harvard Univer-
sity, and written informed consent was obtained from all participants. It was performed in accordance to the 
relevant guidelines and conforms to the principles of the Declaration of Helsinki. The data used in this study and 
portions of the methods have been published2,51, but the current analyses and results have not been published 
elsewhere.

Dataset2.  Sixteen participants (6 males, ages 18–34 years, mean age = 24.1 years) performed the gradCPT dur-
ing fMRI. Subjects completed the three 8-min gradCPT runs. All participants were right-handed, with normal 
or corrected-to-normal vision and no reported history of major medical illness, head trauma, neurological, or 
psychiatric disorder. The study and all analyses were approved by the VA Boston Healthcare System IRB, and 
written informed consent was obtained from all participants. It was performed in accordance to the relevant 
guidelines and conforms to the principles of the Declaration of Helsinki. The data used in this study and portions 
of the methods have been previously published21,32, but the current analyses and results have not been published 
elsewhere.

(1)E(Vk) = −
∑N

i=1
hiσi(Vk)−

1

2

∑N

i=1

∑N

j=1,j �=i
Jijσi(Vk)σj(Vk)
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Scanning was performed on a 3 T Siemens MAGNETOM Trio system equipped with a 12-channel head coil, 
at the VA Boston Neuroimaging Research Center. Functional runs included 248 whole-brain volumes acquired 
using an echo-planar imaging sequence with the following parameters: repetition time (TR) = 2,000 ms, echo time 
(TE) = 30 ms, flip angle = 90°, acquisition matrix = 64 × 64, in-plane resolution = 3.0 mm2, 33 oblique slices, slice 
thickness = 3, 0.75 mm gap. MPRAGE parameters were as follows: TE = 3.32 ms, TR = 2530 ms, flip angle = 7°, 
acquisition matrix = 256 × 256, in-plane resolution = 1.0 mm2 slice thickness = 1.0 mm.

Dataset3.  We attempted to replicate the results using independent Dataset 3. Twenty-nine participants (13 
males, ages 21–36 years, mean age = 26.4 years) performed the long ISI gradCPT (1300 ms compared to 800 ms 
in the Dataset 2) during fMRI. Participants performed the gradCPT, modified here to include thought-probes 
to investigate mind wandering. Subjects completed the four long ISI gradCPT runs with intermittent thought-
probes. Subjects were screened by phone and at an initial visit before the day of neuroimaging, where sub-
jects were also trained on performing the long ISI gradCPT. Exclusion criteria were as follows: current mood, 
psychotic, or anxiety disorders (excluding simple phobias), ADHD, current use of psychotropic medication, 
full-scale IQ less than 80, neurological disorders, sensorimotor handicaps, current alcohol or substance abuse/
dependence, and claustrophobia. The study and all analyses were approved by the Partners Human Research 
Institutional Review Board, and written consent was obtained from all participants. It was performed in accord-
ance to the relevant guidelines and conforms to the principles of the Declaration of Helsinki. The data used in 
this study and portions of the methods have been published32,52,53, but the current analyses and results have not 
been published elsewhere.

Participants performed the gradCPT including thought-probes. Thought-probes appeared every 44–60 s 
pseudo-randomly (three possible durations of 44, 52, and 60 s). Upon the thought-probe, a question “To what 
degree was your focus just on the task or on something else?” was displayed. A continuous scale appeared with 
far-right and far-left anchors of “only task” and “only else”, respectively. Subjects pressed buttons with their middle 
and ring fingers to move the scale left and right, and with their thumb to enter their response. Responses were 
recorded on a graded scale of integers (not visible to the subjects) ranging from 0 (only task) to 100 (only else). 
The gradCPT immediately resumed after subjects entered their question responses (except for the last thought-
probe in the run). This method is the same as the one used in our previous studies32,52,53.

Scanning was performed on a 3 T Siemens CONNECTOM scanner with a custom-made 64-channel phased 
array head coil, housed at the Athinoula A. Martinos Center for Biomedical Imaging. Functional runs included 
about 490 whole-brain volumes acquired using a multiband, echo-planar imaging (simultaneous multislice fac-
tor of 4) with the following parameters: TR = 1,080 ms, TE = 30 ms, flip angle = 60°, acquisition matrix = 55 × 55, 
in-plane resolution = 2.0 mm2, 68 oblique slices, slice thickness = 2. MPRAGE parameters were as follows: 
TE = 1.15 ms, TR = 2530 ms, flip angle = 7°, acquisition matrix = 256 × 256, in-plane resolution = 1.0 mm2 slice 
thickness = 1.0 mm.

Results
Relationship between sustained attention performance and distribution parameters in Data-
set1.  We first confirmed the exGaussian distribution (or reversed exGaussian) better fit the data than the 
Gaussian distribution (Positive skewness group, exGaussian: R squared = 0.980, Gaussian: R squared = 0.971, 
t10114 = 52.9, p < 0.001, Hedges’ g = 0.51; Negative skewness group, reversed exGaussian: R squared = 0.974, Gauss-
ian: R squared = 0.962, t11290 = 47.1, p < 0.001, Hedges’ g = 0.43, paired t-test, Supplementary Fig. S1). Note, the 
goodness of fit (R squared) for Gaussian distribution was still high (R squared > 0.9). Descriptive statistics 
values of exGaussian parameters are summarized in Table 1. Given the relatively high skew and kurtosis, we 
report Spearman correlations (a common rule of thumb for normality is +/− 2 and 6, respectively, for skew and 
kurtosis54). Furthermore, we assessed the reliability of these parameters by using a split-half method. Namely, 
we divided into the first 2 min and the second 2 min and fitted exGaussian distribution (or reversed exGaussian) 
separately to each half, and calculated the Spearman-Brown corrected reliability. We found acceptable to high 

Table 1.   Descriptive statistics values in exGaussian parameters.

Descriptive statistics values Mean Standard deviation Skewness Kurtosis

Positive Skewness group

µ 0.80 0.06 -0.17 1.02

σ 0.08 0.03 1.55 3.47

τ 0.05 0.02 1.00 7.94

Negative Skewness group

µ 0.97 0.10 0.43 -0.13

σ 0.10 0.03 1.18 2.30

τ 0.08 0.05 1.55 3.12

All participants

µ 0.89 0.12 0.51 -0.08

σ 0.09 0.03 1.21 2.27

τ 0.07 0.04 2.04 6.14
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reliability for parameters (All participants, μ: reliability = 0.78; σ: reliability = 0.76; τ: reliability = 0.5). Note that 
although this version of the task is only 4 min in duration, we confirmed that there were significant performance 
decrements (accuracy decreased and RT variance increased) over time (Supplementary Fig. S3) indicating this 
abbreviated version of the task did tax sustained attention.

Next, we investigated relationship between exGaussian parameters and errors by using all participants. We 
found that μ was moderately positively correlated with the number of omission errors and negatively correlated 
with the number of commission errors across individuals (Omission errors: Spearman’s rho = 0.43, p < 0.001, 
Supplementary Fig. S4a; Commission errors: Spearman’s rho = − 0.23, p < 0.001, Supplementary Fig. S4d). This 
result indicates that the participants who tend to respond slowly (larger μ) have more frequent omission errors 
and fewer commission errors, and vice versa. In other words, μ could represent an individual strategy factor, 
which is the same interpretation as average RT and criterion in our previous studies assuming a Gaussian 
distribution2,55. Next, we found σ was moderately positively correlated with both the number of omission errors 
and the number of commission errors (Omission error: Spearman’s r = 0.56, p < 0.001, Supplementary Fig. S4b; 
Commission error: Spearman’s r = 0.39, p < 0.001, Supplementary Fig. S4e), consistent with previous interpreta-
tion of RT variability as reflecting an ability factor2. On the other hand, we found τ was considerably positively 
correlated with the number of omission errors and weakly positively correlated with the number of commission 
errors (Omission errors: Spearman’s r = 0.55, p < 0.001, Supplementary Fig. S4c; Commission errors: Spearman’s 
r = 0.17, p < 0.001, Supplementary Fig. S4f). Furthermore, a multiple regression analysis with each error as the 
dependent variable, yielded significant coefficients for every parameter differently (see Table 2). We found that 
the number of omission errors was best explained by τ and the number of commission errors was best explained 
by σ. These results indicate that fitting exGaussian could separate the strategy factor (μ), the variability factor 
(σ), and the long tail factor (τ), because all parameters have different relationship with sustained attention 
performance. We next investigated the relationships in negative skewness group and positive skewness group 
separately. The patterns of the result were similar except the relationship between μ and the number of omission 
error was absent in positive skewness group (Fig. 2). Given these differences, we focused on the un-ambiguous 
positive skew group in the subsequent datasets, but report the results from the full sample for completeness in 
the Supplementary Information.

Difference in exGaussian distribution parameters between brain states in Dataset2.  As we 
have shown in our previous studies32, we observed two dominant brain states during gradCPT using an energy 
landscape analysis  (Fig3 b). State1 was characterized by higher activity in FPNA, DMN and limbic network, 
and was behaviorally optimal (high accuracy), while State2 was characterized by higher activity in FPNB, DAN, 
SN, SMN and visual network and was behaviorally suboptimal (low accuracy) (Supplementary Fig. S5a). This 
indicates that fluctuation of brain activity during gradCPT can be described as dynamic transitions between the 
two brain states represented by State1 and State2. In Dataset2, three of 16 participants had negative skewness 
and were excluded from the analysis. We first confirmed the exGaussian distribution better fit the data than 
the Gaussian distribution (t12 = 3.64, p < 0.005, Hedges’ g = 0.78, paired t-test, Fig. 3a,c). We then compared the 
exGaussian parameters between two brain states. We found only σ was significantly larger in State2 than State1 
(μ: t12 = 1.35, p = 0.20, Hedges’ g = 0.083; σ: t12 = 2.29, p < 0.05, Hedges’ g = 0.31; τ: t12 = 0.32, p = 0.76, g = 0.048, 
paired t-test, Fig. 3b,d). This result indicates that the difference in RT variance between brain states was not due 
to difference in the long tail factor, but due to the difference in the variability factor. Note that when we estimated 
exGaussian parameters using flipped RT distribution for participants with negative skewness and included in 
analysis, the pattern of results did not change (Supplementary Fig. S2a).

Replication using an independent dataset.  We observed the same two dominant brain states in Data-
set3 (Fig. 4b). State1 was characterized by higher activity in FPNA, DMN and limbic network, and was behav-
iorally optimal (high accuracy), while State2 was characterized by higher activity in FPNB, DAN, SN, SMN and 
visual network and was behaviorally suboptimal (low accuracy) (Supplementary Fig. S5b). In Dataset3, four of 

Table 2.   Multiple regression predicting each error with exGaussian parameters.

β t p

Dependent variable: Omission error

µ 1.37 22.7  < 0.00001

σ 2.78 57.1  < 0.00001

τ 3.63 60.2  < 0.00001

R2 = 0.398, F(3, 21,402) = 4710, 
p < 0.00001

Dependent variable: Commission 
error

µ − 2.44 − 79.1  < 0.00001

σ 2.04 81.9  < 0.00001

τ 1.63 52.8  < 0.00001

R2 = 0.368, F(3, 21,402) = 4151, 
p < 0.00001
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29 participants had negative skewness and were excluded from analyses. We first confirmed that the exGauss-
ian distribution better fit the data than the Gaussian distribution (t24 = 6.52, p < 0.001, Hedges’ g = 0.94, paired 
t-test, Fig.  4a,c). We then compared exGaussian parameters between two brain states. We found only σ was 
significantly larger in State2 than State1 (μ: t24 = 1.78, p = 0.089, Hedges’ g = 0.099; σ: t24 = 6.29, p < 0.001, Hedges’ 
g = 0.45; τ: t24 = 0.46, p = 0.65, Hedges’ g = 0.069, paired t-test, Fig. 4b,d). Again, σ was higher in the optimal vs 
suboptimal brain state, which coincided with worse accuracy (Supplementary Fig. S5b). This result indicates that 
we successfully replicated our result in the independent dataset. Note that when we included estimated partici-
pants with negative skewness by estimating exGaussian parameters using flipped RT distribution, the pattern of 
results did not change (Supplementary Fig. S2b).

We further investigated the relationship between exGaussian parameters and mind wandering score across 
participants. We found a significant Spearman’s correlation coefficients between σ and mind wandering score 
(μ: rho = 0.17, p = 0.38; σ: rho = 0.56, p = 0.0018; τ: rho = 0.37 p = 0.0502, Supplementary Fig. S6). That is, the par-
ticipants who tend to mind wandering had larger σ. Although we did not find significant correlation between 
τ and mind wandering score, statistical power may have been insufficient to find the relationship (rho = 0.37).

Discussion
In the first part of this study, we aimed to disambiguate the ways in which reaction times are behavioral indi-
cators of sustained attention. To do this, we verified the utility of exGaussian fitting to RT distributions in the 
gradCPT, and investigated the relationship between exGaussian parameters (μ, σ, and τ) and sustained atten-
tion performance (the number of omission error and commission error) using a large gradCPT dataset which 
included over 20,000 participants. We found that all exGaussian parameters were uniquely related to different 
aspects of sustained attention performance across individuals, with the variance factor most consistently related 
to all measures of accuracy. In the second part of this study, we tested the hypothesis that this variance factor 
represents different brain states (large variance hypothesis) as identified by an fMRI energy landscape analysis, 
vs. the alternative hypothesis that the long tail factor represents these different brain states (long tail hypothesis). 
Our results showed a significant difference in the variance factor (σ) between brain states, such that one brain 
state reflects optimal attention (lower variance and higher accuracy) and the other reflects suboptimal atten-
tion (higher variance and lower accuracy). We further replicated these results in a second independent dataset.

We found that μ, or the mean of the normal component of the reaction time, had moderate positive correla-
tion with omission error and negative correlation with commission error. This result is consistent with previous 

Figure 2.   Relationship between exGaussian distribution parameters and sustained attention performance in 
each skewness group. (a) Scatter plot and histograms of μ and the number of omission errors. (b) Scatter plot 
and histograms of σ and the number of omission errors. (c) Scatter plot and histograms of τ and the number of 
omission errors. (d) Scatter plot and histograms of μ and the number of commission errors. (e) Scatter plot and 
histograms of of σ and the number of commission errors. (f) Scatter plot and histograms of τ and the number 
of commission errors. Solid line indicates a kernel density estimate, which is a method for visualizing the 
distribution of observations. Spearman’s correlation coefficients values were shown in each panel. Orange color 
indicates positive skewness group and blue color indicates negative skewness group.
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reports that fast RTs are associated with commission error and slow RTs are associated with omission error20. 
That is, it is thought that μ represents either a strategy to reduce omission errors by speeding up the average RT 
or a strategy to reduce commission errors by slowing down the average RT2,29,56. This strategy factor, related to 
speed of reaction time, is also associated with a response bias to press (faster) or withhold (slower)2. We also 
found that σ, or the variance of the normal component of the reaction time, had moderate positive correlation 
with both omission error and commission error. We also found that σ was related to mind wandering. These 
results indicate that the variance factor is related to errors in general, regardless of the type of error. On the 
other hand, we found τ, or the exponential tail of the reaction time distribution, had moderate to large positive 
correlation with omission error but a smaller correlation with commission error. This result suggests that τ was 
strongly associated with occasional, more catastrophic attention lapses, or task disengagement29,56. These results 
indicate that fitting exGaussian could separate the strategy factor (μ), the variability factor (σ), and the long tail 
factor (τ), because all parameters have different relationships with sustained attention performance (the number 
of omission and commission errors). However, we note that interpretation of τ is difficult as we described in 
the “Methods” Section (“Estimation of exGaussian distribution parameters”), and therefore the interpretation 
should be treated with caution. Namely, in the gradCPT, this tail may manifest as both slow RTs (positive skew) 
or fast RT (negative skew), as slow responses to a given trial may be misassigned as fast responses to the next trial, 
given the gradual fading and some unavoidable ambiguity of a minority of responses (see “Methods”; Esterman 
et al. 2013)21. Similarly, given the response deadline implicit in this task, the long tail parameter may have been 
underestimated, and the reliability of this factor was far lower than the other RT factors, potentially reducing 
the ability to detect meaningful individual differences.

In our previous study32, we found across 4 independent datasets, that two dominant brain states, which were 
related to optimal and suboptimal attention, occurred during sustained attention. State1 was characterized by 
higher activity in FPNA, DMN and limbic network, and was behaviorally optimal, while State2 was characterized 
by higher activity in FPNB, DAN, SN, SMN and visual network and was behaviorally suboptimal. RT variance was 
lower and accuracy was higher during State1 than during State2, suggesting State1 was optimal and State2 was 
suboptimal. However, we did not previously analyze differences in RTs while accounting for their non-normality. 

Figure 3.   Results summary in Dataset2. (a) RT histogram and fitting result. (b) RT histograms in each brain 
state. Individual state is represented by an activity pattern in which each brain region is active (blue and red) 
or inactive (white). (c) R squared values for exGaussian and Gaussian distributions for each individual. (d) 
exGaussian parameters differences between brain states for each individual. *p < 0.05, **p < 0.005. DMN: 
default mode network; Lim: limbic; FPN: frontoparietal network; DAN: dorsal attention network; SAN: 
salience network; SMN: somatomotor network; Vis: visual.DMN: default mode network; Lim: limbic; FPN: 
frontoparietal network; DAN: dorsal attention network; SAN: salience network; SMN: somatomotor network; 
Vis: visual.
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In this study, we examined how RT distribution differed across two dominant brain states by comparing these 
exGaussian parameters characterized behaviorally in Dataset1. When doing so, we consistently found the vari-
ability factor (σ) was significantly different between brain states in two independent datasets. Note, although we 
did not find a significant difference in the long tail factor (τ) between brain states, it is possible that τ was not 
different due to the nature of the experimental task. That is, since the gradCPT has a short ISI (800 or 1300 ms), 
extremely long RTs were not possible. This may also have contributed to the relatively lower reliability of this 
factor. Despite this limitation, these results suggests that both slow and fast RTs are induced by same suboptimal 
brain state (State2) characterized as activation of DAN, SAN, SMN, FPNB and visual networks.

There are a number of potential interpretations of the variance factor. A previous study suggested that vari-
ability may represent exploration from the viewpoint of exploring (variable) and exploiting (stable) trade-offs33. 
For example, participants with large variability exhibit faster learning than participants with small variability57. 
We speculate that State1 may be the exploitative state and State2 may be the explorative state, with regard to 
response strategy or approach to the task. For example, when accuracy is higher, participants may continue to 
use the same approach, leading to more consistent RTs, whereas when performance is worse, participants may 
explore different approaches, leading to more variable RTs (both faster and slow). Alternatively, it could be that 
greater RT variability reflects greater noise in the perceptual, selection, or response system. For example, Rothlein 
et al. (2018) found that during more variable periods of task performance, representational fidelity of stimulus 
representations was weaker in the visual cortices58. A further related possibility is that suboptimal states rep-
resent less automatic processing of the stimuli alongside higher perceptual load21,55, which may lead to greater 
complexity of behavior reflected in higher variability.

While variability during sustained attention is likely to fluctuate due to intrinsic (task-unrelated) factors, 
there are a number of ways in which extrinsic factors can impact response variability. Our previous studies 
show that variability is reduced in conditions where participants are rewarded based on their performance55,59,60. 
Furthermore, motor variability is actively regulated by recent reward history, with variability increasing when 

Figure 4.   Results summary in Dataset3. (a) RT histogram and fitting result. (b) RT histograms in each brain 
state. Individual state is represented by an activity pattern in which each brain region is active (blue and 
red) or inactive (white). (c) R squared values for exGaussian and Gaussian distributions for each individual. 
(d) exGaussian parameters differences between brain states for each individual. **p < 1.0× 10−5. DMN: 
default mode network; Lim: limbic; FPN: frontoparietal network; DAN: dorsal attention network; SAN: 
salience network; SMN: somatomotor network; Vis: visual.DMN: default mode network; Lim: limbic; FPN: 
frontoparietal network; DAN: dorsal attention network; SAN: salience network; SMN: somatomotor network; 
Vis: visual.DMN: default mode network; Lim: limbic; FPN: frontoparietal network; DAN: dorsal attention 
network; SAN: salience network; SMN: somatomotor network; Vis: visual.DMN: default mode network; 
Lim: limbic; FPN: frontoparietal network; DAN: dorsal attention network; SAN: salience network; SMN: 
somatomotor network; Vis: visual.
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performance is poor33,61. On the other hand, our previous study found reactive DAN/SN activation in response 
to errors60,62. This suggests that the more variable and suboptimal brain state (State2) also may be partly driven 
by response to errors. Together, this kind of reward (error)-dependent regulation of variability can be interpreted 
as an exploitation-exploration dilemma. In other words, while the reward is being obtained, variance is reduced 
and the current action (or strategy) is continued; when the reward is not obtained (or the participant makes an 
error), variance increases and another action is taken to change the current action. There is no consensus whether 
or how variability is regulated in the brain63,64. Further study is needed to investigate when brain state transition 
occurs, as well how variability changes in relationship to extrinsic factors.

As a limitation of our current study, although we did not find a significant difference in the long tail factor (τ) 
between brain states, our results do not rule out the possibility that fast and slow RTs are induced from different 
brain mechanisms (fast RTs represent mindless and automatic processing, and slow RTs represent disengaged/
inefficient processing). This is because it is possible that τ was not different due to the nature of the gradCPT as 
we discussed above. As such, these results may not generalize beyond the gradCPT, or other CPTs with short 
response deadlines. The similarities and differences in cognitive mechanisms between gradCPT and other sus-
tained attention task such as PVT, which do not have a response deadline, are important and interesting research 
topics. Nonetheless, given the ubiquity of the gradCPT and similar task in the field2,4,14, the current results are 
relevant to the field. Critically, our results provide evidence of the existence of a stable RT brain state and a vari-
able RT brain state independent of a long tail during this type of sustained attention task. Another limitation 
is that our results do not address any causal relationship between brain state and behavior. Some evidence sug-
gests, from our previous studies, that activation of DAN and salience network, which are included in suboptimal 
State2, occur in response to omission and commission errors26,60. Therefore, the State2-related networks may be 
driven by reactivity to errors or increased variability. Similarly, DMN activity is associated with the optimal state 
(State1) and low variability, but also higher degrees of mind wandering during gradCPT35, suggesting a complex 
role of DMN in sustained attention. Therefore, further study is needed to clarify the causal relationships between 
network activity and sustained attention. This may be possible by using real time presentation of stimuli accord-
ing to brain state65. Additionally, event-related TMS of these networks could further help infer causality66,67.

In summary, we revealed all parameters of the exGaussian were uniquely related to sustained attention 
performance based on data from a large sample. μ is the strategy factor, σ is the variability factor, and τ is the 
long tail factor, respectively. Our results showed the utility of the exGaussian distribution for relating RTs to 
sustained attention. We further revealed that the variance factor is significantly different between two dominant 
brain states during a sustained attention task. This result suggests that the suboptimal brain State2, relative to the 
optimal brain State1, is not characterized by slower RTs, but rather by increased variance of RTs (and reduced 
accuracy). We believe that our findings better identify and refine a behavioral marker of optimal sustained 
attention based on brain states, and represent an important theoretical and methodological finding for future 
sustained attention research.

Data availability
Analysis code and summary data required to reproduce all figures in our manuscript is publically available 
(https://​github.​com/​Ayumu​722/​Scien​tific​Repor​ts_​exGau​ssian). However, a portion of the raw data (e.g. brain 
images) are owned by the United States Department of Vet- erans Affairs and are available only upon request 
from the United States Department of Veterans Affairs. The Department of Veterans Af- fairs will make this data 
publicly available and requests for the data can be made by interested individuals by filing a Freedom of Infor- 
mation Act request to the Privacy Officer at VA Boston Healthcare System (vhabhsFOIAofficers@va. gov) or the 
FOIA Intake Center (see http://​www.​oprm.​va.​gov/​foia/​foia_​howTo.​aspx for more details).
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