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Abstract

Background: The human body is colonized by a vast number of microbes. Microbiota can benefit many normal life
processes, but can also cause many diseases by interfering the regular metabolism and immune system. Recent
studies have demonstrated that the microbial community is closely associated with various types of cell carcinoma.
The search for key factors, which also refer to cancer causing agents, can provide an important clue in understanding
the regulatory mechanism of microbiota in uterine cervix cancer.

Results: In this paper, we investigated microbiota composition and gene expression data for 58 squamous and
adenosquamous cell carcinoma. A host-microbial covariance network was constructed based on the 16s rRNA and
gene expression data of the samples, which consists of 259 abundant microbes and 738 differentially expressed genes
(DEGs). To search for risk factors from host-microbial networks, the method of bi-partite betweenness centrality (BpBC)
was used to measure the risk of a given node to a certain biological process in hosts. A web-based tool KF-finder was
developed, which can efficiently query and visualize the knowledge of microbiota and differentially expressed genes
(DEGS) in the network.

Conclusions: Our results suggest that prevotellaceade, tissierellaceae and fusobacteriaceae are the most abundant
microbes in cervical carcinoma, and the microbial community in cervical cancer is less diverse than that of any other
boy sites in health. A set of key risk factors anaerococcus, hydrogenophilaceae, eubacterium, PSMB10, KCNIPT and KRT13
have been identified, which are thought to be involved in the regulation of viral response, cell cycle and epithelial cell
differentiation in cervical cancer. It can be concluded that permanent changes of microbiota composition could be a
major force for chromosomal instability, which subsequently enables the effect of key risk factors in cancer. All our
results described in this paper can be freely accessed from our website at http://www.nwpu-bioinformatics.com/KF-
finder/.
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Background
Cervical cancer is the second most common cancer in

has been found in more than 70% of cases [3-5]. These
oncogenic HPVs are also common risk factors in some

women [1]. Over 500,000 women worldwide die of cer-
vical cancer each year [2]. It is known that a persistent
human papillomavirus (HPV) infection appears to be one
of major causes of cervical carcinoma. HPV-16 or HPV-18
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other cancers, such as head and neck cancers [6]. How-
ever, there are still gaps in the knowledge of cervical
cancer to answer the question of why HPV is necessary
to cause cell carcinoma, although it is not a sufficient
requirement [1, 7].

Thanks to the advent of high-throughput technolo-
gies, researchers are able to analyze the cervical car-
cinogenesis at the genomic level using sequencing data
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[8]. Genome-wide association studies and subsequent
meta-analyses showed that differentially expressed genes
(DEGs) in cervical cancer are more likely to locate in
the region of frequent chromosomal aberration [9-12].
It indicates that cancer may strongly associate with the
chromosomal instability [13]. A recent study suggests that
microbiota might play important roles in the develop-
ment of cervical cancer [14]. There exists a significant
difference in microbiota’s diversity between non-cervical
lesion (NCL) HPV negative women and these with cer-
vical cancer. Further, compared to the microbial commu-
nity in NCL-HPV negative ones, these in cervical cancer
samples have higher variation within groups. All these
findings implicate that cervical microbiota is an impor-
tant clue in the research of the cervical cancer pathology.
In order to understand how the microbial community
interplay with host genes and cause cell carcinoma in the
molecular level, more and more research groups make
efforts of identify key factors, also known as cancer-
causing agents, which can drive the progress of cervical
carcinogenesis.

Microbiota is a possible suspect causing the frequent
gains and losses in chromosome. It is abundantly dis-
tributed in women cervices. They are involved in many
of the host’s normal life processes, but also can destroy
the host’s normal gene regulatory network by gene trans-
fer, which may activate oncogene expression and lead to
cancer [15]. Therefore, many researchers take efforts to
study how the human microbiota cause structural varia-
tion of human genomes and alter the immune system and
metabolic system to support the development of cervi-
cal pathogenesis [16]. Permanent changes of microbiota
may be a major cause of chromosomal instability, subse-
quently discharge the tumor suppressor gene retinoblas-
toma (RB) and tumor protein TP53. Some association
measures can be used to build a covariance network for
microbes and host genes [17]. Host-microbial networks
provide a systematic way to study the regulation system
between microbiota and host genes [18]. However, the
role of host response to the change of microbiome in
cervical cancer is still unknown. And there are only a
few public tools specifically designed for analyzing host-
microbial networks [19-21]. Therefore, there is a pressing
demand to develop fast and efficient computational tools
to examine how microbiota regulate the gene expression,
chromosomal instability and cell carcinoma.

As a remedy for these limitations, we proposed a new
computational framework to identify the key risk factors
using 16s rRNA and gene expression data of 58 squamous
and adenosquamous cell carcinoma in uterine cervix. A
series of meta-analyses was performed, which include
error correction, spearman rank correlation, differential
expression analysis, and bi-partite betweenness central-
ity. A web-based tool KF-finder was developed, which can
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provide users a fast-and-easy way to query and visualize
the knowledge of microbiota and genes in cervical cancer.
Further, a set of novel risk factors were identified that may
give helpful suggestions for these researchers focusing on
drug design and pharmacology.

Methods

In order to investigate gene expression and microbiome
composition in cervical cancer, we collected 133 squa-
mous and adenosquamous cell carcinoma samples, 58 out
of which were used for microbial DNA library prepa-
ration. The 16s rRNA sequencing was performed using
[lumina MiSeq. Human gene expression was quantified
using WG-6 BeadArray.

OTU assignment

Each 16s sequence was assigned to an operational taxo-
nomic unit (OTU). To count the reads number for each
OTU (microbe), 16s sequences obtained from MiSeq
were aligned to the reference Greengene OTU builds.
The Qiime script assigne_taxonomy.py (see more at
http://qiime.org/scripts/assign_taxonomy.html) was per-
formed in the data processing. Reference sequences are
pre-assigned with OTU described in the id_to_taxonomy
file. Any sequence alignment tools, such as uclust, Sort-
MeRNA, blast, RDP, Mothur etc, can be called by
the assign_taxonomy script for the sequence alignment
between the 16s sequences and reference sequences. For
example, the script will assign taxonomy with the uclust
consensus taxonomy assigner by default using the follow-
ing command, assign_taxonomy.py -i repr_set_seqs.fasta -r
ref seq_set.fua -t id_to_taxonomy.txt. OTU redundancy
matrix was normalized from the sequence number of each
sample. Since these less abundant microbes are unlikely to
be a destroying force for host immune system, we selected
the top-259 most abundant OTUs for further studying.

Comparison with the controls

To study the remarkable difference of microbiota between
cancer cases and the controls, we compared our 16s
raw data to those data from 300 healthy human sub-
jects released by Human Microbiome Project (HMP)
[22] (http://www.hmpdacc.org). To find a map between
OTUs from our data and OTUs from healthy data, a
commonly used alignment tool blastn was performed to
compare their representative sequences. These pairs with
evalue<le-5 and pident>80% were used for establishing
the map. These OTUs matched with a same OTU in HMP
were collapsed into one OTU. The Qiime scripts were
performed to analyze the 16s raw data [23].

Calculation of correlation
Abundant microbes and DEGs were selected for recon-
structing host-microbial networks. DEGs in cervical
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cancer were collected from published data [9], which
were verified in five cohorts of tumor and normal sam-
ples. Hence, the DEGs are more reliable than these
obtained from only one cohort. The spearman rank corre-
lation method was employed to calculate the correlation
between each pair of nodes. Note that, the gene expres-
sion data and 16s rRNA were tested on the same sam-
ple. Therefore, the spearman correlation in the network
makes sense. In contrast to pearson correlation, spearman
correlation coefficient can efficiently avoid the environ-
mental noise and experimental errors caused from the
non-uniform samples.

Error correction

To improve the confidence of the host-microbial network
calculated by spearman correlation, we removed these
edges that are less likely to be a true one (false positive
errors) and added some new edges that are very likely to
correlate with each other (false negative errors). The false
positive edges include two scenes: 1) these negatively cor-
related edges that connected two interactors with a same
type of regulation (i.e. both of them are up regulated or
down regulated); 2) these positive correlated edges that
connected two interactors with different types of regula-
tion (i.e. one is up regulated, the other down regulated);
3) self-loops; 4) multiple loops. All these false positive
edges are removed in our network. These false negative
edges are these pairs of nodes between OTUs and DEGs
which satisfying two conditions: 1) the OTU was collapsed
from a set of sub-nodes; 2) all these sub-nodes strongly
correlated with the DEG. All these false negative edges
were added in the host-microbial network. False positive
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and false negative edges were detected and corrected
according to the coherence of regulation and correla-
tion relationships. A workflow of the reconstruction of
host-microbial network was illustrated in Fig. 1.

Bi-partite betweenness centrality

To search for risk factors from host-microbial network, bi-
partite betweenness centrality (BpBC) [24], adapted from
betweenness centrality, was used to quantify the risk of
a given node, written as g(v). The definition can be for-
matted as g(v) = Zs,t 8s¢(v)/8s¢. Here, s and t are two
nodes from two separate sub-networks. And 8 represents
the number of shortest paths from s to t, 85 (v) the num-
ber of shortest paths going through node v from s to t.
Given a node v, g(v) reflects the probability of how likely a
shortest path could go through v from one sub-network to
another.

Results and discussion

Composition of the microbiota

To study the microbial community in cervical cancer, we
examined the 16s raw data of cancer cases and assigned
taxonomy to each sequence. The definition of opera-
tional taxonomic unit (OTU) was used to classify groups
of closely related microbiome based on sequence simi-
larity. Reference data sets and id-to-OTU maps for 16s
rRNA sequence was downloaded from the Greengenes
reference OTU builds [25]. All these sequences were
grouped into different categories based on their family-
level OTU labels. As shown in Fig. 2, prevotellaceade
followed by tissierellaceae appears to be the most abun-
dant microbes, accounting for 13.7% of the microbiota
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. microbe
comparison data .
HMP correlation
Expression Microbe& .
. Error correction
data degs correlation
Degs& False positive (sub-nodes False negative
degs connections, self-loop, multiple (sub-nodes
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\

/

Host-microbial network

detected according to the coherence of regulation and correlation

Fig. 1 A workflow of the reconstruction of host-microbial network. Through the comparison between 16s rRNA and HMP data, each sequence was
mapping to an operational taxonomic unit (OTU). Error correction was performed for these false positive and false negative nodes, which were
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Fig. 2 The microbial community in cervical carcinoma. Each 16s rRNA sequence was assigned to an operational taxonomic unit (OTU), and all these
sequences were grouped into different categories based on their family-level OTU labels
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community. There are four other groups accounting for
more than 5% of the microbiota, which are fusobacte-
riaceae, porphyromonadaceae, planococcaceae and bac-
teroidaceae. Totally, twenty-six family-level OTU groups
make up more than 87% of the whole community. To
examine the diversity of cervical microbiota, the PCoA
analysis was performed to analyze the microbial commu-
nity in cervical carcinoma, skin, mouth and vagina. As
shown in Fig. 3, microbiota in cervical carcinoma (red
dots) is less diverse than microbiota in any other body
sites. Hence, we indeed found remarkable changes of
microbial composition in the cancer cases.

Reconstruction of host-microbial network

A host-microbial network was reconstructed from the 16s
raw data and gene expression data. Nodes in the net-
work refer to microbes or DEGs, edges the regulation
relationships between each pair of microbes. Two nodes

were connected if and only if they are strongly corre-
lated (i.e. |[y| > 0.4 and p-value <0.05). As show in
Fig. 4, a network with 997 nodes was connected by 4262
edges. Nodes in the network consist of 259 microbes
and 738 DEGs. We grouped all the DEGs into four cat-
egories, named as cell cycle, antiviral response, epithelial
cell differential and the other DEGs, according to their
function in the development of cervical cancer. The three
functional DEGs groups (excluding the other DEGS) are
three major densely connected sub-networks in the host-
microbial networks. They are functionally enriched by
GO terms cell cycle, response to virus, epithelial cell
differentiation respectively. They don’t have any over-
lap between each pair of groups. In the whole network,
403 edges are negatively correlated, 3859 positively cor-
related. Negative correlation indicates inhibition between
two biological subjects. In a negative correlation, one vari-
able increases as the other decreases. Positive correlation
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Fig. 3 Principal Coordinates Analysis (PCoA) plot of microbial community for samples from cervical carcinoma, skin, mouth and vagina. The red,
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Cell cycle Antiviral response

Abundant microbes

Other DEGS Epithelial cell differentiation

Fig. 4 An illustration of the host-microbial network. Nodes refer to
differentially expressed genes (DEGs) or abundant microbes, edges
the regulation relationship between DEGs and microbes. Nodes in
pink are up regulated, and these in cyan are down regulated. Edges in
grey are positively correlated, and these in green are negatively
correlated

indicates activation or co-existence between two subjects
of interest. In a positive correlation, one variable increases
as the other increase, or one variable decreases while the
other decreases. This network integrates all the regulation
relationships between host genes and microbiota.

Risk factors in cervical cancer

The risk factors in cancer may activate oncogene expres-
sion and cause a series of functional disorder in metabolic
and immune systems. In the development of cancer, the
most remarkable differences between tumor and normal
samples are: 1) the up-regulation of viral responses; 2) the
speed-up in the progression of cell cycle; 3) the inhibition
of epithelial cell differentiation. To study how microbiota
regulates the viral response, cell cycle and epithelial cell
differentiation, we searched for key risk factors using
BpBC. These key factors are thought to be cancer-causing
agents that can drive the progress of cervical carcinogen-
esis. Nodes that organizing communication between two
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cancer-related groups are more likely to be key factors.
Since BpBC is such a measure to evaluate the impor-
tance of a node in the network topology, we choose these
nodes in the top list of BpBC as candidates of key fac-
tors. These key factors with high BpBC value may play
crucial roles in the communication between two different
sub-networks.

The results show that Anaerococcus (labeled as
OTU_97.18428) and proteasome subunit beta 10
(PSMBI10) are significantly higher than the others (see
in Fig. 5 left) between the sub-networks of microbe and
antiviral response genes. PSMB10 was an up-regulated
gene in cervical cancer. Between the sub-networks of
microbe and cell cycle, KCNIP1 and Hydrogenophi-
laceae (labeled as OTU_97.2777) are the most important
regulators (see in Fig. 5 middle). Eubacterium (labeled
as OTU_97.10051) and KRT13 are the most important
regulators between the sub-networks of microbes and
epithelial cell differentiation (see in Fig. 5 right). It proves
that the interplay between microbiota and differentially
expressed genes might be the driving force that regulates
the progress of cell cycle, epithelial cell differentiation
and viral response.

Query and visualization

In order to fast and easily query and visualize the host-
microbial networks, we developed a web-based tool KF-
finder. Multiple web programming languages were used
in the development, which includes PHP, mysql and
javascripts. Each node and its neighborhood in the net-
work can be searched by a query term in the panel of
Search. And the induced sub-network will be visualized in
the panel of View. For example, one can input a gene sym-
bol CYP2A7 as a query term in the Search panel. A list
of nodes associated with CYP2A7 will show out in a user-
friendly panel, as well as a graphic view of the induced sub-
network (see in Fig. 6). Except for visualization and query,
KF-finder can also sort microbes and DEGs in a decreas-
ing order by the value of BpBC in microbe-antivirus,
microbe-cell cycle or microbe-epithelial cell differentia-
tion. Download and advanced search have been enabled
on the web server. All our test datasets and results of users’
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Fig. 5 Risk factors in host-microbial network in cervical cancer. The BpBC value of each node was calculated for three pairs of different
sub-networks, including microbe-antivirus, microbe-cell cycle and microbe-epithelial cell differentiation
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personal jobs can be downloaded. Advanced search allows
us search for genes and microbes based on string patterns
or value constriction. KF-finder enables us to query and
visualize the knowledge of host-microbial network in a
fast-and-easy way. It can be accessed at http://www.nwpu-
bioinformatics.com/KE-finder/.

A case study of PSMB10 in cervical cancer

Most vertebrates express immunoproteasomes (IPs) that
possess three IFN-y-inducible homologues: PSMBS,
PSMB9 and PSMBI10. Many studies show that expres-
sion of IP genes including PSMBI10 is up-regulated in
most cancer types [26]. IP genes can be expressed
by non-immune cell, and that differential cleavage of
transcription factors by IPs has pleiotropic effects on
cell function. Indeed, IPs modulate the abundance of
transcription factors that regulate signaling pathways
with prominent roles in cell differentiation, inflamma-
tion and neoplastic transformation (e.g., NF-kB, IFNs,
STATs and Wnt) [27]. Therefore, PSMBI10 is indeed a
risk factor involved in the antiviral response of cervical
caner.

A case study of KRT13 in cervical cancer

KRT13’s full name is keratin 13 in human, also known
as K13 and CK13, located in a region of chromosome
17q21.2. It is a down-regulated gene in cervical carci-
noma, and a risk factor that involves in the progress of
uncontrolled epithelial cell differentiat,ion. Previous work
suggests that the loss of K13 or low K13 mRNA expression
is associated with invasive oral squamous cell carcinoma
(OSCC) [28, 29]. Epigenetic alteration of K13 is one major
reason resulting the inhibition of K13 in OSCC. Besides,
K13 was also reported that it played a directive role in
prostate cancer bone, brain and soft tissue metastases
[30]. More than 1000 single nucleotide polymorphisms
of K13 were found in the dbSNP database. Totally, 51
variations mentioned K13 in ClinVar, seven out of which
are pathogenic. All these evidences suggest KRT13 is
very likely to be a key risk factor involved in cervical
cancer.

Conclusions
In this paper, we examined the microbiota composition
and gene expression in 58 squamous and adenosquamous
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cell carcinoma. A host-microbial network was recon-
structed from the 16s rRNA and gene expression data.
The main contributions of this paper can be concluded
in three aspects: (1) microbial community distributed in
cervical carcinoma cells is less diverse than that of other
body sites; (2) a web-based tool MiteFinder was developed
which enables users to query and visualize host-microbial
networks, microbes and differentially expressed genes in
a fast-and-easy way; (3) a set of key risk factors have been
identified, which have proven to have association with
cancers in several previous publications. Our results show
that six groups of OTU abundantly distributed in cervical
cancer samples, including prevotellaceade, tissierellaceae,
fusobacteriaceae, porphyromonadaceae, planococcaceae
and bacteroidaceae. Besides these six groups of OTU, we
found that three differentially expressed genes and three
microbes may be key risk factors and play crucial roles in
the pathology of cervical carcinoma. All of these results
suggest that permanent changes of microbiota compo-
sition might be the key driving force in the pathology
of cervical carcinoma, which result in the abnormal-
ity of epithelial cell differentiation, cell cycle and viral
response.
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