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Dimer—dimer stacking interactions are important for nucleic acid binding by

the archaeal chromatin protein Alba

Clare JELINSKA', Biljana PETROVIC-STOJANOVSKA, W. John INGLEDEW? and Malcolm F. WHITE?

Centre for Biomolecular Sciences, University of St Andrews, Fife KY16 9ST, UK.

Archaea use a variety of small basic proteins to package their
DNA. One of the most widespread and highly conserved is the
Alba (Sso10b) protein. Alba interacts with both DNA and RNA
in vitro, and we show in the present study that it binds more tightly
to dsDNA (double-stranded DNA) than to either ssDNA (single-
stranded DNA) or RNA. The Alba protein is dimeric in solution,
and forms distinct ordered complexes with DNA that have been
visualized by electron microscopy studies; these studies suggest
that, on binding dsDNA, the protein forms extended helical
protein fibres. An end-to-end association of consecutive Alba
dimers is suggested by the presence of a dimer—dimer interface

in crystal structures of Alba from several species, and by the
strong conservation of the interface residues, centred on Arg® and
Phe®. In the present study we map perturbation of the polypeptide
backbone of Alba upon binding to DNA and RNA by NMR, and
demonstrate the central role of Phe® in forming the dimer—dimer
interface. Site-directed spin labelling and pulsed ESR are used to
confirm that an end-to-end, dimer—dimer interaction forms in the
presence of dsDNA.

Key words: Alba, archaea, ESR, NMR, site-directed spin
labelling.

INTRODUCTION

In contrast with the eukaryotic histone, there is no universal
archaeal chromatin protein. Instead, archaea tend to utilize two
or more unrelated proteins to package their DNA. The archaeal
histone is conserved in the euryarchaeal branch of the
archaeal lineage and, like its eukaryotic counterpart, it forms a
nucleosome that wraps dsDNA (double-stranded DNA) (reviewed
in [1]). Histone proteins are also present in the marine
archaeon Cenarchaeum symbiosum [2], but are absent from most
crenarchaea and also from euryarchaeal thermoacidophiles such
as Thermoplasma acidophilum [3]. The second widely distributed
chromatin protein, Alba (also known as Sac10b or Ssol0Ob), is
present in one or two copies in the genomes of all archaea
sequenced to date with the exception of the Methanosarcinas
and Halophiles [4].

Alba is a dimeric, highly basic protein with a subunit size of
approx. 10kDa. The Albal protein is highly abundant in the
Sulfolobus species from which it was originally purified [5],
representing approx. 4 % of the total soluble protein [6]. The
crystal structure of Albal from Sulfolobus solfataricus revealed
a compact «/B structure similar to DNasel, translation initiation
factor IF3 and other bacterial proteins [7]. The structural similarity
to RNA-binding proteins, coupled with the observation that Alba
can bind to RNA in vivo and in vitro [8], has prompted the
suggestion that Alba may also function as an RNA-binding protein
in vivo [9]. A role in DNA binding in vivo has been confirmed by
chromatin immunoprecipitation experiments, which show a wide
distribution of S. solfataricus Albal at different gene loci [10].
In S. solfataricus a second Alba paralogue, Alba2, is expressed
at 5-10 % of the Albal protein level. Alba2 forms heterodimers
with Albal, resulting in a reduction in DNA-binding affinity, and
it has been suggested that this may provide a mechanism for the
control of chromatin packaging in this organism [11].

The Albal protein in S. solfataricus is reversibly acetylated
on a single lysine residue, and this results in a reduction in
the DNA-binding affinity [12]. In vitro, acetylation of Albal
reduces the repressive effects of the protein on transcription
[12] and on strand separation by the replicative helicase MCM
(minichromosome maintenance) [13]. However, the relevance of
these findings in other archaeal species is not yet clear [4]. DNA
binding by Alba is a highly co-operative process, with a final
stoichiometry of one Alba dimer for every 6 bp of dsDNA bound,
suggesting a high binding density [5,6]. Electron microscopy
studies of DNA binding by Alba from Sulfolobus acidocaldarius
revealed the formation of fibre-like structures that were thought
to indicate extended interwound helical protein fibres [5]. These
findings were later confirmed using the recombinant protein
from S. solfataricus [11], where it was further shown that the
presence of the Alba2 protein caused subtle changes in the chro-
matin structures visualized. The crystal structures of Albal from
S. solfataricus and Albal proteins from other species have
highlighted a strongly conserved dimer—dimer interface centred
on the Phe® residue, which stacks with its counterpart in the
adjacent Albal dimer in the crystal lattice. It has been proposed
that this interaction has biological relevance [14] and may relate
to the fibre formation observed by electron microscopy [11]. It
has also been suggested that one role of the Alba2 subunit is to
weaken or disrupt the dimer—dimer interface in protein fibres, as
this interface is not conserved in Alba2 [11].

In the present study we used NMR to map the amide backbone
chemical-shift changes of S. solfataricus Albal upon binding to
dsDNA, ssDNA (single-stranded DNA) and RNA. This highlights
differences between the three nucleic acid types, both in terms
of the residues that are perturbed and the nature (size and
shape) of the complexes formed. We showed, using gel EMSAs
(electrophoretic mobility-shift assays), that dsDNA is bound more
tightly than either ssSDNA or RNA. SDSL (site-directed spin
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labelling) was used as a sensitive probe of dimer—dimer formation
on DNA binding, and the relevance of the Albal crystallographic
dimer—dimer interface was confirmed using an F60A site-directed
mutant form of the Albal protein.

EXPERIMENTAL
Protein expression, purification and mutagenesis

Recombinant Albal proteins were expressed in Escherichia
coli BL21 Rosetta strain and purified as described previously
[11,15]. Protein concentrations were determined by measuring
the absorbance at 280 nm. The F60A and R59C mutant versions
of Albal were constructed using the QuikChange® mutagenesis
protocol (Stratagene), following the manufacturer’s instructions.
The oligonucleotides used for mutagenesis, FOOAf, FOOAr, RS9CT
and R59Cr, are available from the corresponding author on
request. Mutated genes were sequenced fully to confirm that no
spurious mutations had been introduced. The mutant proteins were
purified as for the wild-type protein.

Oligonucleotides for binding studies

DNA and RNA oligonucleotides were purchased from MWG
Biotech and Operon Biotechnologies. The sequence of the 39
mer ssDNA was 5'-CCTCGGTGCTAAGTTGATGCTGGTACT-
CGGAGTATCCCG-3’ and that of the 16 mer ssDNA and ssRNAs
(single-stranded RNAs) were 5'-CCCGGCGT(U)GCGGCCCG-
3’, where uracil (U) replaces thymine in the RNA oligomer. The 16
and 39 mer ssDNA sequences correspond to one complimentary
strand of the 16 and 39 bp DNA duplexes respectively. 28
mer polyadenine (28A) and 30 mer polyuridine (30U) ssRNA
oligonucleotides were also used.

DNA electrophoretic gel-retardation assays

Binding assays were performed, and the data analysed as
described previously [11]. Apparent dissociation constants for the
interaction between wild-type Albal and a 39 bp DNA duplex, 39
mer ssDNA, 30U, 28A and 16 mer ssRNAs, and for the interaction
between FO60OA Albal and 16 and 39 bp DNA duplexes were
determined. Data were fitted to a two-state binding model where
the fraction bound was equal to:

1/(1 + K4/[Albal])™

and the exponent, m, corrects for deviations in slope resulting
from co-operativity. Data-fitting and graphical representations
were generated using the program KaliedaGraph (Synergy
Software).

NMR spectroscopy

The backbone assignment of Albal was obtained as described
previously [11]. A 420 uM solution of “N-labelled Albal in
20 mM Bis-Tris, 0.3 M NaCl, 1 mM NaNj; (pH 6.5) containing
10 % *H,0 was titrated with a solution of 1.2 mM 16 bp DNA
duplex to give a final molecular ratio (duplex: Alba dimer) of 0.2.
Similar titrations were performed with the 16 mer ssDNA, 16
mer sSRNA and 28A ssRNA oligomers to final molecular ratios
of 0.21, 0.33 and 0.14 respectively. Sub-stoichiometric quantities
were used in order to maximize any potential contributions from
additional protein—protein interactions formed upon binding of
Albal to each oligonucleotide. After each addition the samples
were allowed to equilibrate at 55 °C for ~ 15 min after which a 'H-
SN HSQC (heteronuclear single-quantum coherence) spectrum

© 2010 The Author(s)

was recorded. Spectra were acquired on a 500 MHz Briiker
DRX spectrometer. All spectra were referenced in the direct
dimension to the carrier frequency at4.75 p.p.m. and to the relative
gyromagnetic ratios of 'H and N in the indirect dimension. NMR
data were processed using FELIX 2000 (Accelrys).

Plots of the average relative signal intensity as a function
of the molar fraction of oligonucleotide were generated using
KaliedaGraph (Synergy Software). The initial intensity of each
amide resonance was normalized to 1. In order to reflect only
the effect on correlation time, data relating to residues with an
associated chemical-shift change (where /[(Aén/10)*4 Adnh?]
>0.015) were excluded.

SDSL

Site-directed mutagenesis was used to convert residue Arg® into
a cysteine residue. As there were no cysteine residues in the
native S. solfataricus Albal sequence, the RS9C mutant could
be directly modified with the thiol-specific methanethiosulfonate
spin label MTSSL (Toronto Research Chemicals). The protein
was purified as for the wild-type protein, and dialysed against
10 mM Tes buffer (pH 7.4) and 100 mM NaCl overnight at 4°C.
The spin-labelling reaction was carried out using 20 uM R59C
protein, 100 uM MTSSL in 10 mM Tes buffer (pH 7.4) and
100 mM NaCl in a volume of 2.5 ml [16]. After incubation at 4 °C
for 1 h, the unincorporated label was removed from the protein
sample using a Sephadex G-25 minicolumn (GE Healthcare)
according to the manufacturer’s instructions. The purified protein
was concentrated to achieve a final concentration of 100-150 uM
in a 300 ul total volume, and the incorporation of the spin
label was confirmed by MS. For experiments in the presence
of DNA, a 16 bp duplex assembled from the oligonucleotide 5'-
CCCGGCGTGCGGCCCG-3 and its complement, was added to
the protein sample to a final concentration of 100 M.

ESR spectroscopy

Samples were prepared for ESR by buffer-exchanging them
into H,O/deuterated ethylene-glycol medium [Tes (pH 7.4) and
100 mM NaCl]. The spin-labelled protein was exchanged into
*H,0 (Aldrich) buffer containing 20 % deuterated ethylene glycol
(Cambridge Isotope Laboratories) by sequential concentration
and dilution with a Centricon spin concetrator. The protein
solution was then transferred into a clear fused quartz ESR tube,
with a 3 mm internal diameter under an argon atmosphere. The
samples in ESR tubes were quick-frozen by immersion into a
2-methylbutane/hexane freezing mixture (~ —70°C) and then
stored under liquid nitrogen until use. cw-ESR (continuous wave
ESR) spectra were measured at X-band using a Briiker ESP
300 ESR spectrometer as described previously [17]. Spectra
acquisition conditions are given in the legend to Figure 5. The
pulsed DEER (double electron—electron resonance) experiments
were carried out using a Briiker ELEXSYS E580 spectrometer
operating at X-band with a dielectric ring resonator (ER 4118X-
MD5-EN) and a Briiker 400U second microwave source unit.
All measurements reported in the present study were made
at 50 K with an over-coupled resonator giving a Q factor of
approx. 100. The measurements used the four pulse, dead-
time free, sequence with the pump pulse frequency positioned
at the centre of the nitroxide spectrum; the frequency of the
observer pulses was increased by 70 MHz [16]. The observer
sequence used a 32 ns w-pulse; the pump m-pulse was typically
30 ns. The resulting dipolar coupling evolution data was analysed
by Tikhonov regularization to a distance distribution using
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Figure 1 DNA and RNA binding by Alba1

Binding curves were obtained by gel-retardation analysis. Data relate to binding of Alba to 39 bp
dsDNA (data taken from [11]), 39 mer ssDNA and 30U ssRNA, 28A ssRNA and 16 mer sSRNA
are denoted by O, I, A, M and @ respectively. Values are means + S.E.M. for each data
point and curves obtained from fitting the data to the binding equation described in the text are
represented as solid black lines.

DeerAnalysis2006 developed and made freely available by
Gunnar Jeschke (http://www.epr.ethz.ch/software/index) [18].

RESULTS

Comparison of nucleic-acid-binding affinities of Alba1

To compare the binding of Albal to dsDNA, ssDNA and ssRNA,
we determined the binding affinities by EMSA using 39 bp
dsDNA, 39 mer ssDNA and 30U, 28A and 16 mer ssRNA
oligonucleotides (Figure 1). The RNA oligonucleotides were
designed to test for sequence-specific binding and to avoid the
possibility of base pairing. The apparent dissociation constants
were calculated from experiments carried out in triplicate. The
data show that Albal binds approx. 5-fold less tightly to ssDNA
(K4, 270 nM) and approx. 20-fold less tightly to ssRNA (K,
960 nM) than it does to dsDNA (K, 50 nM) (Table 1). In contrast,
Guo et al. [8] reported that K, values for all three species were
‘similar’ (~ 100-300 nM), although a rigorous quantification of
the dissociation constants was not included in their paper. This
difference can be accounted for by the fact that our experiments
were conducted at relatively high salt (0.3 M compared with
0.01 M), which weakens the interaction with RNA [8], but
does not affect the dsDNA-binding affinity (results not shown).
Higher ionic strengths are likely to be closer to the physiological
condition. Notably, we also found the RNA-binding affinity of
Albal to be independent of the length of oligonucleotide, in
contrast with dsSDNA where binding to longer duplexes is tighter
[11]. This suggests that the molecular nature of the interaction
of Albal with ssRNA is also different from that with dsDNA.
dsRNA, which adopts the A-form helical conformation, was not
studied.

Residues involved in binding dsDNA, ssDNA and ssRNA

Initial 'H one-dimensional experiments, where Albal was
titrated with a 28 bp duplex, resulted in the formation of a

© 2010 The Author(s)

Table 1 Comparison of the binding affinity of Alba1 for DNA and RNA

Values are means + S.E.M. for triplicate measurements. Values obtained for the F60A mutant
are shown in parentheses.

Oligonucleotide Apparent Ky (nM) m*

16 bp (dsDNA) 200+ 4+ (7104 20) 13401 (09+0.1)
39 bp (dsDNA) 56+ 2+ (520 +13) 19+0.1(1.4+0.1)
39 mer (ssDNA) 270+ 13 20402
30U (ssRNA) 900 + 38 16+0.1
28A (SSRNA) 960 + 30 21401
16 mer (ssRNA) 920 + 69 22404

*This parameter was used to improve the fit and reflects the steepness of the curve.
+ These values are taken from [11].

very large complex suggestive of a DNA-templated assembly
process involving multiple protein—protein interactions (results
not shown). A much smaller complex was formed upon binding
to a shorter duplex (16 bp) under the same conditions (0.3 M NaCl,
pH 6.5, 55°C). Residues perturbed upon binding this duplex and
the 16 mer ssDNA and ssRNA oligomers were then determined
by measuring the changes in chemical shift of fast exchange
peaks observed in the 'H-"N HSQC spectrum of Albal upon
titration with the relevant oligonucleotide. It was found that
amide resonances, corresponding to Gly* and Arg®, were not
present in the '"H-"N HSQC spectrum at pH 6.5, presumably
due to intermediate exchange with solvent. In addition, no peaks
were observed for Lys's, Arg" or GIn* regardless of pH. In
Figure 2 the summed, weighted changes in 'H- and '*N-chemical
shifts are plotted against residue number. These changes cannot
unequivocally be attributed to a direct interaction between protein
and oligonucleotide, but their localized nature implies that large
changes in protein conformation are not involved. When the
sum chemical-shift changes (> 0.015) are plotted on to a surface
representation of Albal, the general binding regions can be clearly
identified. It is clear that the basic surface predicted to interact with
DNA, following the initial structural studies [7], does constitute
the major portion of the binding interface. It is apparent that the
residues involved in binding dsDNA and ssDNA are
the same, whereas only a subset of these are involved in binding
to the equivalent ssSRNA. Additionally, there is a distinct region
(residues 10—15) that appears to be associated more specifically
with RNA binding, as well as a DNA-specific region (residues
19-21). Data obtained from a titration of Albal with 28 A ssSRNA
were very similar to those obtained with the 16 mer ssRNA,
suggesting that the changes observed were not strongly sequence
dependent.

The NMR acquisition parameters, processing and experimental
conditions for the titrations of Albal with DNA and RNA
were identical. The degree to which peaks are attenuated upon
addition of the various oligonucleotides therefore provides further
evidence that the interaction of Albal with DNA is distinct
from that with RNA (Figure 3). Provided that contributions
from chemical and conformational exchange resulting from direct
binding interactions are removed, the degree of line-broadening
reflects the tumbling rate (i.e the size and shape) of the complex.
The greater degree of line-broadening indicates that a larger
complex is formed upon binding of Albal to the 16 mer ss- and
ds-DNAs than to 16 mer ssRNA. These data clearly show that
the increase in correlation time upon binding to DNA is larger
than that upon binding to RNA. This indicates that the DNA
complex is larger and/or more elongated than the RNA complex
and is consistent with the formation of additional protein—protein
interactions.
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Figure 2 NMR chemical-shift analysis of the Alba1 interaction with nucleic acids

The weighted sum of *N-" and "H- proton chemical shift changes (/[(A8n/10)>+Asnh?]) upon titration of Alba with (A) 16 bp dsDNA, (B) 16 mer ssDNA, (C) 16 mer ssRNA and (D) 28A
sSRNA are plotted against residue number. Vertical broken lines show residues associated with a conserved crystallographic dimer—dimer interface. Those residues with a sum chemical-shift change
>0.015are plotted. These are highlighted in red on the corresponding surface representations of Alba1 in order to indicate the regions that are perturbed upon binding. Lys'® and Arg*, which are in
intermediate exchange, are shown in dash grey. Lys'® has been shown previously to be involved in binding DNA [7], and Arg* is likely to be involved given its position and charge. The structural

representations were generated using MacPyMOL (DeLano Scientific; http://www.pymol.org).
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Figure 3 Global NMR line-broadening effects during titration of Alba1 with
nucleic acid

Albal was titrated with a 16 bp duplex (@), a 16 mer ssDNA (M) and the corresponding
16 mer SSRNA (A). For each point in the titration, the average relative signal intensity for
peaks in the N-"H HSQC spectrum of Albal was plotted (values are means + S.E.M.).
Residues with an associated chemical-shift change were omitted from the calculation to
remove contributions from chemical and conformational exchange resulting from direct binding
interactions. Plots of the average relative signal intensity as a function of the molar fraction of
oligonucleotide were generated using KaliedaGraph (version 3.6, Synergy Software). S.E.M.s
were calculated for each experimental condition, where only cross-peaks satisfying the criterion
VI(A8n/1024-A8nh?]>0.015 were included in the analysis (corresponding to a total of 61,
58 or 67 cross-peaks in dsDNA, ssSDNA and ssRNA experiments respectively).

© 2010 The Author(s)

Importance of the dimer—dimer interface for DNA binding

Upon binding of Albal to DNA, chemical-shift changes were
observed for residues associated with a conserved crystallo-
graphic dimer—dimer interface (Figure 2). These observations
are consistent with the formation of additional protein—protein
interactions in the Albal-DNA complex that may indicate a
mechanism for the assembly of nucleoprotein filaments. Crystal
structures of the Albal protein from several species highlight
the conserved dimer—dimer interface [14]. In contrast, the S.
solfataricus Alba2 protein is quite divergent in this region, and
this interface is not present in the crystal structure [11]. Phe® is
central to the dimer—dimer crystallographic interface of Albal,
where it forms a 7— stacking interaction with an adjacent dimer.
Mutation of this position (F54R) in Archaeoglobus fulgidus Albal
resulted in a qualitative decrease in the apparent binding affinity
for plasmid DNA [14]. The F60A mutant version of Albal was
made to test the significance of this residue with respect to DNA
binding. The apparent binding affinities of the mutant with 16
and 39 bp duplexes were determined by EMSA and compared
with the wild-type protein (Figure 4 and Table 1). The F60A
mutant bound the 16 mer and 39 mer duplexes more weakly than
the wild-type protein (3.5-fold and 9-fold respectively), resulting
in an equal affinity for both duplexes. This was consistent with
the hypothesis that the dimer—dimer interface is involved in the
assembly of Albal-DNA nucleoprotein complexes and suggests
that additional protein—protein interactions formed upon binding
of the wild-type protein to longer duplexes are not present in the
F60A complexes. These data therefore support the assertion that a
protein—protein interaction surface, similar to the crystallographic
dimer—dimer interface, is involved in the assembly of Albal
nucleoprotein filaments.
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Figure4 The F60A Alba1l mutant binds DNA more weakly than the wild-type
protein

Alba—DNA-binding curves obtained by gel-retardation analysis. Open and closed symbols are
used to denote binding of wild-type (circles) and FE0A (squares) Albal to either a 39 bp
or 16 bp duplex respectively. The sequence of the 39 mer ssDNA was 5'-CCTCGGTGCTA-
AGTTGATGCTGGTACTCGGAGTATCCCG-3, which was annealed with a complementary strand
to produce the 39 bp duplex. Gel-shift analysis was carried out in triplicate and analysed
as described previously [11]. Values are means + S.E.M. The apparent dissociation constants
measured for the wild-type and F60A mutant proteins with the 39 bp duplex were 56 + 2 M and
520+ 13 M respectively. The equivalent values for the 16 bp duplex were 10044 M
and 710+ 20 .M. A significant increase in apparent binding affinity (K) for the 39 bp duplex
when compared with the 16 bp duplex is observed for the wild-type, but not for the F60A mutant
(Table 1). Data for the wild-type protein are taken from [11], but were measured at the same time
as those for the F60A mutant.

SDSL as a probe for DNA-templated protein assembly

In the absence of DNA, Albal exists as a dimer in solution,
and Arg® in one subunit is separated from the same residue
in the second subunit of the dimer by a distance of approx
40 A (1 A=0.1nm) (Figure 5A). The optimum form of ESR
spectroscopy to measure interspin distances depends on the
separation of the spin labels: below 20 A, dipolar splittings
observed by conventional cw-ESR can be used; above 20 A, more
sophisticated ESR methods are required. We used pulsed DEER
spectroscopy to measure the distance between spin labels in the
R59C SDSL sample, estimating an average inter-spin distance of
41 A with a half-height distribution of +3.5 A (Figure 5B), in
good agreement with the crystal structure (Figure SA).

When 16 bp duplex DNA was added to the spin-labelled Alba
R59C to a final concentration of 100 uM, a dramatic change
in the spin—spin interaction between spin-labels on adjacent
monomers occurred. A splitting of the cw-ESR spectrum due to a
dipolar interaction between close paramagnets was observed. In
Figure 5(C) the cw-ESR spectrum of the spin-labelled Alba R59C
is shown in the absence (top spectrum) and the presence (middle
spectrum) of 16 bp duplex DNA or 21 mer ssDNA (bottom spec-
trum). Splitting of the spectrum due to dipolar interactions
between closely adjacent paramagnets was induced by dsDNA
binding (these are indicated in Figure 5 and also shown at x10
amplification). Not all of the Alba R59C present was expected to
exhibit this interaction, as the 16 bp duplex is only long enough
to bind three dimers and there was also more DNA present than
required for saturation of binding. Therefore the ESR spectrum
shows a mixture of the interacting and non-interacting species

© 2010 The Author(s)
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Figure 5 SDSL confirms the DNA-dependent assembly of consecutive Alba
dimers

(A) QOverlaid cartoon and surface representations of three Albal dimers in the end-to-end
arrangement found in various crystal structures are shown in grey. The side chains of Arg®® and
Pohe60 for each molecule, coloured blue and orange respectively, are shown as sticks. The distance
(A) between two Arg® guanidinium N atoms belonging to the same dimer unit is highlighted in
black. This image was generated using MacPyMOL (DeLano Scientific; http://www.pymol.org).
(B) The interspin distance profile is obtained from transformation of the background corrected
DEER spectrum, using Tikhonov regularization of the four pulse DEER spectrum of spin-labelled
Alba R59C (no DNA). The minor peak is not significant. The normalized background-corrected
DEER spectrum is also shown (insert), with the best fit by Tikhonov regularization shown in red.
The experimental conditions and spectral analysis procedure are outlined in the Experimental
section. A four pulse DEER sequence was used at X-band frequencies (approx. 9.5 GHz) and a
sample temperature of 50 K. (C) First derivative cw-ESR spectra of spin-labelled Alba R59C are
shown in the presence and absence of 16 bp DNA and 21 mer ssDNA. The black trace shows the
cw-ESR spectrum in the absence of DNA, the green trace the spectrum in the presence of 16 bp
DNAand the red trace in the presence of 21 mer ssDNA. The inserts show an amplification (x 10)
of salient features of the spectrum. ESR conditions: temperature, 140 K; modulation frequency,
100 kHz; modulation amplitude, 0.4 mT, microwave frequency, 9.5 GHz; and microwave power,
0.2 mW.

because some of the spin-label will be at an exposed ‘free-end’
and not involved in a close dipolar interaction with an adjacent
dimer. The dipolar splitting observed is in the order of 72 Gauss
peak-to-peak (7.2 x 10~ T) which corresponds to an interspin
distance of approx. 7.5 A [16]. This confirms the close assembly
of two spin labels, as would be expected if consecutive Alba
dimers stack end-to-end on DNA binding as predicted from the
crystal structure. The addition of ssDNA (21 bases) appeared to
have a grossly similar, but less well resolved, effect to the addition
of dsDNA. There are splittings due to interactions between close
spin-labels, but these are broader and less well resolved, indicating
that the structure is more heterogeneous, perhaps due to a greater
flexibility in the Alba—ssDNA complexes.

DEER spectra could not be readily obtained in the presence of
dsDNA or ssDNA because the close dipolar interactions enhance
the transverse relaxation times, which shortens the available
experimental timing window to an extent that the technique cannot
be readily used. Direct measurement of the transverse relaxation
(results not shown) confirmed a considerable enhancement of the
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relaxation due to the close interactions between spin labels when
bound to DNA.

DISCUSSION

The majority of sequenced archaeal genomes contain at least
one gene encoding the Alba protein [3], making it perhaps
the most conserved nucleic-acid-binding protein in the archaea.
Although Alba clearly binds dsDNA in vitro, there has been
some debate about its true role in vivo. On the one hand,
UV cross-linking data has suggested that an interaction with
RNA might be more physiologically relevant [8]. On the other,
chromatin immunoprecipitation experiments have demonstrated
that Albal is associated with dsDNA [10]. Albal from
S. solfataricus has been shown to stabilize dSDNA against DNA
melting by the cognate ssDNA-binding protein, consistent with
a role in the stabilization of dsDNA in vivo [19]. Our data
demonstrate that Albal binds dsDNA more tightly than either
ssDNA or RNA in vitro, and suggests that differences exist
in the interface with DNA and RNA species that are still not
fully understood. The stabilization of RNA, as well as DNA,
is likely to be particularly important in thermophiles, where
chemical and physical damage to nucleic acid is accelerated by
elevated growth temperatures [20]. A previous study of nucleic-
acid-binding proteins in the crenarchaeote Thermoproteus tenax,
which lacks any clear ssDNA-binding protein encoding gene,
revealed that the two main detectable ssDNA-binding proteins in
this organism were the Alba protein and a novel protein named
CC1 [21]. Both proteins bound ssDNA and dsDNA. Thus it is
possible that archaea utilize a number of highly expressed general
nucleic-acid-binding proteins, such as Alba, to stabilize all classes
of nucleic acid in vivo.

The DNA-interaction region, as determined by NMR, is only
partially consistent with previous binding models [7,14] and
differs significantly from that determined by Cui et al. [22]. Our
experiment is different in that sub-stoichiometric quantities of
duplex were used in order to maximize the contribution from
protein—protein interactions, which were not evident at the 3:1
excess of duplex used previously [22]. We also found widespread
changes in chemical shift upon the addition of salt, which we
measured prior to commencing our titrations. We found that
although the basic, positively charged surface is important, the
extended R-loop region (residues 78—84), previously thought to
bind in the minor groove of the double helix does not appear
to be involved. The evidence for this is 2-fold; first, the lack
of changes in chemical shifts in this region, and secondly,
that the loop remains flexible upon binding. This flexibility is
exemplified by Arg®, at the tip of the loop region, which gives
rise to a distinctive sharp resonance throughout the titrations
(results not shown). The NMR data also provided evidence that
higher-order complexes of Albal are a feature of DNA binding.
Oligomerization of Albal, through a dimer—dimer interface, into
linear rod-like structures has been observed in all but one of the
five crystal structures published to date [7,14,23]. This has been
argued to be of functional importance as the residues involved
at the oligomerization interface are highly conserved within the
archaea [14]. The NMR data suggest that this protein—protein
interface might indeed be important for the assembly of the Alba—
DNA nucleoprotein complex. This was confirmed by site-directed
mutagenesis of the central residue of the interface, Phe®, which
resulted in weaker DNA binding.

Additionally, we have shown using SDSL that Albal dimers
assemble on DNA with consecutive dimers binding end-to-end,
consistent with the crystal structures. This presumably relates

© 2010 The Author(s)

to the extended helical protein fibres observed by electron
microscopy when Albal is complexed with plasmid DNA [5,11].
An attractive hypothesis is that the dimer—dimer interface may
provide a mechanism by which DNA could be rapidly sequestered
into high-order structures. The next challenge is to formulate a
molecular description of the chromatin structure formed by DNA-
bound Albal. The present study represents, to the best of our
knowledge, the first example of the use of spin labelling to study
nucleoprotein formation, and demonstrates the utility of SDSL to
study this type of molecular interaction. One advantage of SDSL
over FRET (fluorescence resonance energy transfer) is that only a
single type of reporter group is required in SDSL, whereas donor
and acceptor dyes are required for FRET studies, which can pose
a technical challenge.
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