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Abstract

The rare earth element lanthanum (La) has been proven to be beneficial for plant growth

with a low concentration, and abscisic acid (ABA) which is a plant hormone also can regulate

plant growth. In the present study, we investigated the germination and seedling growth of

switchgrass (Panicum virgatum L.) under La (10 μM), ABA (10 μM) and La + ABA treat-

ments. The results showed that La, ABA and La + ABA treatments could not significantly

affect the germination and shoot length as compared to the control (P>0.05). However, La

treatment increased the root activity and chlorophyll content, and ABA treatment enhanced

root length and root activity (P<0.05). La + ABA treatments demonstrated that La could not

significantly alleviate the promotion of ABA in root length, while ABA reversed the increase

of chlorophyll content caused by La. The coregulation of La and ABA on chlorophyll content

was further explored by in vitro experiments and quantum chemical calculations. In vitro

experiments revealed that La, ABA, and La + ABA treatments reduced the absorbance of

chlorophyll, and quantum chemical calculations indicated that the reduction of absorbance

was caused by the reactions between La, ABA and chlorophyll. In vivo and in vitro experi-

ments, together with quantum chemical calculations, demonstrated that both ABA and La

could stimulate the production of chlorophyll, while they also could react with chlorophyll to

produce La-monochlorophyll, La-bischlorophyll, and ABA adsorbed chlorophyll, which had

lower absorbance. La + ABA treatment significantly decreased the chlorophyll content in

vivo. This phenomenon was due to the fact that La and ABA formed LaABA compound,

which markedly reduced the concentrations of ABA and La, and the effect of promoting

chlorophyll production was overcome by the effect of reducing chlorophyll absorbance.

Introduction

Rare earth elements (REEs) have been widely used as microfertilizers in agriculture [1–4]

because they can improve plant growth and stress resistance at certain concentrations. Lantha-

num (La) is a rare earth element that has been extensively studied due to its wide application

in numerous fields and potential accumulation in the environment [5–7]. Previous studies

have demonstrated that La induces hormesis in many plant physiological processes, such as
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seedling growth, peroxidase activity, net photosynthesis and chlorophyll production, which

have a dose response characterized by stimulation at low concentrations and inhibition at high

concentrations [8–11]. D’Aquino et al. [12] reported that La stimulated the root growth of Tri-
ticum durum at 0.01 and 0.1 mM after 9 d of treatment, however, it inhibited the root growth

with a concentration equal to or larger than 1 mM. Shi et al. [13] showed that low concentra-

tions (0.002–0.2 mM) of La increased the chlorophyll content in cucumber seedling leaves,

while high concentration (2 mM) of La reduced the chlorophyll content. Oliveira et al. [14]

found that the dry matter yield of shoot and root, photosynthetic rate and total chlorophyll

content were promoted at low La concentrations (5 and 10 μM), whereas soybean growth was

reduced at high La concentrations (80 and 160 μM). Although there is no exact concentration

threshold for La to inhibit plant growth [6], it is apparent that La with a concentration of

several μM can stimulate seedling growth.

Abscisic acid (ABA) is a plant hormone that regulates plant growth, development and

reproduction, especially during environmental stresses [15–17]. ABA inhibits seed germina-

tion in most plant species and regulates the root growth [18]. Smet et al. [19] demonstrated

that seed germination of Arabidopsis was inhibited completely by 3.0 μM ABA. Fujii et al. [20]

found that root length of Arabidopsis was elongated by 0.5 μM ABA, while it was reduced to

less than a half when ABA concentration was larger than 10 μM. Schnall et al. [21] showed that

10 μM ABA could reduce the number of long Arabidopsis root hairs by 45% as compared to

control, and 500 μM ABA eliminated these long root hairs completely. Sarath et al. [22,23]

concluded that ABA could potentially block nitric oxide-responsive cascades and inhibit ger-

mination but that hydrogen peroxide could overcome these effects. There is a complex rela-

tionship between La and ABA. Liu et al. [24] showed that the endogenous ABA in root of Zea
mays had temporal changes when exposed the root to La. Wang et al. [25] found that 10 μM

La could rescue the inhibited seed germination rate and root elongation growth in Arabidopsis

caused by 1 μM exogenous ABA. So, ABA may play an import role in La regulation of plant

growth. Multiple studies have proven that La affects plant growth via its synergistic and agonis-

tic interactions with ABA [26–28].

Switchgrass (Panicum virgatum L.) is a perennial warm-season C4 grass that has been

widely used as ground cover, as forage for livestock, for soil and water conservation, and for

wildlife habitat restoration. In addition, established switchgrass stands are very resilient to

environmental fluctuations [29]. Therefore, switchgrass is considered a resource-efficient,

low-input crop for producing bioenergy on farmland [30]. Several studies have investigated

the seed germination of switchgrass under La or ABA stress. Thomas et al. [31] found that La

had no effect on germination of switchgrass at any dose, which was consistent with our previ-

ous work [32]. Duclos et al. [18] showed that ABA inhibited the germination of switchgrass at

a dose equal to or larger than 10 μM. However, how La and ABA affect the seedling growth of

switchgrass is not clear yet. In particular, whether La and ABA can regulate each other in seed-

ling growth of switchgrass is unknown.

La may take part in the photosynthesis in switchgrass. Hong et al. [33] revealed that La could

enter chloroplasts and coordinate with nitrogens of porphyrin ring to form La-chlorophyll in

spinach leaves. Wang et al. [34] proposed that La could replace Mg and form [Chlorophyll-a �

La � pheophytin-a] species in spinach leaves. These reactions in vivo are so complicated that it is

hard to get the details. The quantum chemical methods provide an effective way to investigate

these reactions at molecular level. With density functional theory (DFT) and time-dependent

density functional theory (TD-DFT), Liao et al. [35] successfully predicted the molecular struc-

tures of lanthanide mono- and bisporphyrin complexes. Yin [36] calculated the free energies of

deprotonated and protonated species of prophyrin, and showed which process was thermody-

namically favorable. Barnsley et al. [37] reproduced the experimental UV-vis spectra of two
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aldehyde-porphyrin isomers by computing electronic absorption spectra. We would employ

the quantum chemical calculations together with in vitro experiments to investigate the possible

substitution reactions in chlorophyll.

Hence, in the present study, we investigated the effects of La and ABA on the seed germina-

tion and seedling growth of switchgrass by in vivo experiments. Some associated physiological

mechanisms were also explored by in vitro experiments and quantum chemical calculations.

Thus, the objectives of this study were to (1) investigate the possible use of La as a fertilizer dur-

ing switchgrass growth and the specific mechanism of its interaction with ABA and (2) deter-

mine whether La and ABA coregulate the chlorophyll content of switchgrass. The results will

help researchers in related fields better understand the biological effect of the rare earth element

La on plant hormone (ABA) signal transduction in switchgrass, as well as provide new insights

into agronomic management to reduce ABA accumulation in switchgrass products.

Materials and methods

Materials

Mature seeds of Alamo switchgrass were harvested in October 2017 from the Experimental

Station of Grassland Science in Yangling (N34˚160, E 108˚40), Shaanxi Province, PR China.

They were then cleaned and stored at 4˚C in paper bags for later use. According to the stan-

dards for forage seed testing, the thousand-seed weight was 1.193 g, the seed viability was 98%,

and the initial moisture content was 9.2%. ABA was purchased from Sigma company with a

purity larger than 98.5%. La(NO3)3 � 6H2O was purchased from Aladdin company with a

purity larger than 99.99%. Chlorophyll was purchased from Macklin company with a purity

larger than 95%.

Germination test

The plants were grown in a growth chamber at 25±2˚C with 70%-85% humidity and a 16/8 h

light/dark cycle with 75 μmol�m2/s irradiance. Seeds were surface sterilized using 75% alcohol

for 30 s, sterilized using 5% NaClO for 2.5 h, rinsed with sterile water five times, and soaked in

sterile water overnight. After 24 h, the seeds were resterilized using 5% NaClO for 30 min and

rinsed with sterile water five times. To measure the seed germination, seeds were grown in tis-

sue-culture vessels with 1/2 Murashige-Skoog (MS) medium whose concentration was reduced

by half as compared to the original MS medium [38]. In our 1/2 MS medium, Edamin, Indole-

acetic acid and Kinetin were removed, and the concentrations of agar and sucrose were set to

7 and 15 g/L, respectively. In addition, the pH was adjusted to 5.6 by KOH. A control (0 μM),

La(NO3)3 (10 μM), ABA (10 μM), and La(NO3)3: ABA = 1:1 in stock solutions were added to

the 1/2 MS medium at identical concentrations. They were three repliacions for each treatment

(N = 50). The germination was defined as the emergence of the radical through the seed coat.

Germination rateð%Þ ¼
Number of germinated seeds after n days

Number of tested seeds
� 100% ðn ¼ 5; 14Þ

Seedling growth assay

The root length and shoot length were measured on 10 individuals per experiment after 14 d

of seed germination. The root system activity was determined by using the triphenyl tetrazo-

lium chloride (TTC) method as described in the literature [39]. Fresh leaves were soaked in

100% ethanol to extract chlorophyll and the chlorophyll content (Chl total) was determined by
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the method of Rowan [40,41] at wavelengths of 665 and 649 nm. The values of chlorophyll

content have been expressed as mg/g of fresh weight (FW).

Chl aðmg=LÞ ¼ 13:70� A665 � 5:76� A649

Chl bðmg=LÞ ¼ � 7:60� A665 þ 25:8� A649

Chl totalðmg=LÞ ¼ 6:10� A665 þ 20:04� A649

Here, A665 and A649 are the absorbance of chlorophyll at 665 and 649 nm, respectively.

In vitro experiments

In vitro experiments were performed, in which La(NO3)3 (10 μM), ABA (10 μM) or ABA: La

(NO3)3 = 1:1 was added directly to the solution of Mg-chlorophyll compounds (Mg-chloro-

phyll A (MgCA) and Mg-chlorophyll B (MgCB)) with anhydrous ethanol as the solvent. UV-

vis spectra of these solutions and the absorbance in the first 2 h were measured using a spectro-

photometer (Shimadzu UV-3900 UV-VIS Spectrophotometer, Tokyo, Japan).

Quantum chemical calculations

All the calculations were performed by applying the Gaussian 09 package (Gaussian 09) [42]

with density functional theory (DFT). Geometric optimizations were performed using the M06

functional [43], where the Stuttgart-Dresden (SDD) basis set was applied for La and the 6-31G

(d) basis set was employed for the other atoms. The solvent effect was taken into account by the

polarizable continuum model (PCM) of the self-consistent reaction field (SCRF) procedure in

ethanol. The Gibbs free energies were calculated for all of the optimized structures at 298.15 K

and 101 kPa. Furthermore, the electronic absorption spectra were also calculated using the

time-dependent density functional theory (TDDFT) with the optimized structures.

Statistical analysis

A one-way analysis of variance (ANOVA) at a significance level P<0.05 was performed using

SPSS 22.0 software. Duncan’s multiple range tests was used to compare means of germination

potential, germination rate, root length, shoot length, root activity and total chlorophyll con-

tent between treatments when significant differences were found.

Results

Effects of La and ABA treatments on seed germination and seedling growth

in switchgrass

In order to reveal the effects of La and ABA treatments on seed germination and seedling

growth, seed germination rate, root length, shoot length, root activity and chlorophyll content

were measured. It was seen that La and ABA had no significant effects on seed germination

rate at day 5 and day 14 (Fig 1(a), S1a Table). Following growth for 14 d after germination, the

average root length was 2.39 mm in the control experiment, while it was 4.13 mm in the 1/2

MS medium with 10 μM ABA and 3.57 mm in the medium with both 10 μM ABA and 10 μM

La(NO3)3 (Fig 1(b), S1b Table). However, the analysis of shoot length showed that neither La

nor ABA had a significant effect on shoot elongation (Fig 1(c), S1c Table)). To further explore

the effect of La and ABA on switchgrass root length, and root activity was measured, respec-

tively (Fig 1(d), S1d Table)). The root activity was 0.321 μg/g�h for the control, and it was

50.5% and 107.8% higher than this value in the La and ABA treatments, respectively. The
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largest rate of increase (115.4%) in root activity was observed in the treatment with La + ABA.

The analysis of chlorophyll content of seedling under different treatments showed that the La

treatment significantly increased the chlorophyll content (P<0.05), which was elevated by

11.5% compared to the control. ABA treatment had no significant difference from the control,

while La + ABA treatment lowered the chlorophyll content by 16.4% as compared to the con-

trol (Fig 1(e), S1e Table).

In vitro experiments and quantum chemical calculations

The absorbances in different treatments in the in vitro experiments. The absorbance

and UV-Vis spectra were measured as a function of reaction time, as shown in Fig 2. The

results showed that the UV-Vis spectra of the control (Mg-chlorophyll A (MgCA) + Mg-chlo-

rophyll B MgCB), ABA, La, and La + ABA treatments were similar to each other, and all of

them had two strong absorption peaks at 413 and 649 nm in the visible region. The absorbance

of Mg-chlorophyll compounds was always the greatest, and it increased in the first hour and

reached a plateau thereafter. The lowest absorbance was observed in the ABA treatment,

remaining nearly unchanged in the first 2 h. The absorbance in the La+ABA treatment was

greater than that in the La treatment in the first hour, but the absorbances became nearly the

same after the first hour.

The optimized structures and Gibbs free energy differences. In the in vitro experi-

ments, the difference of the absorbance should be caused by the reactions between La(NO3)3,

ABA and Mg-chlorophyll compounds. In order to find out the possible products, we systemat-

ically investigated the Mg-chlorophyll A (MgCA) + ABA and MgCA + La(NO3)3 reactions, as

well as the reaction of ABA + La(NO3)3. Considering that part of the MgCA may have

Fig 1. Effects of La and ABA treatments on seed germination and seedling growth in switchgrass. (a) germination rate,

(b) root length, (c) shoot length, (d) root activity, (e) chlorophyll content. Note: Means of treatments followed by different

letters are significantly different at P<0.05.

https://doi.org/10.1371/journal.pone.0232750.g001
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decomposed during the reactions, we also optimized the structures of free-base chlorophyll A

(H2CA), monodeprotonated free-base chlorophyll A (HCA1 and HCA2), and dideprotonated

free-base chlorophyll A (CA). It should be mentioned that Mg-chlorophyll B (MgCB), which is

another main component of chlorophyll, has a similar structure and property as MgCA. There-

fore, MgCB was not investigated in the present work. MgCA consists of a chlorin ring, a central

Mg, several attached side chains and a long hydrocarbon tail, as shown in Fig 3. It should be

noted that the two sides of the chlorin ring are unequal due to the side chains and the long tail.

Fig 2. The absorbances in different treatments in the in vitro experiments. (a) The absorbances in the control

(MgCA + MgCB), ABA, La, and La + ABA treatments as a function of reaction time, (b) UV-vis spectra in the control

(MgCA+MgCB), ABA, La, and La + ABA treatments.

https://doi.org/10.1371/journal.pone.0232750.g002
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For the MgCA + ABA reaction, one ABA molecule could be adsorbed onto either side of the

chlorin ring, or two ABA molecules could be adsorbed onto both sides of the chlorin ring at the

same time. Therefore, three compounds (MgCAABA1, MgCAABA2, and MgCAABA3) could

be produced. For the MgCA + La(NO3)3 reaction, both La and NO3� could react with MgCA.

The reaction of MgCA + NO3� was very similar to the MgCA + ABA reaction; therefore, three

compounds (MgCANO31, MgCANO32, and MgCANO33) were obtained. For the reaction of

Fig 3. Optimized structures for the reactions between NO3� , ABA and Mg-chlorophyll A. (a) Free-base chlorophyll

A (H2CA), (b-c) monodeprotonated free-base chlorophyll A (HCA1 and HCA2), (d) dideprotonated free-base

chlorophyll A (CA), (e) Mg-chlorophyll A (MgCA), (f-h) abscisic acid (ABA) adsorbed onto Mg-chlorophyll A

(MgCAABA1, MgCAABA2, and MgCAABA3), (i-k) NO3� adsorbed onto Mg-chlorophyll A (MgCANO31,

MgCANO32, and MgCANO33) and (l) abscisic acid (ABA).

https://doi.org/10.1371/journal.pone.0232750.g003
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MgCA + La, the central Mg could be replaced by La, and two kinds of products were formed, as

shown in Fig 4. One kind included the La-monochlorophyll A compounds (LaCA1 and LaCA2),

and the other included the sandwich-type La-bischlorophyll A compounds (CALaCA1,

CALaCA2, and CALaCA3). In these compounds, La was always located outside of the chlorin

Fig 4. Optimized structures for the reactions between La, ABA and Mg-chlorophyll A. (a) LaABA compound, (b-c)

La-monochlorophyll A compounds (LaCA1 and LaCA2), and (d-f) sandwich-type La-bischlorophyll A compounds

(CALaCA1, CALaCA2, and CALaCA3).

https://doi.org/10.1371/journal.pone.0232750.g004
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ring because the radius of La was larger than that of Mg. Our calculation also showed that one La

and two ABA molecules formed a stable La-ABA compound.

For these optimized structures, the Gibbs free energies at 298.15 K and 101 kPa in ethanol

were calculated, which could then be used to evaluate whether a given chemical change was

thermodynamically possible. The Gibbs free energy differences corresponding to the reactions

between different compounds are listed in Table 1 and illustrated in Fig 5.

Deprotonation of free-base chlorophyll A (H2CA) was a two-step endothermic process.

The first step produced monodeprotonated free-base chlorophyll A (HCA1 and HCA2) with

an increase in Gibbs free energy of more than 800 kJ�mol-1, and the second step formed dide-

protonated free-base chlorophyll A (CA) along with another increase of approximately 800

kJ�mol-1. The formation of MgCA by Mg and CA was exothermic, and the corresponding

decrease in Gibbs free energy was 602.81 kJ�mol-1. The adsorption of ABA and NO3� onto

MgCA further reduced the Gibbs free energies. The formations of La-monochlorophyll A

compounds (LaCA1 and LaCA2) and La-bischlorophyll A compounds (CALaCA1, CALaCA2,

and CALaCA3) by La and CA were also exothermic, while the former had higher Gibbs free

energies than the latter. In addition, the generation of LaABA compounds by La and ABA

decreased the Gibbs free energy by 92.16 kJ �mol-1.

Simulated electronic absorption spectra. The simulated electronic absorption spectrum

of MgCA had two absorption bands (Fig 6). Compared to the experimental results, its short-

and long-wavelength absorption peaks were blueshifted by 59 and 93 nm, respectively. These

differences were mainly caused by the fact that the MgCA molecule was so large that we could

not use the most accurate method to calculate its electronic absorption spectrum, which was

very time consuming. Indeed, our electronic absorption spectrum for MgCA was consistent

with previous spectra obtained by others [44–46].

Compared to MgCA, dideprotonated free-base chlorophyll A (CA) and monodeprotonated

free-base chlorophyll A (HCA1) had a stronger absorption intensity at the long-wavelength

Table 1. Gibbs free energy differences.

Compounds Gibbs free energy difference (kJ·mol-1)

1 H2CA 0.00

2 HCA1 863.22

3 HCA2 832.28

4 CA 1741.23

5 MgCA 1138.42

6 MgCAABA1 1091.95

7 MgCAABA2 1087.48

8 MgCAABA3 972.49

9 MgCANO31 1076.19

10 MgCANO32 1089.58

11 MgCANO33 1110.58

12 ABA 1741.23

13 LaABA 1649.07

14 LaCA1 1364.99

15 LaCA2 1370.77

16 CALaCA1 1189.61

17 CALaCA2 1236.61

18 CALaCA3 1254.46

19 La 1741.23

https://doi.org/10.1371/journal.pone.0232750.t001
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Fig 5. Gibbs free energy differences corresponding to the reactions between different compounds.

https://doi.org/10.1371/journal.pone.0232750.g005

Fig 6. Simulated electronic absorption spectra of different compounds in ethanol. (a) MgCA, CA, HCA1, HCA2, and

H2CA; (b) MgCA, LaCA1, LaCA2, CALaCA1, CALaCA2, and CALaCA3; (c) MgCA, MgCANO31, MgCANO32, and

MgCANO33; (d) MgCA, MgCAABA1, MgCAABA2, and MgCAABA3.

https://doi.org/10.1371/journal.pone.0232750.g006
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absorption band, while free-base chlorophyll A (H2CA) possessed a much higher absorption

peak at the short-wavelength absorption band.

The electronic absorption spectra of La-monochlorophyll A compounds (LaCA1 and

LaCA2) were always weaker than those of MgCA at both absorption peaks. The electronic

absorption spectra of La-bischlorophyll A compounds (CALaCA1, CALaCA2 and CALaCA3)

were slightly more complicated. For CALaCA3, the absorption intensity decreased at both

absorption peaks. For CALaCA1 and CALaCA2, the peak at the short-wavelength absorption

band was lower than that of MgCA, but the peak at the long-wavelength absorption band was

higher and exhibited a blueshift.

The adsorption of NO3� onto MgCA lowered the absorption peak at the short-wavelength

absorption band but barely affected the absorption peak at the long-wavelength absorption

band. The interaction of ABA with MgCA reduced the absorption intensity at both the long-

and short-wavelength absorption bands.

Discussion

In the present study, we observed that La and ABA had no significant effect on seed germina-

tion, suggesting that the caryopsis covering structure was somewhat restrictive to the move-

ment of macromolecular substances [32], and that ABA could significantly promote the root

growth of switchgrass, while La could not alleviate the promotion of root growth by ABA. The

root is the major organ for the absorption of water and nutrients. Treatment with an appropri-

ate concentration of lanthanum can improve root activity [47]. The root activity in this paper

was reflected by the intensity of root tetrazolium reduction. The results indicated that both the

La and ABA treatments enhanced the root activity of switchgrass, but ABA played a more

important role.

The chlorophyll content of leaves is an important index that reflects the physiological state of

the leaves and corresponds well with photosynthetic capability. Some studies showed that lantha-

num could increase the chlorophyll content by inducing the synthesis of the precursor of chloro-

phyll by promoting the assimilation of certain elements, such as N, P, and Mg [48,49]. Moreover,

they speculated that the rare earth metal element was an activator of the enzyme involved in the

synthesis of chlorophyll and indirectly improved the synthesis of chlorophyll. Hong et al. [33]

studied the effect of lanthanum on the chlorophyll of spinach (Spinacia oleracea) and found that

La improved the assimilation of Mg. Yang et al. [50] proved that ABA could improve the chloro-

phyll content in wheat (Triticum aestivum). Our in vivo experiments measured the changes of

chlorophyll content under La, ABA and La + ABA treatments. However, the changes of chloro-

phyll content can be caused by two reasons. One is the change of the total amount of chlorophyll.

The other is the change of chlorophyll form. In order to clarify these phenomena, we further

implemented in vitro experiments and quantum chemical calculations.

In vivo, La treatment increased the chlorophyll content. However, in vitro, La treatment

produced the compounds of La-monochlorophyll A (LaCA1 and LaCA2) and La-bischloro-

phyll A (CALaCA1, CALaCA2 and CALaCA3), which was consistent with the finding of Miro-

nov [51], and decreased the absorbance of Mg-chlorophyll compounds, which was due to the

fact that La-monochlorophyll A and La-bischlorophyll A compounds had lower absorption

peaks than Mg-chlorophyll A. This contradiction revealed that La(NO3)3 should play a role in

increasing the total chlorophyll content in vivo because the replacement of Mg with La did not

increase the absorbance. Our calculations also showed that La-monochlorophyll A and La-

bischlorophyll A compounds had higher Gibbs free energies than MgCA, which indicated

that the transformation from MgCA to La-monochlorophyll A or La-bischlorophyll A

compounds was thermodynamically unfavorable at 298.15 K and 101 kPa in their standard
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states. This situation further demonstrated that the increase in chlorophyll content with La

treatment in vivo was mainly caused by a stimulatory effect of La rather than the substitu-

tion of La for Mg.

ABA treatment had no impact on the chlorophyll content in vivo, but it reduced the absor-

bance of Mg-chlorophyll compounds in vitro. In vitro, ABA reacted with Mg-chlorophyll

compounds, which lowered the absorption peaks. In vivo, ABA also interacted with Mg-chlo-

rophyll compounds, and consequently, the absorbance should have been reduced. Considering

that the chlorophyll content remained unchanged with ABA treatment in vivo, more Mg-chlo-

rophyll compounds must have been produced to compensate for the reduction in absorbance

caused by ABA. Therefore, ABA should also play a role in promoting the production of Mg-

chlorophyll compounds in vivo. Our calculations further showed that the adsorption of ABA

onto MgCA decreased the Gibbs free energies (Figs 3, 4 and 5; Table 1), which demonstrated

that adsorption was thermodynamically possible.

In vitro, treatment with La + ABA lowered the absorption intensity of Mg-chlorophyll

compounds, which was consistent with our findings that both ABA and La(NO3)3 could

react with Mg-chlorophyll compounds and that the products had lower absorption peaks.

However, in vivo, treatment with La + ABA reduced the chlorophyll content, which con-

flicted with our conclusion that both ABA and La(NO3)3 could stimulate the production

of Mg-chlorophyll compounds. In Fig 2(a), we can see that the absorbance in the La

+ ABA treatment was greater than that in the ABA and La treatments in the first hour.

This phenomenon provided evidence that La should react with ABA and may form

LaABA compound (Figs 3, 4 and 5). One hour later, the absorbance in the La + ABA treat-

ment became nearly the same as that in the La treatment, which demonstrated that some

of the LaABA compound were converted into La-monochlorophyll and La-bischlorophyll

compounds. Our calculations predicted that the Gibbs free energy would decrease from

La to LaABA compound, and it also fell from LaABA compound to La-monochlorophyll

and La-bischlorophyll compounds; thus, both the formation of LaABA compound and the

conversion were thermodynamically possible. In the in vivo experiment, adding ABA and

La(NO3)3 to culture medium produced LaABA compound. When the LaABA compound

remained in the culture medium, the concentrations of ABA and La(NO3)3 were reduced

in vivo, which weakened the stimulatory effects of ABA and La(NO3)3. However, although

ABA and La(NO3)3 were at low concentrations in vivo, they still reacted with Mg-chloro-

phyll compounds, which lowered the absorbance. The overall effect was that the formation

of LaABA compound allowed the stimulatory effect to be overcome by the inhibitory

effect, in turn reducing the absorbance. As a result, the measured chlorophyll content

decreased in vivo.

Overall, our in vivo and in vitro experiments, together with the quantum chemical calcula-

tions, demonstrated that both La and ABA could promote the production of chlorophyll in

vivo, although they also weakened the absorption intensity of Mg-chlorophyll compounds by

reacting with them. When La and ABA were used at the same time, the competition between

the effects of promoting chlorophyll production and reducing chlorophyll absorbance became

complicated because the ABA and La formed LaABA compound, which markedly reduced the

concentrations of ABA and La.

The plant hormone ABA has many important functions in plant growth and development,

especially in plant stress responses. As both La and ABA have positive effects on plant stress

responses [52,53], it would be interesting to further study the mechanisms of La and ABA

interactions in switchgrass stress responses at the molecular level.
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Conclusions

This work demonstrates that La and ABA can interact with each other to affect seedling

growth of switchgrass. Both La and ABA enhance the root activity of switchgrass, but ABA is

more efficient. ABA also accelerates the root elongation. Moreover, La significantly increases

the chlorophyll content, whereas La + ABA decreases the chlorophyll content as compared to

the control. The underlying mechanism is inferred from in vivo experiments, in vitro experi-

ments and quantum chemical calculations. The results indicate that both ABA and La can

stimulate the production of chlorophyll, while they also could react with chlorophyll to pro-

duce La-monochlorophyll, La-bischlorophyll, and ABA adsorbed chlorophyll, which have

lower absorbance. ABA + La treatment forms LaABA compound, which markedly reduces the

concentrations of ABA and La and further influences the competition between promoting

chlorophyll production and reducing the absorbance of chlorophyll.
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