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Abstract: Organic fluorophores have found broad application as emitters in luminescent solar concen-
trators (LSCs) for silicon photovoltaics. In particular, the preparation of organic conjugated systems
with intense light-harvesting ability, emissions in the deep-red and NIR regions, and large Stokes shift
values represent a very challenging undertaking. Here, we report a simple and easy way to prepare
three symmetrical donor–acceptor–donor (DAD) organic-emitting materials based on a thienopyrazine
core. The central core in the three dyes was modified with the introduction of aromatic substituents,
aiming to affect their optical properties. The fluorophores were characterized by spectroscopic studies.
In all cases, visible-NIR emissions with large Stokes shifts were found, highlighting these molecules as
promising materials for the application in LSCs.

Keywords: organic fluorophores; NIR emission; thienopyrazine; luminescent solar concentrators

1. Introduction

The investigation of efficient systems to replace fossil fuels with more sustainable
energy sources has been one of the most challenging research fields of recent years. In
particular, the development of new technologies for converting sunlight into other forms
of energy, such as electricity, represents a key issue as solar light is the most abundant
renewable source and is well-distributed all over the planet [1].

Currently, the main technology used to exploit solar energy consists of silicon pho-
tovoltaic (PV) panels, but several other emerging devices have been proposed [2–5]. The
main goal for their development is that of overcoming some of the drawbacks connected
with the use of traditional PVs, such as the need for direct light irradiation, limited per-
formance under low light, difficult urban integration, and poor dispersion of excess heat
due to unconverted energy. One of the proposed solutions is based on luminescent solar
concentrators (LSCs), which are exploited as an alternative approach to lowering the costs
of PVs and facilitating the integration of solar-harvesting devices into buildings [6].

LSCs rely on a technology studied since the 1970s [7,8] and, generally, consist of trans-
parent polymer sheets doped with luminescent species. Incident sunlight is absorbed by
the luminescent compounds and emitted at longer wavelengths. Thanks to the different
refractive indexes of air and the dispersing matrix, the emitted radiation is then mostly con-
centrated, via total internal reflection, at the edges of the panel, where traditional silicon solar
cells are placed. Commonly used fluorescent compounds can be quantum dots, perovskites,
rare-earth complexes, and organic molecules [9], possibly characterized by high fluorescence
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quantum yields, large Stokes shifts, and a suitable match between the emission wavelengths
and the electronic band-gap of the PV cell used. Among them, small organic molecules
with a donor–acceptor–donor (DAD) type structure appear particularly interesting because
their band-gap levels and other related properties can be readily tuned by introducing a
variety of donor and acceptor moieties. In particular, benzo- and thienopyrazines, such as
those shown in Figure 1, can be promising fluorophores for LSC applications as they have
been found to have strong intramolecular charge transfer (ICT) transitions [10] due to the
electron-withdrawing properties of the pyrazine ring coupled with the electron-donating
properties of the flanking triphenylamine groups.

Molecules 2021, 26, x FOR PEER REVIEW 2 of 14 
 

 

mostly concentrated, via total internal reflection, at the edges of the panel, where 
traditional silicon solar cells are placed. Commonly used fluorescent compounds can be 
quantum dots, perovskites, rare-earth complexes, and organic molecules [9], possibly 
characterized by high fluorescence quantum yields, large Stokes shifts, and a suitable 
match between the emission wavelengths and the electronic band-gap of the PV cell used. 
Among them, small organic molecules with a donor–acceptor–donor (DAD) type 
structure appear particularly interesting because their band-gap levels and other related 
properties can be readily tuned by introducing a variety of donor and acceptor moieties. 
In particular, benzo- and thienopyrazines, such as those shown in Figure 1, can be 
promising fluorophores for LSC applications as they have been found to have strong 
intramolecular charge transfer (ICT) transitions [10] due to the electron-withdrawing 
properties of the pyrazine ring coupled with the electron-donating properties of the 
flanking triphenylamine groups.  

 
Figure 1. Structure of benzopyrazine- and thienopyrazine-based chromophores with 
triphenylamine donors. 

In addition, it has been shown that by extending the conjugation of the pyrazine 
acceptor in an orthogonal direction to the DAD backbone, the ICT transitions are 
dramatically strengthened, lowering the band-gap and resulting in a bathochromic shift 
of the emission of the corresponding compounds. Such property could be highly 
beneficial in view of their employment in LSCs, thanks to the improved spectral matching 
with the absorption of c-Si photovoltaic cells, extending until the near-IR (NIR) region. 

Very recently, we reported some novel thienopyrazine-based organic dyes bearing 
tetraphenylethylene (TPE) moieties onto the triarylamine donor groups, which also 
revealed intense light-harvesting ability and emissions in the deep-red and NIR regions, 
with large Stokes shift values (Figure 2). Remarkably, the dyes exhibited aggregation-
induced emission (AIE) properties, enhancing their emissive ability in the aggregate state 
[11]. 

 
Figure 2. Structure of thienopyrazine-based AIE dyes.  

Figure 1. Structure of benzopyrazine- and thienopyrazine-based chromophores with triphenylamine donors.

In addition, it has been shown that by extending the conjugation of the pyrazine accep-
tor in an orthogonal direction to the DAD backbone, the ICT transitions are dramatically
strengthened, lowering the band-gap and resulting in a bathochromic shift of the emission
of the corresponding compounds. Such property could be highly beneficial in view of their
employment in LSCs, thanks to the improved spectral matching with the absorption of c-Si
photovoltaic cells, extending until the near-IR (NIR) region.

Very recently, we reported some novel thienopyrazine-based organic dyes bearing
tetraphenylethylene (TPE) moieties onto the triarylamine donor groups, which also revealed
intense light-harvesting ability and emissions in the deep-red and NIR regions, with large
Stokes shift values (Figure 2). Remarkably, the dyes exhibited aggregation-induced emission
(AIE) properties, enhancing their emissive ability in the aggregate state [11].
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Despite the above-mentioned studies, to the best of our knowledge, no thienopyrazine-
based molecule has yet been applied as an LSC emitter. In addition, the employment of
compounds with emission maxima above 650 nm has been rarely reported [9]. To better
understand the structure-property relationships of thienopyrazine-based emitters and
explore their potential employment as NIR-emitting fluorophores for LSC application,
we decided to prepare a new small family of dyes bearing such a heterocyclic core and
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accurately study their spectroscopic properties. Starting from known compound 1a (DTPD),
we chose to maintain the triarylamine moiety as the donor group and to change the acceptor
core by extending its conjugation, introducing aromatic substituents. The structures we
designed are reported in Figure 3.
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Compounds 1a–c were prepared using an efficient and general procedure. They were
fully characterized, and, for all the dyes, spectroscopic and solvent-dependent photolu-
minescence studies were carried out. In all cases, emissions extending to the IR and NIR
regions and large Stokes shifts were found, highlighting these molecules as promising mate-
rials for application as emitters in LSCs. One of the three dyes was dispersed in a PMMA
matrix, the corresponding LSC devices were prepared, and their optical efficiencies were
measured and compared with a classical reference dye, BASF Lumogen Red 305 (LR 305).

2. Results
2.1. Synthesis of Dyes

The first point to address was to find a simple and general way, possibly suitable to
large-scale manufacturing, to prepare the three fluorophores, 1a–c.

We identified two different synthetic approaches, which are reported in Scheme 1
(route A and route B). In both cases, 2,5-dibromo-3,4-dinitrothiophene (2), prepared using
a previously reported procedure [12], was used as starting material. However, following
route A, we observed poor conversion yields in both the reduction of compound 2 to 2,5-
dibromo-3,4-diaminothiophene (3) and the subsequent ring-closure reaction. Accordingly,
we found route B to be more general, leading to the best overall yields, and optimized the
synthesis, as shown in Scheme 2. Following an already-reported procedure [10], advanced
intermediate 6 was prepared in high yield through Suzuki-Miyaura coupling between
(4-(diphenylamino)phenyl)boronic acid and 2,5-dibromo-3,4-dinitrothiophene (2). The
following step was more challenging, as after the catalytic hydrogenation of the two nitro
groups using Pd/C [13], a complex mixture of 3-amino-4-nitro- and 3,4 diamino-derivatives
was recovered, together with several by-products.
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Scheme 1. Possible synthetic routes to fluorophores 1a–c.

No better result was obtained using metallic iron in acetic acid as the reducing agent [14,15].
Nevertheless, a good yield of diamine (7) was finally obtained using powdered tin as a
reductant in acetic acid at 60 ◦C. Under these conditions, satisfactory yields of the desired
diamine were found in the crude mixture, following hydrolysis with a basic bicarbonate
solution. Unfortunately, all the attempts made to purify intermediate 7 were unsuccessful,
making it necessary to use the crude mixture directly for the subsequent cyclization step.
Conversion to the pyrazine ring was performed in the presence of the suitable 1,2-dicarbonyl
compound, using dry CHCl3 as a solvent and p-toluenesulfonic acid as a catalyst at room
temperature. Under these conditions, condensation with glyoxal (4a), benzil (4b), and
phenanthrene-9,10-dione (4c) gave the corresponding thienopyrazines 1a–c in 57%, 64%,
and 62% overall yield, respectively (Scheme 2). After purification, the resulting compounds
were characterized by 1H- and 13C-NMR and HRMS spectroscopies (see Supplementary
Materials), the results of which were consistent with the proposed structures.
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2.2. Photophysical Properties

The synthesized compounds 1a–c were characterized after dissolution in different
solvents through UV-vis and photoluminescence (PL) spectroscopy measurements. First,
experiments were conducted in toluene since it effectively dissolved all compounds, and
its refractive index (1.496) is similar to that of PMMA (1.491), that is, the polymer matrix
commonly used in LSC experiments (see below), thus providing the best reference for
the following application. The UV-vis spectra of the three compounds showed two main
absorption bands at different wavelengths, a more intense one in the near-UV region and
another one in the visible range (Figure 4).
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The band in the near-UV region was attributed to a localized π→π* transition of the
donor triphenylamine groups [16], while the lower energy band was due to the internal
charge transfer (ICT) transition from the donor moiety to the acceptor thienopyrazine
core [10]. Spectroscopic data, reported in Figure 4 and Table 1, clearly show that extending
the conjugation of the thienopyrazine core has a pronounced bathochromic effect on the
ICT transition; indeed, the unsubstituted compound 1a features a 552 nm absorption maxi-
mum wavelength in toluene solution, while for diphenyl-substituted 1b, the ICT band is
red-shifted by 19 nm (λmax = 571 nm). Finally, the highly conjugated dibenzo[f,h]thieno[3,4-
b]quinoxaline derivative 1c shows a 95 nm bathochromic shift (λmax = 647 nm) in compari-
son with 1a. As shown in Table 1, when using solvents of different polarities, none of the
compounds presented a large solvatochromism, neither of the UV-centered nor the visible
absorption band, which were shifted by 12 nm at most.

Next, the fluorescence emission properties of the molecules were analyzed after excitation
close to the maximum absorption wavelength of the visible band region (541–647 nm, Table 1
and Figure 5). In toluene solution, 1a,b presented emission bands around 700 nm, while
a significantly red-shifted fluorescence was observed for 1c, peaking in the NIR region
just above 800 nm. In all cases, large Stokes shifts of 137–157 nm were observed. As it
could be expected, fluorescence quantum yields were relatively low (approx. 1–4%) as a
consequence of the so-called “energy gap law” [17], which states that quick non-radiative
decay from low-lying excited states, favored by fast vibrational relaxation, can serve as an
efficient deactivation pathway to quench NIR emission. The values found in this study were
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nevertheless comparable to those already observed for push–pull fluorophores emitting
in the same wavelength range [18]. Unlike the rather small solvatochromism observed
in the absorption spectra, all the luminophores displayed significant solvent-dependent
photoluminescence properties.

Table 1. Optical properties of luminophores 1a–c in different solvents.

Compound Solvent a λ1
abs (nm) ε1 (cm−1 M−1) λ2

abs (nm) ε2 (cm−1 M−1) λ2
emi (nm)

Stokes Shift
(nm [eV]) Φf (%)

1a

hexane 365 30,100 552 14,700 671 119 [0.40] 6
toluene 365 57,400 552 15,000 698 146 [0.47] 2.6

THF 365 33,600 542 15,900 709 167 [0.54] <1
EA 362 34,200 540 15,700 705 165 [0.54] <1

DCM 361 37,800 547 15,400 731 184 [0.57] <1
DMSO 365 27,600 540 12,600 737 198 [0.61] <1

1b

hexane 343 33,400 572 8400 687 115 [0.36] 3
toluene 348 59,000 571 15,100 708 137 [0.42] <1

THF 347 58,000 570 15,000 722 152 [0.46] <1
EA 345 36,700 563 9100 725 162 [0.49] <1

DCM 347 58,100 572 15,400 736 164 [0.48] <1
DMSO 350 22,700 566 5500 741 175 [0.52] <1

1c

hexane 364 13,000 649 2000 780 131 [0.32] 4
toluene 368 55,200 647 9500 804 157 [0.37] 4

THF 367 48,000 655 7600 809 154 [0.36] <1
EA 365 26,100 648 4000 810 162 [0.38] <1

DCM 368 55,200 653 8600 810 157 [0.37] <1
DMSO 372 32,900 660 4700 814 154 [0.36] <1

a The concentration was 0.01 mM in all solvents.

This type of behavior is characteristic of transitions due to intramolecular charge
transfer [10,11,19] since the electron density of the ground state S0 is mainly localized
on the triphenylamine donor group and, due to the photoexcitation, is transferred to the
electron-poor thienopyrazine core. This induces an increase in the dipole moment of the
molecule in the excited state S1, which is, therefore, more stabilized by polar solvents,
resulting in a red-shift of the emission spectra. To more accurately evaluate this behavior,
the trend of the Stokes shift against Dimroth–Reichardt’s solvent polarity parameter ET(30),
which is essentially a polarity scale based on the static dielectric constant f(D) [20,21], was
assessed and is reported in Figure 5d. The greater the slope of the fitting line, the larger
the difference in the dipole moments of the ground and first excited state. As it can be
seen, plots for compounds 1a and 1b present a very similar slope; on the contrary, this
is clearly lower in the case of 1c, showing that photoexcitation causes a smaller change
in the dipole moment, in agreement with better negative charge delocalization due to
the larger conjugation of the dibenzo[f,h]thieno[3,4-b]quinoxaline core. To confirm these
findings, compounds 1a–c could be studied with electric-field-modulated absorption (EA)
spectroscopy: indeed, by recording the variation of UV-vis absorption spectra of samples
when immersed in electric fields of different strength, it is possible to determine the
difference of electric dipole moments between the excited and ground states of organic
compounds. This technique has already been employed in the study of donor-acceptor
molecules with an application in optoelectronics [22,23].

In addition to the bathochromic effect of the emission band, there is a decrease in the
intensity of the fluorescence emission (and, therefore, of the quantum yield) passing from
non-polar solvents, such as hexane and toluene, to more polar solvents such as EA and
DCM. Accordingly, the emission in DMSO (the most polar solvent among those tested) is
practically zero. Again, this pattern is typical of an ICT transition, where the excited state
stabilization in more polar solvents is correlated to quicker non-radiative decay compared
to less polar media, in agreement with the above-mentioned energy gap law.
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When the three compounds 1a–c were excited in toluene at the maximum absorption
wavelength in the near-UV region (347–372 nm), they presented different emission behavior.
Compounds 1a,b displayed a fluorescence spectrum with two emission bands (Figure 6a,b),
the main of which corresponded to the peak in the near-IR region already observed in
Figure 5. In other words, their behavior was substantially adherent to Kasha’s rule, stating
that the fluorescence (singlet) emission of an organic compound occurs in appreciable yield
only from the lowest (singlet) excited state [24].

The same, however, was not true for compound 1c, whose main emission band was
located in the visible region at around 530 nm, while the NIR band at around 800 nm was
only faint (Figure 6c). A possible explanation is that the S1 ICT excited state for compound
1c is much lower in energy compared to those of compounds 1a,b, as demonstrated by
its red-shifted absorption in the visible region (Figure 4). As a consequence, the energy
difference with the S2 state, stemming in all cases from a localized π→π* transition centered
on the triphenylamine groups (see above), would be larger in the former compound
compared to the latter, slowing down the corresponding non-radiative transition and, thus,
avoiding the quenching of radiative emission from the S2 state.

Further studies would anyway be necessary to confirm this hypothesis, as other
apparent violations of Kasha’s rule have already been traced back to the occurrence of
different phenomena (e.g., tautomerism, presence of impurities) [25,26].
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Thanks to the emissions in the visible and NIR regions and the large Stokes shifts
showed by the fluorophores, we decided to prepare some test (50 × 50 × 3 mm3) LSC de-
vices with the new emitters. Thus, the three compounds were dispersed within poly(methyl
methacrylate) (PMMA), which is the most used polymer matrix for LSC devices. Disap-
pointingly, only compound 1c proved to be stable enough (at least for several hours under
illumination) to allow full characterization of the thin films, as the samples prepared with
compounds 1a,b showed progressive decoloration even during room temperature storage
for a few days. Such findings might be explained with the more conjugated structure of
1c [27] compared to 1a,b, which is responsible for a wider and more efficient delocalization
of the electronic charge resulting from excitation and ICT transition and, consequently, for
the stabilization of the excited state (as it is evident from its red-shifted emission and the
solvent dependence studies; Figure 5).

Accordingly, an investigation of device properties was successfully carried out only
using fluorophore 1c. After dispersion in PMMA at different concentrations (from 0.4
to 2.0% by weight), the compound gave transparent and homogeneous films for all the
investigated ranges of concentration (Figure 7).
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tions (left), as well as LR305 at 1.4 wt% (right).

UV-vis absorption and fluorescence spectra of the films as a function of fluorophore
concentration (wt%), together with fluorescence quantum yield and optical efficiencies of
the corresponding LSC devices, were measured at different concentrations and are reported
in Figure 8 and Table 2. The intensity of the absorption spectra grew progressively with the
compound concentration, and no shape variation was observed in the curves, highlighting
the good dispersion of compound 1c in PMMA.

The emission spectra and quantum yields were evaluated by exciting the molecule
at the wavelength of maximum absorption in the near-UV region (372–378 nm) due to its
higher intensity compared to the ICT band: in agreement with the measurements carried
out in solution, the only strong emission band observed in these conditions was that at
λmax ~ 520–530 nm, while the peak due to the emission from the lowest excited state was
extremely weak (Figure 8b, solid lines).
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Figure 8. (a) Absorption spectra of 1c (solid line) and LR305 (dash line) in PMMA at different con-
centrations (weight %); (b) fluorescence emission spectra of 1c (solid line, excitation at 372 nm) and
LR305 (dash line, excitation 538 nm) in PMMA at different concentrations (weight %).

Table 2. Spectroscopic properties and optical efficiency of 1c in PMMA films.

Cmpd. Conc. (wt%) λabs (nm) λems (nm) a Φf (%) a Stokes Shift (nm [eV]) a PLSC (µW) ηopt (%) b C

1c

0.4 378, 632 529 16.7 151 [0.94] 65.7 6.49 ± 0.5 1.07
0.8 377, 632 526 16.4 149 [0.93] 60.8 6.01 ± 0.5 1.00
1.2 372, 632 523 11.5 151 [0.96] 68.9 6.81 ± 0.5 1.13
1.6 372, 636 523 6.9 151 [0.96] 58.3 5.76 ± 0.5 0.96
2.0 376, 632 521 5.5 145 [0.92] 57.3 5.66 ± 0.5 0.94

LR305 1.4 578 613 96.0 35 [0.13] 102.2 10.1 ± 0.5 1.68
a For 1c, following excitation at the maximum wavelength of the near-UV band (372–378 nm); b calculated using Equation (1), where
PSC = 61 µW and G = 16.6.

By looking at the spectra of compound 1c reported in Figure 8a,b, it can be seen that the
absorption band peaking at 630 nm appears much weaker than that in the near-UV region
and that the visible emission around that wavelength is only around 25% of its maximum
intensity. On the other hand, it should also be noted that the intensity of fluorescence
decreased when the concentration of 1c in PMMA increased (see the quantum yield values
in Table 2), and this was also accompanied by a progressive blue shift from 529 to 521 nm.
Such observations lead us to think that some re-absorption of light emitted from the higher
energy excited state is present in the LSC, and, therefore, tuning the concentration of
the emitter in PMMA should be crucial to maximizing device efficiency. Nevertheless,
the Stokes shift for this transition was still very large (>0.9 eV), constituting a favorable
condition for the employment of 1c in LSCs, effectively limiting re-absorption phenomena.
On the other hand, the quantum yield collapse, observed with increasing fluorophore
concentration, could also be due to the formation of aggregates, triggering the typical
“aggregation–caused quenching” (ACQ) effect [28].

Finally, the performances of the fluorophore/polymer films as LSCs were determined
according to the procedure reported in the experimental part. The power generated by a
c-Si photovoltaic cell was measured upon both direct exposure to the light of an AM 1.5G
solar simulator (PSC) and when connected to the LSC (PLSC). The PLSC/PSC ratio is the
concentration factor (C) linked to optical efficiency (ηopt) through the LSC geometric factor
(G), which is simply the ratio between the area of the LSC and that of the bare (masked)
c-Si cell. The results obtained with compound 1c were compared with those collected from
the reference dye Lumogen Red 305 (LR305, Table 2) under the same conditions. Although
the quantum yield of 1c dispersed in PMMA was quite low (16% max) when compared
to that of LR305, the optical efficiency of 6.81% that we observed at concentration 1.2 wt%
was quite satisfactory, especially because it was accompanied by a concentration factor
higher than 1, which is the minimum required condition for a light collector; this is not
so commonly observed for this kind of molecule [9]. Such positive results are probably
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derived from the good spectral matching between light absorption by the c-Si PV cell and the
fluorophore emission, especially when irradiated with light of different wavelengths, coupled
with the large Stokes shifts that limited light re-absorption within the LSC device. Taken
together, these observations promote the further exploration of the compounds featuring
a dibenzo[f,h]thieno[3,4-b]quinoxaline heterocyclic core as potential organic emitters for
LSC applications.

3. Materials and Methods
3.1. General Information

Unless otherwise stated, all reagents were purchased from commercial suppliers and
used without further purification. 2,5-dibromo-3,4-dinitrothiophene (2) was prepared as
previously reported [12]. All air-sensitive reactions were performed using Schlenk tech-
niques. Solvents used in cross-coupling reactions were previously degassed by means of
the “freeze–pump–thaw” method. Tetrahydrofuran (THF) was freshly distilled immedi-
ately before use from sodium/benzophenone. CH2Cl2, toluene, and acetonitrile were dried
on a resin exchange solvent purification system. Petroleum ether, unless specified, is of the
40–70 ◦C boiling fraction. For all spectroscopic measurements, solvents with spectroscopy
grade purity were used.

Organic phases derived from aqueous work-up were dried over Na2SO4. Reactions
were monitored by TLC on SiO2 plates, and the detection was made using a KMnO4 basic
solution or UV lamp. Flash column chromatography was performed using glass columns
(10–50 mm wide) and SiO2 (230–400 mesh). 1H-NMR spectra were recorded at 200 or
400 MHz and 13C-NMR spectra at 50.0 or 100.6 MHz, respectively. Chemical shifts were
referenced to the residual solvent peak (CDCl3, δ 7.26 ppm for 1H-NMR and δ 77.16 ppm for
13C-NMR; THF-d8 δ 3.58 and 1.72 ppm for 1H-NMR, δ 67.21 and 25.31 ppm for 13C-NMR;
CD2Cl2, δ 5.32 ppm for 1H-NMR, δ 53.84 ppm for 13C-NMR). Coupling constants (J) are
reported in Hz. ESI-MS spectra were recorded with a Thermo Fisher LCQ-Fleet Ion-Trap mass
spectrometer. HR-MS measurements were performed using a Thermo Fisher LTQ Orbitrap
FT-MS spectrometer (Waltham, MA, USA). FT-IR spectra were recorded with a Perkin-
Elmer Spectrum UATR (Waltham, MA, USA) instrument in the range of 4000–400 cm−1

with a 2 cm−1 resolution. UV–vis spectra were recorded with a Shimadzu UV2600 series
spectrometer (Kyoto, Japan), and fluorescence spectra in solution were recorded with a Jasco
FP-8300 instrument (Tokyo, Japan), irradiating the sample at the wavelength corresponding
to maximum absorption in the UV-vis spectrum. Fluorescence spectra on polymer films were
measured at room temperature with a Horiba Jobin–Yvon Fluorolog®-3 spectrofluorometer
(Horiba Jobin–Yvon, Horiba Italy, Rome, Italy) equipped with a 450 W Xenon arc lamp and
double-grating excitation and single-grating emission monochromators.

The concentration factors and optical efficiencies of the LSCs were obtained using a
solar simulator (ORIEL® LCS-100 solar simulator (Newport, North Kingstown, RI, USA),
AM1.5G std. filter: 69 mW/cm2 at 254 mm) and a calibrated PV cell (IXYS SLMD121H08L
mono solar cell 86 × 14 mm: Voc = 5.04 V, Isc = 50.0 mA, FF > 70%, η = 22%) connected to
a precision source/measure unit (Keysight Technologies B2900 Series) (Santa Rosa, CA,
USA). The PV cell was masked with black tape to match the LSC edge (50× 3 mm) to make
stray light negligible [29]. High purity silicon was used to grease the PV cell to the LSC
edge to limit flux losses. Only one edge of the waveguide was attached to the PV cell to
make the wiring connections simple. The other three edges of the LSC were covered with
reflective aluminum tape in agreement with the literature [30]. Optical efficiency (ηopt)
was determined from the concentration factor, i.e., the ratio between the maximum power
measured for the cell over the LSC edge (PLSC) and that of the bare cell when exposed to
the light source (PSC), according to the following Equation (1):

ηopt =
PLSC

PSC ×G
(1)
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where C is the concentration factor and G is the geometrical factor (G = 16.6), that is,
the ratio between the area exposed to the solar simulator and the collecting area by the
PV cell. Notably, during the PLSC measurements, a white backscattering layer (ERGA
TAPES S.r.l., Microcellular MCPET reflective sheet) was placed beneath the LSC, with an
air gap of about 5 mm. The reported ηopt values were calculated as the average of three
distinct measurements.

3.2. Synthesis
3.2.1. Synthesis of 4,4′-(3,4-Dinitrothiophene-2,5-diyl)bis(N,N-diphenylaniline) (6)

2,5-Dibromo-3,4-dinitrothiophene (2) (400 mg, 1.21 mmol, 1.0 equivalent) and 4-
(diphenyl amino) benzeneboronic acid (760 mg, 2.6 mmol, 2.1 equivalents) were dissolved
into a toluene/H2O mixture (2/1 v/v, 75 mL). [Pd(PPh3)4] (130 mg, 0.12 mmol, 10 mol%)
and K2CO3 (1.64 g, 12 mmol, 10 equivalents) were then added, and the reaction mixture
was warmed-up to 80 ◦C and stirred for 16 h. After filtration on Celite®, the solution
was extracted with CH2Cl2 (2 × 50 mL), the organic phase washed with water and brine,
and then dried. After evaporation of the solvent, the crude was purified by flash column
chromatography (petroleum ether/CH2Cl2, gradient 3:1 to 1:1) to give 667 mg (yield 84%)
of compound (6) as a red solid. 1H-NMR (400 MHz, CDCl3) δ (ppm): 7.37–7.29 (m, 12H),
7.20–7.10 (m, 12H), 7.07–7.02 (m, 4H). 13C-NMR (100.6 MHz, CDCl3) δ (ppm): 150.28, 146.66,
140.47, 130.11, 129.79, 129.76, 125.90, 124.62, 120.97, 120.13. MS (ESI) (m/z): 660.0 [M]+.

3.2.2. General Procedure to Prepare 4,4′-Substituted
Thieno[3,4-b]pyrazine-5,7-diyl)bis(N,N-diphenylaniline) (1a–c)

Compound (6) (1.0 equivalent) was dissolved into acetic acid and reacted with pow-
dered Sn (13 equivalents). After warming up to 60 ◦C, the reaction mixture was stirred for
1 h, then diluted with H2O (10 mL) and filtered on Celite®. After extraction with CH2Cl2
(2 × 20 mL), the organic phase was washed with a saturated solution of NaHCO3 (20 mL),
then with water and brine, and dried. The crude obtained after evaporation of the solvent
was dissolved in dry CHCl3 (14 mL) and reacted with the appropriate dicarbonyl compound
(1.1 equivalents) (8) and a catalytic amount of p-toluenesulfonic acid at room temperature for
6 h. The reaction mixture was washed with a saturated solution of NaHCO3 (20 mL), then
with water and brine, and dried. The crude obtained after solvent removal was purified to
give the desired compound.

3.2.3. Synthesis of 4,4′-(Thieno[3,4-b]pyrazine-5,7-diyl)bis(N,N-diphenylaniline) (1a)

Compound 6 (100 mg, 0.15 mmol) was dissolved into acetic acid (14 mL) and reacted
first with powdered Sn (230 mg, 1.95 mmol), then with glyoxal (4a) (40% solution in water)
(175 mg, 0.16 mmol), in the presence of p-toluenesulfonic acid (5 mg). After work-up, the crude
mixture was purified by flash column chromatography (petroleum ether/CH2Cl2/toluene
= 2/1/1 v/v) to give 54 mg (57% yield) of compound 1a as a dark magenta solid. 1H-NMR
(400 MHz, THF-d8) δ (ppm): 8.46 (s, 2H), 8.18–8.11 (m, 4H), 7.30–7.25 (m, 8H), 7.15–7.11 (m,
8H), 7.11–7.08 (m, 4H), 7.06–7.01 (m, 4H). 13C-NMR (100.6 MHz, THF-d8) δ (ppm): 148.54,
148.49, 145.06, 140.89, 131.54, 130.20, 129.41, 128.27, 125.64, 124.19, 123.91. IR ν (cm−1): 3035,
2961, 2922, 2852, 1586, 1484, 1260. HRMS (ESI) m/z calculated for C42H30N4S 622.2191. Found
622.2202 [M·]+.

3.2.4. Synthesis of 4,4′-(2,3-Diphenylthieno[3,4-b]pyrazine-5,7-diyl)bis(N,N-
diphenylaniline) (1b)

Compound (6) (160 mg, 0.24 mmol) was dissolved into acetic acid (22 mL) and reacted
first with powdered Sn (370 mg, 3.10 mmol), then with benzil (4b) (56 mg, 0.27 mmol),
in the presence of p-toluenesulfonic acid (5 mg). After work-up, the crude was washed
with a warm mixture of ethyl acetate and ethanol (2:1) to give 120 mg (64% yield) of
compound 1b as a deep purple solid. 1H-NMR (400 MHz, THF-d8) δ (ppm): 8.30–8.22 (m,
4H), 7.56–7.48 (m, 4H), 7.32–7.24 (m, 14H), 7.16–7.12 (m, 8H), 7.12–7.08 (m, 4H), 7.06–7.01
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(m, 4H). 13C-NMR (100.6 MHz, THF-d8) δ (ppm): 153.22, 148.52, 148.47, 140.69, 139.40,
130.89, 130.71, 130.24, 129.44, 129.22, 128.78, 128.51, 125.75, 124.23, 123.83. IR ν (cm−1): 3061,
3034, 2962, 1588, 1482, 1327, 1274. HRMS (ESI) m/z calculated for C54H38N4S: 774.9713.
Found: 774.9721 [M·]+.

3.2.5. Synthesis of 4,4′-(Dibenzo[f,h]thieno[3,4-b]quinoxaline-10,12-diyl)bis(N,N-
diphenylaniline) (1c)

Compound (6) (100 mg, 0.15 mmol) was dissolved into acetic acid (14 mL) and reacted
first with powdered Sn (230 mg, 1.95 mmol), then with phenanthrene-9,10-dione (4c) (35 mg,
0.16 mmol), in the presence of p-toluenesulfonic acid (5 mg). After work-up, the crude
was washed with warm ethyl acetate to give 72 mg (62% yield) of compound 1c as a green
solid. 1H-NMR (400 MHz, THF-d8) δ (ppm): 9.08 (d, J = 7.9 Hz, 2H), 8.49 (d, J = 8.0 Hz,
2H), 8.39 (d, J = 8.6 Hz, 4H), 7.68 (t, J = 7.8 Hz, 2H), 7.59 (t, J = 7.8 Hz, 2H), 7.37–7.28 (m,
8H), 7.24–7.16 (m, 12H), 7.09–7.04 (m, 4H). 13C-NMR (100.6 MHz, THF-d8) δ (ppm): 149.90,
148.60, 148.46, 143.04, 140.44, 133.55, 131.84, 131.48, 130.53, 130.28, 129.31, 128.93, 127.22,
127.10, 125.79, 124.24, 124.07. IR ν (cm−1): 3063, 3034, 2962, 2924, 2853, 1589, 1484, 1328,
1259. HRMS (ESI) m/z calculated for C54H38N4S: 772.2661. Found: 772.2658 [M·]+.

Supplementary Materials: The following are available online, Figures S1–S3: Normalized emission
spectra of compounds 1a–c in different solvents (0.01 mM); Figure S4–S6: Absorption spectra of
compounds 1a–c in different solvents; Figure S7–S9: Fluorescence emission spectra of 1a–c in toluene
at different concentrations; Figure S10: Absorption and fluorescence emission spectra of 1c in PMMA;
Figure S11: P(V) and I(V) curves of the photovoltaic cell in the presence and absence of LSC; copies
of 1H- and 13C-NMR spectra of compounds 1a–c.
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