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A de novo substructure generation 
algorithm for identifying the 
privileged chemical fragments of 
liver X receptorβ agonists
He Peng, Zhihong Liu, Xin Yan, Jian Ren & Jun Xu

Liver X receptorβ (LXRβ) is a promising therapeutic target for lipid disorders, atherosclerosis, chronic 
inflammation, autoimmunity, cancer and neurodegenerative diseases. Druggable LXRβ agonists have 
been explored over the past decades. However, the pocket of LXRβ ligand-binding domain (LBD) is too 
large to predict LXRβ agonists with novel scaffolds based on either receptor or agonist structures. In this 
paper, we report a de novo algorithm which drives privileged LXRβ agonist fragments by starting with 
individual chemical bonds (de novo) from every molecule in a LXRβ agonist library, growing the bonds 
into substructures based on the agonist structures with isomorphic and homomorphic restrictions, and 
electing the privileged fragments from the substructures with a popularity threshold and background 
chemical and biological knowledge. Using these privileged fragments as queries, we were able to figure 
out the rules to reconstruct LXRβ agonist molecules from the fragments. The privileged fragments were 
validated by building regularized logistic regression (RLR) and supporting vector machine (SVM) models 
as descriptors to predict a LXRβ agonist activities.

Liver X receptorβ (LXRβ, also known as NR1H2) is a nuclear receptor, which is considered as the core of modern 
pharmacology, and the promising therapeutic target for lipid disorders, atherosclerosis, chronic inflammation, 
autoimmunity, cancer and neurodegenerative diseases1, 2. But, LXRβ ligand-binding domains (LBDs) have a big 
binding pocket, which tolerates diverse sizes and shapes of ligands. This makes difficult to predict LXRβ ligand 
structures with novel scaffolds based upon known receptor or ligand structures3. Thousands of natural or syn-
thetic LXR agonists have been reported. Conventional approaches were also tried to predict LXR agonists4–7. In 
current studies, we were motivated to figure out privileged LXRβ agonist fragments from the known LXRβ ago-
nists to guide fragment-based8 LXRβ agonist design and discovery.

There are many ways to define or derive structural fragments (substructures) from a chemical structure 
library, such as, maximal common substructure (MCSS) algorithm9, fingerprint algorithms10, scaffold-based 
classification approach (SCA)11, atom center fragments12, 13, etc. These approaches were based upon empirically 
or algorithmically pre-defined rules14, 15 and, the resulting substructures could be subjective. To build predictive 
SAR models, we need substructures that are statistically representative in a chemical structure library and related 
to the concerned activity.

Over the last decade, subgraph mining algorithms were developed and applied in QSAR modeling. Dehaspe 
and colleagues16 used a subgraph discovery algorithm to predict the toxicity of a compound based upon its 
chemical structure. Yan and Han developed the gSpan program for subgraph mining17. Huan and colleagues 
addressed the isomorphism problem in the subgraph mining process18. Kuramochi and coworkers also developed 
a subgraph discovery program19. Borgelt and colleagues developed MoSS for subgraph mining20, 21. Meinl and 
co-workers developed the ParMol package for subgraph mining22. Wang and colleagues paralleled a subgraph 
mining algorithm with the CUDA technology23. Most recently, Khashan and co-workers used the subgraph min-
ing approach in QSAR Modeling to predict compound toxicity24. Shao and colleagues used a subgraph mining 
technology to identify common functional groups to predict drug adverse effects25.
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These algorithms were tested on smaller data sets ranging from 10 K to 100 K compounds, some of them 
were tested on artificially generated data17, 19, 26, 27. Nowadays, chemical structure data (such as ZINC, one of 
the largest databases for medicinal chemistry, contains approximately 21 million compounds) grow rapidly28. 
Our studies revealed that a conventional subgraph (substructure) mining algorithm would encounter a huge 
computational challenge when it was tested on a million-compounds database due demanding huge memory for 
the isomorphism checking (more than 128 GB). Those subgraph mining algorithms elected substructures based 
upon a minimal support threshold, which was determined by trial-and-errors. Raising the threshold would be at 
the risk of losing substructures, which were related to the activity. Lowering the threshold would be at the risk of 
introducing too many trivial substructures, which reduced the prediction accuracy for lowering signal-to-noise 
ratio. Consequently, the classification accuracies were around 70%24. Moreover, most of the previous subgraph 
mining approaches did not interpret the subgraph chemistry, which should be of interest to chemists. Khashan 
and colleagues did study the relationship of their substructures and toxiphores. But, these fragments were derived 
without considering the chemical integrity (such as, an aromatic ring was broken in the middle of the ring).

In order to solve these problems, we propose a new de novo substructure generation algorithm (DSGA), which 
discovers substructures from a chemical structure library with improved substructure mining strategies:

	(1)	 To avoid generating too many trivial substructures and reducing the memory requirements for the isomor-
phism checking, we coded growing subgraphs with linear notations (subIDs, see Fig. 1). The advantage of 
the subID linear notation is that the isomorphism checking can be done by a substring search instead of a 
subgraph search, which demands memory and computing resource.

	(2)	 When substructures were generated with a depth-first search strategy, the computing complexity could 
grow exponentially. Therefore, we developed a strategy to prune the depth-first search tree to converge 
the results. The algorithm only grows the nodes with the maximal substructure on the search tree, other 
branches in the tree will be pruned. To examine if a substructure is a maximal substructure, the GMA 
algorithm9 was employed to exclude isomorphic or homomorphic substructures.

	(3)	 The further integrity checking was applied to ensure the chemical relevant of the maximal substructures.

Conventionally, the library under investigation is used to find substructures as a structural descriptor vector 
for a molecule in a compound library. However, electing substructures only based on the minimal support thresh-
old may include too many trivial substructures or missed the under-supported substructures that are still strongly 
related to the activity. This problem can be resolved by taking chemical and biological background knowledge 
(chemical functional groups or synthetic feasibility, and biological activities) into account. We ran the de novo 
algorithm on the ZINC database (the commonly recognized database in medicinal chemistry) to gain maximal 
substructures as the background knowledge to produce substructures as privileged fragments for LXRβ ligands. 
The knowledge is in the form of a standard substructure dictionary (SSD). With the SSD, a substructure can still 
be elected as a privileged fragment even if its population is below the “minimal support threshold”; a substructure 
can still be excluded even if its population is much higher than the “minimal support threshold”. The gold crite-
rion is the relation between the substructure and the concerned property.

With DSGA, a compound library can be converted into a set of substructure descriptor vectors or an m x n 
matrix (m is the number of maximal frequent substructures, and n is the number of compounds in the library). If 
the matrix is associated with activities, a regularized logistic regression (RLR) model29 or other machine learning 
models can be constructed to predict the activity for a new compound based on its chemical structure.

Comparing with previous studies, we emphasize more on gaining new chemical insights from the substruc-
ture mining algorithm. In fragment-based drug discovery (FBDD)30, key questions to be answered are what are 
the fragments for a drug lead, and what are the rules to combine these fragments. In this work, we present an 

Figure 1.  The flow-chart for using de novo substructure generation algorithm to discover LXRβ agonist 
privileged fragments and elucidate the assembly rules.
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example on how one can answer these questions by applying a de novo substructure generation algorithm (Fig. 1). 
This work can be applied for analyzing privileged fragments for the ligands against other biological targets.

Results and Discussion
De novo substructure generation process with a pruning strategy.  The pruning strategy signifi-
cantly reduced the number of substructures discovered from the three testing libraries(LXRβ, PPARα, and VR 
libraries). The ratios of total-substructures/pruned-substructures are 113, 105, and 114 for the LXRβ library (634 
compounds), PPARα library (606 compounds), and VR library (619 compounds), respectively. This means the 
pruning strategy improves the performance more than one hundred times. The pruning strategy is particularly 
important when de novo substructure generation algorithm (DSGA) is used in a big compound library (such as a 
library with more than 100 K compounds). In our studies, the LXRβ library has only 161 frequent substructures, 
a program without pruning strategy has to check 18,170 substructures; for the VR library (83 frequent substruc-
tures) checking 9,439 substructures; and for the PPARα library (114 frequent substructures) checking 12,021 sub-
structures. This costs not only computing time, but exhausts so much memory that an algorithm cannot continue 
the calculation due to no enough memory.

With the pruning strategy, we, for the first time, are able to generate substructures from the ZINC database31, 
which has approximately 9.1 million drug-like compounds. The algorithm discovered 51,770 substructures from 
the ZINC database. The number of substructures increased exponentially before the first 10 K structures of the 
ZINC database were scanned, and the number significantly slowed down because most of the maximal substruc-
tures had been discovered. This suggested that the structural diversity of substructures is limited in the currently 
explored chemical space (Figure S1).

By using the frequent substructuresthat were generated from the ZINC library as descriptors, we were able to 
discriminate three focused compound libraries associated with three different biological targets (LXRβ, PPARα, 
and VR) with principal component analyses (PCA) as depicted in Fig. 2.

Figure 2.  LXRβ, PPARα and VR libraries were discriminated by the frequent substructure descriptors derived 
from the ZINC library.

Figure 3.  The performances of three substructure-based SVM regression models. (A) LXRβ, (B) PPARα, (C) 
VR.

http://S1
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Substructures used for predicting activities with the RLR approach.  One way to examine the 
quality of DSGA is to study the relations between the substructures and bioactivities. 51,170 substructures were 
derived from the ZINC database (9,107,119 compounds), and used as the SSD for building RLR classification 
models. Again, three compound libraries for LXRβ, PPARα, and VR, were studied for SSD-based RLR classifi-
cation modeling to predict the activities against LXRβ, PPARα, and VR. Figure 3 demonstrates the prediction 
capacities of the SVM models.

The RLR classification model performances are summarized in Table 1. The ratio of splits between train and 
validation data is 2:1.

These results demonstrated that the substructures discovered by DSGA are objective structural descriptors 
for RLR classifications.

Substructures used for predicting activities with SVM regression.  Regression modeling requires 
reducing the number of descriptors in order to avoid high computational costs. A subset of the SSD was derived 
based upon the population tuning points for a specific compound library. In Fig. 5, the X-axis stands for the 
substructure, the Y-axis stands for the frequency of the corresponding substructure in a compound library. This 
plot demonstrates the distributions of the substructures in the VR, LXRβ, and PPARα libraries. The curves begin 
to flatten at the frequency of 40, where the LXRβ and PPARα libraries can adopt 3,000 substructures, and the VR 
library can adopt 4,375 substructures as their structural descriptors.

The SVM regression models were built for the LXRβ, PPARα, and VR libraries with 277, 484, and 495 training 
compounds. The predictive models were validated with 5-fold validation processes. The performances were meas-
ured using the average mean square errors (MSE) and Pearson Correlations as listed in Table 2.

These results conclude that the substructures are highly related to the bioactivities. The prediction accuracies 
of regression models were not very high due to the paradox of predictivity versus diversity (that is, the greater 
the chemical diversity of the investigated compounds, the smaller the chance that SAR models exist and can be 
uncovered)15. The limit of this approach is that it is difficult for a common structure fragment descriptor to dis-
tinguish tiny structural differences among molecules. However, the advantage of this approach is that privileged 
structural fragments can be derived from these models.

Identifying privileged fragments for privileged scaffold exploration.  The substructures used in 
SVM models were scored with a privileged fragment index (PFI) as the following,

=i f a
T

PFI( ) (1)i
i

where, fi is the population of the ith substructure appearing in a given compound library, T is the total number 
of compounds in the library, and ai is the number of active compounds in the library. All the substructures 
used in the SVM models for the LXRβ, PPARα, and VR libraries were sorted in descending order of the PFIs 
(Supplementary Materials).Privileged fragments for the LXRβ ligands found by DSGA are listed in Table 3.

Rules to construct LXRβ agonists from the privileged fragment.  Rule 1.  Fragments D and F are 
linkers connecting A and B. There were 36 LXRβ ligands made through this rule. There were 23 such ligands 
linked through the MF substructure D, other 13 ligands were linked through the MF substructure F (details can 
be found in the supplementary material SM Table 1). The linker MF substructure D can produce more active 
ligands. The schema of Rule 1 is depicted in Fig. 4.

Rule 2.  The MF substructures A and C connect through direct covalent binding to make LXRβ ligands. The 
Fragment C is modified to allow any heavy atom at the position of the nitrogen atom. Thus, we got 31 LXRβ ago-
nists based upon this rule. Fragment C has two classes of bioisosteres (the hetero atom linker can be nitrogen or 
oxygen), which do not significantly change the binding affinity. It seams that Fragment A cannot be simplified, 
and it is critical to maintain an acidic polar group at the terminal of Fragment C (details can be found in supple-
mentary material SM Table 2). The schema of Rule 2 is demonstrated in Fig. 5.

Targets Sensitivity Sensitivity ROC Accuracy

LXRβ 0.927 0.759 0.930 0.836

PPARα 0.872 0.765 0.883 0.839

VR 0.932 0.706 0.916 0.868

Table 1.  The RLR classification model performances.

Target MSE Correlation

LXRβ 3.51 0.78

PPARα 2.07 0.73

VR 1.76 0.89

Table 2.  Result of pIC50 prediction.
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No. Privileged fragment Active compounds EC50 (μM) Most active compound

A 108 0.011~4.17

B 110 0.002~3.3

C 74 0.023~5.4

D 68 0.011~3.4

E 33 0.004~1.57

F 24 0.049~3.3

G 11 0.001~1.5

Continued
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Rule 3.  Fragments B and C can be linked to form an LXRβ agonist. This combination can also be viewed as 
Fragment F merges with Fragments B and C. Although, only 5 LXRβ agonists were discovered, there are many 
opportunities to explore (Fig. 6).

Rule 4.  Typical LXRβ agonist constructing cases are demonstrated in Figs 7 and 8. By inspecting the data set, 
we recognize that A and D have bioisosteres. Therefore, we define Fragments A′ and D′ as shown in Fig. 9. LXRβ 
agonists can be created by merging Fragments A’, B, and D’. Fragment A’ connects to Fragment D’, and Fragment 
D’ merges with B at the aromatic rings. This results in 66 LXRβ ligands with EC50 values ranging between 0.011 
and 3.40 μM (details can be found in supplementary material SM Table 3 (Rule 4)). In this case, Fragment D’ is a 
linker to connect Fragments A’ and B. 

Rule 5.  Fragment C itself can be an LXRβ agonist scaffold. It can also be merged with Fragment F. The typical 
agonists are listed in supplementary material (details can be found in supplementary material SM Table 4 (Rule 5)).  
Typical ligands and their activities are depicted in Fig. 9.

Rule 6.  Fragment I itself can form a star-shaped scaffold with a pentagon for an LXRβ agonist. It may merge 
with Fragments F and B, or C. 66 LXRβ agonists were constructed with this rule as shown in Fig. 10 (SM Table 5: 
Rule 6).

Rule 7.  Fragments J and D’ can form a new scaffold by a methylene linker as shown in Fig. 11. These ligands are 
listed in supplementary material (SM Table 6: Rule 7).

Rule 8.  Fragment H forms a scaffold without connected with any other fragments reported in Table 3. These 
ligands are listed in supplementary material (SM Table 7: Rule 8). Typical examples are depicted in Fig. 12.

With the frequent fragment descriptors derived from ZINC database, the compounds in LXRβ library are 
depicted in three-dimensional space by means of PCA as shown in Fig. 13.

No. Privileged fragment Active compounds EC50 (μM) Most active compound

H 21 0.076~3.16

I 66 0.006~8.0

J 57 0.004~9.7

Table 3.  Privileged fragments for the LXRβ ligands.

http://4
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Figure 13 demonstrates that the privileged fragments (Table 3) and their combinations are capable at discrim-
inating compounds with similar scaffolds.

Experimental results.  Based upon the above-mentioned rules, we selected compounds from our in-house 
compounds library for biological assays. Six compounds are found active against LXRβ in cell-based LXRβ ago-
nistic assays. The compounds are listed in Fig. 14.

The activities of the confirmed LXRβ agonistic compounds are depicted in Fig. 15. GW3965 is for positive 
control. The compound 2 activated LXRβ significantly, the EC50 of which is 2.66 µM.

Discussion.  Over the past decades, many substructure generation approaches have been reported, such as 
empirical search keys32, algorithm-based atom center fragments13, 33, 34, fingerprints (http://www.daylight.com/)15, 35.  
De novo substructures are derived by algorithms with a given minimal support threshold (popularity threshold). 
It is difficult to determine the threshold. The lower threshold results in too many trivial substructures, and the 
higher threshold results in potentially losing substructures that have strong relations with the activity. Another 
concern is that these substructure mining algorithms produce partial substructures (incomplete rings or aroma-
ticity). In essence, these frequent substructures need to be refined with chemical and biological knowledge. Our 
approach is developed to resolve these problems. The features of our algorithm are summarized as follows:

	(1)	 We introduce a linear notation to encode growing substructures into strings which are used to filter out 
most of isomorphic substructures. This technique converted the atom-by-atom isomorphism checking 
process to a string comparison, dramatically reducing the computing complexity, and allowed us to run the 
frequent substructure discovery algorithm on “big” data (over ten million compounds level).

	(2)	 Thus, we have derived the standard MF substructure dictionary (SMFSD) for selecting substructures for 
a small compound library to keep relevant chemical and biological substructures and exclude trivial sub-
structures. We proved that this method improved the accuracies of the predictions (Table 1).

Figure 5.  The schema of Rule 2.

Figure 4.  The schema of Rule 1.

http://www.daylight.com/
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	(3)	 Most of the previous substructure mining algorithms did not interpret the chemistry of the frequent sub-
structures. Based on our method, we can derive privileged structures for a focused compound library, and 
figure out the rules to assembly these substructures (or building blocks for a drug lead). These rules can be 
used to guide a medicinal chemist in synthetic design for a drug target.

	(4)	 Regarding the comparison of our approach with the matched molecular pairs (MMP) approach36, MMP 
method focuses on identifying every pair of molecules that differ only by a particular, well-defined, struc-
tural transformation. Our method, however, focuses on gaining new chemical insights from the substruc-
ture mining algorithm without predefined chemical substructures.

Methods and Materials
Molecular graph.  A compound is represented in a molecular graph (MG). MG is an object consisting of 
an atom list, a bond-list, and a molecular attribute list. Each atom in the atom list is an object containing atomic 
attributes, such as, atom ID, atomic number, mass, charge status, binding adjacency etc. Each bond in the bond 
list is an object containing chemical bond attributes, such as, bond ID, bond types, two binding atom IDs, and 
stereo description, etc. The molecular attribute list holds data including molecular ID, weight, name, activities, 
and other properties. The MG external representation is MOL format. A compound library consists of a number 
of small molecules represented in MGs. In graph theory, a compound library is a molecular graph database.

Maximal substructure tree.  The tree is generated by a restricted depth-first search process, which only 
grows the node with the maximal substructure on the tree, other branches in the tree will be pruned. The tree 
starts with a single-edge fragments (for example, an edge with two carbon atoms connected in a single bond) 
called root fragments. Each substructure is expanded from a root fragment and is assigned with a subID (sub-
structure identifier) vector. An element in the subID vector encodes the information of its parent molecule and 

Figure 6.  LXRβ ligands created by merging Fragments B, C and F (Rule 3).

Figure 7.  Bioisostere definitions for Fragments A’ and D’.
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root fragment. The tree grows by expanding root fragments through including adjacent edges (bonds). As shown 
in Fig. 16, the tree started with a root fragment of two carbon atoms with a single bond (subID = {An Bm Ch De 
Dk}). A subID consists of molecular IDs (denoted with capital letters) and bond IDs (denoted with lowercase 
letters). If a subID is generated from more than one molecule, the corresponding fragment is expanded and new 
nodes are added to the tree. In Fig. 1 at the root node of the tree, its subID consists of four members (popular-
ity = 4). By expanding the fragment in the root node, two more nodes (Node-11 and Node-12) were added into 
the tree, and new subIDs were generated. The process was repeated till all successor nodes were undividable 
(subID consists only one member).

Pruning a substructure generation tree.  The tree can grow rapidly, and cause a serious “combinatorial 
explosion”, because a MG can have −2 1n  possible substructures, where n is the number of edges (chemical 
bonds, the chemical bonds with hydrogens are omitted). These substructures contain huge amount of redundant 
information that can be pruned to significantly reduce computing complexity and simplify substructure trees37. 
As shown in Fig. 16, The tree was generated from node 1, and searched from the left branch (Node 1.1). Since 1.1 
was a leaf node, the algorithm kept searching on right branch (node 1.2) until reached node 1.2.1.1.1.1.1, which 
was termed as potential reporting node (PRN). A PRN node is defined as follows:

Let P be the subID component set for a parent node, C1, C2, …Cn be the subID component sets for the chil-
dren nodes of the parent node (n is the number of the children nodes for PRN node).

Then, the parent node will be recognized as PRN node if (2) is satisfied:

≡ ∨ ≡ ∨ … ∨ ≡ = ΦC C CP P P{( ) ( ) ( )} (2)1 2 n

For example, 1.2.1.1.1.1.1 (green box) was considered as a PRN because it had four children nodes and no 
child had the same as the subID of current node’s subID.

Each PRN had a popularity, which was the molecular counts encoded in subID. A substructure in PRN would 
be reported as a substructure if the PRN popularity was great than a designated threshold (t > 1), and the cor-
responding subID was recorded as well. Thus, a substructure library (containing subIDs and substructures) was 
generated and expanded when the tree was growing. When a new node was searched on the tree, its subID would 
be retrieved against the library. If the subID was found in the library, it would be pruned (red boxes in Fig. 17). 

Figure 8.  LXRβ ligands generated by Rule 4.
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Consequently, the successors of the pruned node would not be searched. The redundant information was avoided, 
and the computing complexity was significantly reduced.

Usually, a substructure, for example, the fragment in 1.2.1.1.1.1.1 node (Fig. 18), was the maximal substruc-
ture fragment (MSF) in a depth-first search path. After the MFS library was generated, the subIDs were converted 

Figure 10.  Scaffold constructed by rule 6.

Figure 9.  LXRβ agonists constructed by Rule 5.
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into frequent fragment IDs (FFIDs), which came from subIDs by removing bondIDs. FFIDs encoded the infor-
mation regarding their parents and popularities. Some FFIDs were assigned to unique fragments. Other FFIDs 
could have multiple fragments.

As shown in Fig. 18, if one FFID was assigned with two fragments, and if one is the substructure of another 
(checked by the substructure match algorithm9), then the smaller fragment was removed (Fig. 18 Case 1). The 
detailed implementation of this tree pruning strategy can be found in the supplementary material.

Substructures as descriptors for a compound.  QSAR study requires a descriptor vector for a com-
pound. Each component in the descriptor vector is the count of a designated substructure that appeared in the 
compound. The designated substructures for the vector can be empirical (such as MDL 166 search keys or 960 
extended search keys32, Daylight fingerprints38, or atom center fragments13, 39). In this work, we select the desig-
nated substructures for the vector based upon statistics. First, a SSD was derived from the ZINC database31, which 
contains more than 9.1 million chemical structures, to ensure the library covers known chemical diversity space. 
Let SSD have n substructures, a compound can be represented by a binary vector BV with n components, each 
component BV[i] (i ∈ 1..n) has a value 0 or 1 for SSD[i] being absent or present in the compound structure, for 
further QSAR or classification studies.

Data sets for classification and regression models using SSD.  To examine the performance of the 
QSAR models using SSD, three data sets, LXRβ (Liver X receptor β), PPARα (peroxisome proliferator-activated 
receptor α), and VR (vasopressin receptor) libraries with chemical structures and bioactivities (IC50 values), were 
extracted from the BindingDB40. Duplicated structures in the libraries were filtered. Salt moieties in the connec-
tion tables were removed.

Figure 11.  Scaffold constructed by Rule 7. The structure on the right is GW3965.

Figure 12.  Scaffold constructed by Rule 8.
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The activity data were pre-processed differently. For classification, the IC50 values were converted to zeros 
(in-actives) if they were greater than 10,000 nM, otherwise ones (actives). For regression, the records with the 
IC50 values, which were greater than 10,000 nM, were removed. Then, the IC50 values were converted to pIC50 
values. This resulted in 717 and 634 LXRβ records, 784 and 621 PPARα records, and 619 and 491 VR records for 
classifications and regressions respectively.

The structural descriptors were selected from the SSD based upon their appearances in the corresponding data 
set. The frequency of a structural descriptor in a data set less than 5% was not selected.

Regularized logistic regression (RLR) method for compound classification.  A compound library 
with known bioactivity results is represented in a matrix L[1..n, 1..m], where n is the number of the substructures 
selected from the SSD, and m is the number of compound structures in the library. The bioactivity data of the 
library is represented with A[1..m]. RLR41 will figure out parameter vector W[1..m] in (3).

⋅ =f L W A( ) (3)j j

Figure 14.  The experimentally confirmed LXRβ agonistic compounds found based upon the rules of privileged 
fragments and their combinations. At compound 3, R is a halogenated long-hydrocarbon substituent.

Figure 13.  PCA plot for the compounds in the LXRβ library using the frequent fragment descriptors 
derived from ZINC database. Privileged fragments and their combinations are coded in different colors. The 
compounds with the same color are aggregated.
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Lj is the descriptors for the jth compound, Aj is the predicted activity (0 or 1) for the jth compound. Let F stand 
for SSD, X stand for the structures in the compound library L, S[1..m] stand for the scores of compounds being 
active, then, L[i, j], an element of L is defined in (4),

Figure 15.  The activities of the confirmed LXRβ agonistic compounds and their fragment combination 
patterns. The letters above the bars represent the privileged fragments discovered by our algorithm. The 
structure of GW3965 is depicted in Fig. 11.

Figure 16.  An example of a substructure generation tree. The tree started with a four compounds library with a 
C-C root fragment with a subID vector containing {An Bm Ch De Dk}. The popularity of this root fragment is 
4. The root node produced two successor nodes (Node-11 and Node-12) by generating two new substructures. 
The process is repeated till all successor nodes are undividable. The substructures in the thick boxes are all 
possible fragment substructures created from a C-C root fragment. Other types of root fragments will be used 
to generate more substructure generation trees.
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Figure 18.  FFID and frequent substructures. Case 1: One FFID could have more than one fragments, one of the 
fragments was the substructure of another. The larger fragment was kept in this case. Case 2: One FFID could 
have more than one fragments, they were not topologically included to each other. Both fragments would be 
assigned to the same FFID.

Figure 17.  Pruning a substructure generation tree. The tree was growing while a depth-first search was 
proceeding. The nodes in black boxes were calculated on the fly. The nodes in green boxes were kept in an 
substructure library. The nodes in red boxes were pruned.
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where SMFSD[i] is the ith MFS in SMFSD, and X[j] is the jth compound in L.
According to RLR approach41, the bioactive probability of the ith compound can be calculated in (5),
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+
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and the non-bioactive probability of the ith compound can be calculated in (6),
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where S[j] is the activity prediction for the jth compound in L.
Machine learning process is to figure out W by optimizing (7) and (8) through logic regressions. For the jth 

compound,
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where σ is standard deviation, C is a constant.
For all compounds,
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We obtain optimized values for W through Newton iteration method29, because the second gradient of L(W) 
is always greater than zero.

Evaluating SSD-based classification results.  ROC and following parameters were calculated to evalu-
ate the MFS-based classification approach42.

SSD-based models were validated with the random sub-sampling cross validation method43. Initially, each 
experimental data set was randomly divided into 3 subsets; randomly selected 2 subsets to train the models, and 
the remaining subset was used for validating the models. The validating parameters were calculated and averaged 
over each batch of validations.

Predicting activities with support vector machines (SVM) using the substructure discrip-
tors.  In a SVM regression model44, the IC50 was converted to pIC50 (−log(IC50)), which is proportional to the 
bioactivity. pIC50 is the function of the descriptors, f(Lx), and was calculated as the following:

∑= α +
=

( )L L Lf b( ) k ,
(9)

i
j

n

j j i
1

where Li is the descriptors (FS) of the ith compound; n is the number of the subsets (support vectors) from a 
training set; j is a compound in the subset; αj is the regression parameter for the jth compound; b is a regression 
constant to be determined by SVM regression process; k is a RBF kernel function defined in (10),
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where σ is the standard deviation.

SVM model evaluation method.  The SVM models were cross-validated through the average mean square 
error (MSE) and Pearson correlation of predicted and experimental pIC50 values with a k-fold cross-validation 
approach.

Method for selecting privileged substructure from SVM models.  A privileged substructure is the 
one that is responsible for desired activities. Privileged substructures were derived from SVM models by ranking 
them with their p-values(p). If a MF substructure were used in a SVM model, its p-value (the function of the 
observed sample results that is used for testing a statistical hypothesis) was calculated with one-tailed test Fisher’s 
exact test45. Let A and B be the numbers of matched and unmatched substructures for the ith substructure in an 
active molecule from a training set; let C and D be the numbers of matched and unmatched substructures for ith 
substructures in a molecule from a background set (in our case, it is ZINC compound library). The p-value (pi) is 
calculated as the following:
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where a and b are numbers of matched and unmatched substructures for the ith substructure in an active mole-
cule from a training set; and c and d are numbers of matched and unmatched substructures for ith MF substruc-
tures in a molecule from a background set. In an active data set. And, >a

c
A
C

, a + b = A + B, c + d = C + D. The 
p-values were adjusted with false-discovery rate (FDR) approach46.

The substructures were sorted in the ascending orders of p-values. The significant substructures are with 
p-values < 0.05. Privileged substructures were elected by using high-scored substructures as substructure queries 
searching against the targeted compound library. The hits with a high number of active compounds were identi-
fied as the privileged substructures of the focused library.

Deriving the rules of combining fragments.  Let A = {a[0], a[1], … a[x], …a[M − 1]} as a privileged 
substructure list derived from a compound library; B = {b[0], b[1], … b[y], … b[N − 1]} as the compound list. 
The rules for combining fragments for FBDD study can be discovered in the following pseudo-code:
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