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Abstract

Progress in technology and algorithms throughout the past decade has transformed the field of protein design and
engineering. Computational approaches have become well-engrained in the processes of tailoring proteins for various
biotechnological applications. Many tools and methods are developed and upgraded each year to satisfy the increasing
demands and challenges of protein engineering. To help protein engineers and bioinformaticians navigate this emerging
wave of dedicated software, we have critically evaluated recent additions to the toolbox regarding their application for
semi-rational and rational protein engineering. These newly developed tools identify and prioritize hotspots and analyze
the effects of mutations for a variety of properties, comprising ligand binding, protein–protein and protein–nucleic acid
interactions, and electrostatic potential. We also discuss notable progress to target elusive protein dynamics and associated
properties like ligand-transport processes and allosteric communication. Finally, we discuss several challenges these tools
face and provide our perspectives on the further development of readily applicable methods to guide protein engineering
efforts.
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Introduction
Proteins have been studied intensively already for several
decades to reap immense benefits through their applications in
green industry, biomedicine, sustainable agriculture and other
areas [1–7]. Prominent development of methods from genetic
engineering and molecular biology has laid the foundation

Carlos Eduardo Sequeiros-Borja is a PhD candidate at Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute
of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in
Warsaw, Warsaw, Poland. His current interests are the development of bioinformatics methods and tools to study substrate–enzyme interactions and
understand the effect of mutations on protein function.
Bartłomiej Surpeta is a PhD candidate at Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular
Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in Warsaw, Warsaw,
Poland. He focuses on the application of molecular dynamics simulations to uncover structure–dynamics–function relationships in proteins and rational
protein design.
Jan Brezovsky is a professor jointly at Laboratory of Biomolecular Interactions and Transport, Department of Gene Expression, Institute of Molecular
Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University and the International Institute of Molecular and Cell Biology in Warsaw. His
group develops structural bioinformatics and molecular dynamics simulations methods and applies them to protein engineering and drug discovery.
Submitted: 24 April 2020; Received (in revised form): 3 June 2020

© The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

for protein engineering [8–10]. Initially, the main dilemma in
protein engineering of which residues to target and which
substitutions to introduce was approached either rationally
or randomly. Rational engineering requires expert knowledge,
often supported by increasingly available protein structures
[11–13]. The random approach, dubbed directed evolution,
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mimics natural evolution by introducing a large number of
mutations to be screened or selected [14,15]. Both engineering
approaches profited extensively from progress in technology
and scientific knowledge, enabling their systematic application,
which led to numerous designs of proteins with improved
function, solubility and stability. Their inherent requirements
limit both methods. Directed evolution relies on a high-
throughput system capable of evaluating large libraries of
generated protein variants. In contrast, rational design requires a
profound knowledge of the investigated protein and/or intensive
computer simulations enabling the precise design of mutants.

The recent trend is to use both these approaches in
unison, which is termed semi-rational engineering or focused
directed evolution, to overcome the primary restrictions of
the two approaches. In this strategy, rational components
and computer predictions are used to prioritize the most
promising protein sites for mutagenesis and frequently also
implement restrictions on the diversity of introduced mutations
to the most viable ones [16–21], resulting in smart-and-small
mutant libraries with a large fraction of functional variants.
With the tremendous advances in computer technology,
availability of protein structure models and mathematical
methods, computational tools have become indispensable for
the semi-rational engineering process [22–26]. Such approaches
continuously support the successful delivery of proteins adopted
for use in various biotechnologies [27–32]. Following continuous
efforts to introduce increasingly sophisticated computational
approaches into semi-rational engineering, a plethora of new
tools with distinct purposes and uses are being developed and
released each year. This unceasing addition of available tools
has positive and negative implications. On one hand, there is a
tool available for almost any particular task; on the other hand,
the resulting diversity of offered tools can be overwhelming for
new users and active practitioners alike.

To limit the never-ending literature search and guide
researchers toward appropriate tools, we have critically surveyed
structure-based computational tools dedicated to protein
engineering that have emerged between 2016 and 2019 (Table 1).
Tools published before this period have already been thoroughly
reviewed [33–36]. We have focused on recent additions to
the software toolkit of user-friendly and readily applicable
approaches for altering protein function that can be employed
by a broad spectrum of researchers, whereas more advanced
tools and methods for protein engineering and design relying
on the utilization of intensive computation and expertise have
been reviewed elsewhere [37–43]. Also, we have not covered
tools for the evaluation of protein stability or solubility, as those
have been reviewed too [44,45]. As bioengineering research
can comprise various strategies leading to the selection of
the most promising candidates with improved function of
interest, we consider tools for the following sequential stages
of the engineering process: (i) hotspot identification for site-
saturation mutagenesis (Figure 1A), (ii) in silico mutagenesis
to evaluate the effects of mutations and prioritize promising
variants (Figure 1B) and (iii) analysis of results to guide further
engineering efforts (Figure 1C). Additionally, we discuss an
integrative computational workflow that aims at providing
complete computational support for protein engineers.

Tools for hotspot identification
The initial step in a bioengineering project is to identify
promising and relevant positions or regions of the protein
to mutate. These sites, hotspots, are often located in or near

Figure 1. Overall engineering workflow employing the recently introduced user-

friendly tools. (A) Using the structure of target protein (gray cross-sections of a

protein body), the hotspots (shown as colored spheres) are identified, focusing on

residues capable of cross-talk (yellow spheres), protein interactions with other

(macro)molecules (green spheres) and ligand-transport tunnels (blue spheres).

(B) Mutations in hotspots (red spheres) can be assessed by examining their

effects on electrostatics (left), intermolecular interactions (center) or dynamics

(right) to yield the best mutant candidates for experimental characterization. (C)

A comprehensive analysis of experimental results for mutations at prioritized

hotspots targeting various properties (colored spheres) can provide feedback to

guide further engineering iterations.

structurally or functionally important regions of the protein,
increasing the likelihood that mutations at these positions
impact the protein’s properties. Various strategies utilizing
protein structure for hotspot identification can be applied
depending on the respective target property, e.g. focusing on
the proximity of binding sites [67], ligand-transport pathways
[68], flexible regions [69], allosteric networks [70] or conversely
structural voids [71]. Nonetheless, the majority of such tools
rely on an analysis of a multiple sequence alignment (MSA) to
obtain insights into the importance of the individual positions
in homologous proteins. Recently developed tools such as
visualCMAT [46], PDB2Graph [47], STRESS [48] and AlloSigMA [49]
aim to tackle the challenging prediction of hotspots involved in
allosteric communication and others, including PPI3D [50] and
DisruPPI [51], focus on hotspots which govern protein–protein
interactions.

Allosteric hotspots

Analysis of correlated or co-evolving residues has been the
tradition in protein structure modeling to predict direct or indi-
rect coupling between pairs or groups of residues [72–74]. This
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Table 1. Computational tools for structure-based protein engineering

Target property Tool Distributiona Obligatory

inputsb
Outputsc Section Runtimed Application

statuse
Link

Allostery VisualCMAT [46] WS – R, 3D, D 2.1 I / M 0 / 6 https://biokinet.belozersky.msu.

ru/visualcmat

PDB2Graph [47] SA (L,W,M) – R, F 2.1 I / F 0 / 1 http://bioinf.modares.ac.ir/softwa

re/pdb2graph

STRESS [48] SA (L, M) – R 2.1 S / S 2 / 29 https://github.com/gersteinlab/

STRESS

AlloSigMA [49] WS – R, F, 3D, D 2.1 E / E 13 / 36 http://allosigma.bii.a-star.edu.sg/

home/

Protein–protein

interactions

PPI3D [50] WS – R, F, 3D, D 2.2 I / I 2 / 13 http://bioinformatics.ibt.lt/ppi3d/

DisruPPI [51] SA (L) Interface

region

N.A. 2.2 N.A. 0 / 3 N.A.f

MutaBind [52] WS – R, 3D, D 3.1 M / S 15 / 55 http://www.ncbi.nlm.nih.gov/pro

jects/mutabind/

iSEE [53] SA (L, W, M) Precomputed

datag
R 3.1 Ih 1 / 12 https://github.com/haddocking/i

See

mCSM-PPI2 [54] WS – R, F, 3D, D 3.1 I / M 1 / 7 http://biosig.unimelb.edu.au/

mcsm_ppi2/

Protein–nucleic

acid interactions

mCSM-NA [55] WS – R, 3D, D 3.1 I / I 5 / 27 http://biosig.unimelb.edu.au/

mcsm_na/prediction

PremPDI [56] WS – R, 3D, D 3.1 M / S 0 / 3 https://lilab.jysw.suda.edu.cn/re

search/PremPDI/

Protein–ligand

interactions

mCSM-lig [57] WS Ligand affinity

to wild-type

R, 3D 3.1 F / F 20 / 48 http://biosig.unimelb.edu.au/

mcsm_lig/prediction

Ligand transport CaverDock

[58–60]

WS Starting point

of tunnels,

ligand

R, F, 3D, D 2.3 F / F 4 / 9 https://loschmidt.chemi.muni.cz/

caverweb/

Dynamics DynaMut [61] WS – R, F, 3D, D 3.2 F / M 43 / 68 http://biosig.unimelb.edu.au/

dynamut/

Electrostatics Mutantelec [62] WS – R, F, 3D, D 3.3 M / S 2 / 2 https://structuralbio.utalca.cl/mu

tantelec/

AESOP [63] SA (L, W, M)

WS

– R, F, 3D 3.3 I / F 6 / 6 https://github.com/BioMoDeL/ae

sop/, https://aeolus.engr.ucr.e

du/aesop/i

Complete

pipeline

HotSpot Wizard

[64,65]

WS – R, F, 3D, D 4 F / F 21 / 60 https://loschmidt.chemi.muni.cz/

hotspotwizard/

Data integration BioStructMap

[66]

SA (L, W, M)

WS

– R, F 3.4 I/ F 0 / 0 https://github.com/andrewguy/

biostructmap, https://biostru

ctmap.burnet.edu.au/i

aWS, web-server and SA, standalone. For standalone tools, supported operating systems are listed: W, windows; L, linux and M, MacOS.
bAll tools require structural input for the wild type (WT) protein or complex as PDB file or PDB id code, except for PPI3D and HotSpot Wizard, which alternatively can
start from a protein sequence only.
cFormats of provided outputs: R, raw data; F, figures; 3D, 3D structure and D, downloadable data.
dApproximate calculation runtimes for small/large proteins: I, instantaneous (≤1 min); F, fast (≤5 min); M, moderate (6–15 min); S, slow (16–60 min); E, extensive (h);
for details, see Supplementary Table 1 available online at https: //academic.oup.com/bib.
eUtilization of the tools are represented as the number of citations to the practical use of the tool/the total number of citations; for details, see Supplementary Table 2
available online at https: //academic.oup.com/bib.
fContact authors (cbk@cs.dartmouth.edu).
gInputs comprise the 3D structure of the WT and mutant complexes, eight energy terms, and evolutionary information.
hThe runtime is reported for an example case for which non-trivial input data have already been precomputed.
iWeb-page not accessible at the time of submission; N.A., not available.

method has been employed to improve the quality of predicted
protein structures and protein–protein complexes [75–78]. Iden-
tified co-evolving residues have also become a frequent target of
engineering aiming at stability [79] and allosteric regulation [80]
(Figure 2A).

The visualCMAT web-server is a recent tool focused on the
analysis and identification of correlated or co-evolved hotspots
[46]. This tool uses an MSA and 3D structure to assess the cor-
relation between residues based on mutual information. Since
prediction quality is dependent on the quality of the MSA, the
server recommends an integrated Mustguseal web-server [81] for
the preparation of the MSA, which reduces the minimal input to
a PDB file. A particular limitation is that the server can evaluate
only one chain at a time. As a result, correlated or co-evolved
residues are identified and mapped onto the structure. These

residues are then differentiated into two categories based on a
predefined distance cutoff: physically interacting residues and
long-range interactions. These long-range interactions may be
indicative of allosteric pathways that would be difficult to iden-
tify without evolutionary information. Additionally, the server
can perform a binding site prediction by identifying pockets
with Fpocket [82] and ranking them by the number of present
correlated residues. Outputs comprise the list of correlated pairs
of positions with the corresponding statistics, the cumulative
statistics enumerating involvement of a given position in all
pairs found, and their structural visualization. As a test case, the
authors predicted correlated residues for the FecA protein from
the Porins superfamily [46]. They showed that mutations in some
of the identified residues notably altered the transport function
of the protein. Owing to a large number of proposed hotspots, the
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https://biostructmap.burnet.edu.au/
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Figure 2. Principles of tools for the prediction of allosteric hotspots. (A) Using

MSA, correlated pairs of residues are identified and mapped on the protein

structure, enabling their division to the pairs in physical contact (red spheres

connected by red lines) and remote ones (blue spheres connected by blue lines).

(B) By analyzing interacting residues, a network representation of the target

protein can be derived, from which highly interconnected nodes (orange squares)

can be detected. (C) Protein dynamics can be estimated through the NMA to

outline protein regions that become more rigid (red) or flexible (blue) upon ligand

binding.

experimental data for validation were available only for a small
fraction of the hotspots, excluding some of the highest-ranking
ones [46]. Therefore, the lack of data leaves the full extent of
visualCMAT applicability to be established yet.

An alternative approach to identify allosteric interactions
without the need for a high-quality MSA is to consider a protein
structure as a graph of residue–residue interactions (Figure 2B).
In a nutshell, protein residues are converted to nodes, often
positioned on their Cα atoms, and the edges among these nodes
are drawn based on distance cutoffs representing various inter-
residue interactions [83]. Finally, the network topology can be
analyzed to reveal structurally and functionally relevant con-
nections among residues. Many tools like NetworkAnalyzer [84]
or RINerator [85] have been developed for graph-based analy-
ses using different and often incompatible file-formats to store
their results, restricting further analyses of generated graphs
to specific software, e.g. RINalyzer [85]. To provide a bridge
between the most common formats, a user-friendly PDB2Graph
toolbox has been developed [47], which, however, depends on
proprietary Matlab software. The tool produces an undirected,
coarse-grained, distance-based graph that can be exported to
different graph formats including Cytoscape [86], Pajek [87] and
UCINET [88]. Furthermore, various centrality indices identifying
residues critical for protein structure and function can be calcu-
lated. Calmodulin, phage T4 lysozyme, Barnase and Ribonucle-
ase HI were used as test cases to assess the applicability of the

PDB2Graph tool [47]. Many experimental mutations coincided
with the residues identified based on centrality indices, suggest-
ing this method can indeed be of service to protein engineers.
Unfortunately, the sparsity of the experimental data did not
allow systematic validation of the tool, similarly to visualCMAT.

Taking into consideration a protein not only as a network
of connected nodes but also considering protein dynam-
ics (Figure 2C), the structurally identified essential residues
(STRESS) tool aims at disclosing allosteric hotspots on the
protein surface as well as in its interior [48]. For the surface
hotspots, the STRESS tool employs a modified binding leverage
approach [89], which was previously implemented in the SPACER
web-server [90]. This method combines Monte Carlo (MC)-based
ligand docking with normal mode analysis (NMA), which is a
computational approach that approximates the local dynamics
of a system by a harmonic motion. Outlining the principle of
the STRESS method, a simplified representation of a ligand
consisting of four-beads is used as a probe to identify putative
binding sites on the protein surface. Then, the deformability of
these sites is predicted from the 10 lowest frequency normal
modes generated by a coarse-grained representation (Cα atoms)
NMA provided by the Molecular Modeling Toolkit (MMTK) [91].
Finally, the putative sites are scored and ranked according
to their deformability to estimate the degree that the bound
ligand would interfere with predicted conformational change.
In contrast to SPACER, the STRESS tool markedly reduces a
large number of identified putative binding sites by considering
all heavy atoms of a protein during docking and applying
automatic thresholding. Additionally, STRESS also combines
the above described NMA approach with a network analysis
in which a protein is represented as a network of interacting
residues to expand the scope of analysis to residues critical
for communication along a given allosteric pathway (buried
allosteric hotspots). Within this network, each edge is weighted
depending on the correlation between the movements exhibited
by the corresponding interacting residues during NMA. Such
a weighted network is subdivided into communities using
the Girvan–Newman algorithm [92], and residues critical for
interconnection between these communities are detected
according to their highest betweenness. For surface hotspot
predictions, a list of ranked putative sites with their scores
and constituent residues is produced, whereas for interior
hotspots, the identity of the critical residues is reported. The
applicability of the method was evaluated by its authors
on 12 well-studied proteins, in which an average of 55% of
known binding sites were identified correctly [48]. Further, the
relevance of the identified hotspots was supported by their
significantly higher evolutionary conservation in comparison
to the non-critical residues calculated on a large dataset of more
than 1000 proteins.

Likewise, the AlloSigMA web-server uses NMA aiming not
only at the identification of hot-spots but also enabling evalua-
tion of the effects of ligand binding or a mutation on allostery [49]
(Figure 2C). This method recognizes four structurally relevant
states: (i) unbound/wild type (WT), (ii) bound to a ligand, (iii)
mutated and (iv) bound and mutated. In each of these states,
allosteric free energy is calculated for each residue using the low-
frequency normal modes derived from the Cα-representation
of protein provided by the MMTK package and employing a
previously developed structure-based statistical mechanical
model of allostery [93]. Two scanning approaches can be used in
order to detect allosteric hotspots: mutation-based scanning of
selected regions or a whole protein, or binding-based scanning
with a small probe to triplets of residues. Alternatively, allosteric
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effects originating from ligand binding, mutation or both
combined can be evaluated. It is important to pinpoint that
since the method is based on a coarse-grained representation,
only two types of mutations can be considered. ‘UP’ mutations,
by which the method emulates a mutation to a bulky residue,
resulting in stabilizing effect on the local contact network, and
‘DOWN’ mutations, which models alanine/glycine substitutions,
resulting in destabilization of the contact network. Aside from
interactive visualization, the server provides PDB files with
allosteric energies in the B-factor columns. The underlying
method was applied to design allosteric mutations aiming at
improving the activity of insulin-degrading enzyme toward
amyloid β peptide [94]. Out of five constructed single-point
mutants, three mutants showed up to 50% increased overall
efficiency, while the other two mutants exhibited decreased
efficiency [94]. Clearly, more extensive benchmarking is still
required to obtain a robust estimate of the method predictive
performance.

Whereas all four tools were successfully applied for the
identification of hotspots, their quantitative comparison is
prevented by the lack of suitable systematic benchmark
datasets. Hence, the differences among tools can only be
appreciated from a user perspective, considering their speed,
ease-of-use and the nature of delivered results. PDB2Graph is
the fastest tool, closely followed by visualCMAT, while STRESS is
notably slower (Table 1 and see Supplementary Table 1 available
online at https: //academic.oup.com/bib). AlloSigMA is by far
the most time-demanding tool evaluated in our review, and its
allosteric scanning is restricted to a maximum of 2000 residues
per analysis. On the other hand, AlloSigMA is the only tool
capable of delivering quantitative evaluation of the effect of
the mutation on allostery and is much appreciated by the
community (Table 1 and see Supplementary Table 2 available
online at https: //academic.oup.com/bib). Regarding user-
friendliness, only the STRESS tool does not provide interactive
analyses of results, and its installation might turn out to be a bit
complicated due to its dependence on somewhat older Python 2
modules. Similarly, readers interested in using PDB2Graph will
have to procure proprietary Matlab software or consider using
older tools like NetworkAnalyzer or RINerator that rely on the
open-source Cytospace platform [86].

Protein–protein interaction hotspots

Interactions of proteins with other proteins are fundamental
characteristics of most biological processes such as substrate
recognition, metabolism, signaling, pathogenic recognition,
protein activation and inactivation. The involved residues have
received much attention describing their potential for disrupting
or enhancing activity, gaining knowledge about interactions or
guiding protein structure prediction [95,96]. Interface residues
were initially identified based on the distance between the
interacting partners. Recently, approaches based on the Voronoi
diagram tessellation have been used instead. Advantages of the
Voronoi diagram include robust descriptions of the curvature
and connectivity of these interfaces, allowing an unambiguous
definition of the interface boundaries and providing a direct
way to calculate the contact area [97,98]. Although several
tools applying Voronoi tessellation to interface analysis have
been published in recent years [97–101], many of them are
obsolete or require a substantial degree of programming
expertise.

As a user-friendly alternative focusing on protein–protein
interactions, the PPI3D web-server was released [50]. This

web-server uses a curated local database to retrieve and perform
analyses. PPI3D assesses and differentiates three types of
interactions: protein–protein, protein–peptide and domain–
domain interactions using the weighted Voronoi tessellation
implemented in Voronota [102], the correctness of which have
been thoroughly tested on more than 90 000 structures from
protein databank and almost 30 000 predicted protein structures
of various qualities [102]. Initially, PPI3D uses Voronota to
identify inter-atom contacts, which are later grouped into inter-
residue contacts. To execute the analysis, the web-server accepts
three types of submissions: (i) a single sequence to predict
protein and peptide-binding sites, (ii) two sequences to find
all possible interactions and (iii) a PDB-ID code to identify all
interactions in the entry. Importantly, the search for interfaces
is not performed on the query protein alone but employs
information on homologs too. The results are summarized in
the form of a table containing links to a detailed description of
interactions, such as interface residues, their contact area and
type of interaction.

When searching for interface hotspots, the objective is typ-
ically to improve the binding affinity or avoid mutating those
residues rather than destabilizing the protein complex. However,
in some cases, disruption is desirable, which is the purpose of the
DisruPPI software [51]. To obtain hotspot residues and disruptive
mutations, DisruPPI assesses the stability of each monomer
and the interactions between them thus enabling disruption of
the binding but maintaining or improving the stability of the
monomers (Figure 3A). It is important to note that the interface
region for analysis must be specified by the user, for which
tools like PPI3D can be utilized. Whenever a query sequence is
submitted, the software performs a search for homologs in a
non-redundant database, the homologs are then aligned, and the
interface residues are assessed based on conservation statistics.
If the number of homolog sequences is not sufficient, structural
modeling is employed to generate likely variants for assessment.
In this case, the modeling starts by mutating each residue on
the interface to the remaining amino acids, not present in an
MSA. Mutations that destabilize the protein according to FoldX
[103] or Rosetta [104] are discarded from the candidate pool. With
the MSA of homologs, the software selects the most promising
candidate sites and takes into consideration their conservation
and hydrophobicity. Once candidates are selected, each is tested
to obtain disruption and stability scores using a modified INT5
score as the metric [105]. Finally, DisruPPI identifies the lowest
energy variant with the highest disruption score. The authors
successfully employed the method in three experimental cases:
the Hen Egg Lysozyme (HEL) with two anti-HEL antibodies, the
HIV-1 glycoprotein gp120 with the cellular CD4 receptor and a
red fluorescent protein (RFP) from Discosoma sp. These studies
resulted in the following: (i) mutations disrupting anti-HEL anti-
body binding at levels of 27% and 59% of the WT, (ii) the most
disruptive mutation of HIV-1-CD4 complex and (iii) five muta-
tions disrupting RFP oligomerization while preserving stable
monomers [51].

Interaction hotspots in ligand-transport tunnels

Residues governing the efficient exchange of cognate ligands
between binding sites buried in protein cores and the bulk
solvent have recently been recognized as potent hotspots for the
engineering of a wide range of properties like activity, selectiv-
ity or stability [106]. However, understanding of ligand access
and egress pathways is mostly reserved for methods based on
molecular dynamics (MD) simulations [107].
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Figure 3. Principles of tools for the prediction of protein interaction hotspots.

(A) Residues forming interface (gold and pink sticks) of target protein chains

(green and cyan cartoon) are analyzed to identify interaction hotspots (gold and

pink sticks in the zoomed-in region). (B) Transport tunnels (blue, red and green

objects) leading from the buried cavity of a target protein to the bulk solvent are

delineated and explored by molecular docking of ligand to find protein residues

that significantly contribute to the energy barrier of the ligand transport through

the tunnel.

CaverDock software was developed as an alternative to
expensive analyses of ligand transport using MD simula-
tions [58,59]. It requires pre-computed tunnels for a given
macromolecule by software such as CAVER 3.02 [108]. These
tunnels are then systematically explored by docking the ligand
with a modified AutoDock Vina tool [109]. To automate these
calculations, CaverDock has been integrated into a Caver Web
1.0 server [60], which provides automatic calculation of tunnels
for a protein of interest that is coupled with follow-up analyses
of ligand transport through the user-selected tunnel (Figure 3B).
To start a Caver Web 1.0 calculation, the user selects a starting
point for tunnel calculation based on detected pockets, the
position of ligands, manual selection of residues or Cartesian
coordinates. At this stage, detailed information on computed
tunnels including their visualization can be accessed. Further,
the user can specify tunnel(s) for the examination of transport of
ligands, for which the molecule of interest must be uploaded in
any format supported by the Open Babel tool [110], provided
as an accession code to ZINC15 database [110], or drawn in
an interactive window. As a result, the energy profile for each
tunnel-compound pair is estimated. The presented functionality
of the Caver Web 1.0 platform relating to ligand transport
examination is a unique capability compared to alternative
tools for tunnel detection [60]. Importantly, the applicability
of CaverDock for protein engineering was verified by a detailed
computational study of the transport of toxic pollutant 1,2,3-
trichloropropane in two variants of haloalkane dehalogenase
featuring several advanced MD simulation methods [111]. For
this model system, CaverDock was able to pinpoint similar
hotspots as the sophisticated MD simulations, confirming its
potential for the engineering of ligand transport [111].

Tools for predicting the effects of mutation
Once hotspots have been selected, the next step is to assess
the effects of particular mutations at the site on the target
properties of the protein. With this in mind, we have grouped
tools based on the type of evaluated feature, starting with
protein interactions, followed by flexibility and electrostatics. In
this section, we present 10 tools that can be useful for prioritizing
particular mutations for inclusion into a smart library based
on their predicted effects. MutaBind [52], iSEE [53] and mCSM-
PPI2 [54] can be used to estimate the effects of mutation on
protein–protein interactions. mCSM-NA [55], PremPDI [56] and
mCSM-lig [57] predict mutational effects on interactions of the
protein with nucleic acids and ligands. The DynaMut server
aims to rapidly evaluate changes in protein dynamics and
stability after mutation [61]. The study of modifications in
electrostatic potential upon mutation is the domain of the
Mutantelec tool [62] and the analysis of electrostatic structures
of proteins (AESOP) library [63]. Finally, the BioStructMap
integrates data from various sources to help harness the
knowledge for the next round of engineering [66]. The majority
of the tools discussed in this section rely on machine-learning
to derive predictive models from training datasets, while their
quantitative performance is evaluated on the testing datasets. To
compare performance of tools quantitatively, we summarized
Pearson correlation coefficients (PCC) and root-mean-square
errors (RMSE) achieved on these datasets as well as the main
dataset parameters (Table 2).

Effects of mutations on protein interactions

Proteins interact with each other, nucleic acids or small chemical
compounds. As such, they are involved in all essential pro-
cesses in any living cell. Recognizing the importance of pro-
tein–protein interactions, numerous tools have been developed
to predict the impact of mutations in residues forming these
interactions [124–126].

To expand a set of publicly available methods capable of
quantitatively predicting the effects of single-point mutations
on binding energy, the MutaBind web-server was developed [52].
This tool uses a consensus of multiple linear regression and
a model trained with random forest (RF), both based on 1925
mutations of 80 protein–protein complexes from the SKEMPI
database [112] to calculate the changes in binding free energy
upon a single-point mutation (��G). The web-server relies on six
physicochemical descriptors: Van der Waals interactions, polar
solvation energies, unfolding free energies, solvent accessible
surface area, conservation score and the ability of proline to
introduce constraints on the protein backbone. The prediction
performance of the tool was evaluated in a leave-one-complex-
out cross-validation, attaining a notable PCC of 0.68, and RMSE
of 1.41 kcal.mol−1 [52]. Additionally, a separate model was
provided for analyses of protease-inhibitor complexes, for which
the authors observed improved performance (0.76 PCC and
1.48 kcal.mol−1 RMSE) on a subset of their training dataset (862
mutations on 16 complexes) [52]. Two de novo designed influenza
inhibitors complexed with hemagglutinin used as targets (T55
and T56) in the 26th round of the CAPRI prediction experiment
[120] with about 1000 mutations each were employed for
independent evaluation. With PCC of 0.56 and 0.37 and RMSE of
2.58 and 4.27 kcal.mol−1 for the T55 and T56 targets, respectively
[52], MutaBind scored better than three already well-established
methods (BeAtMuSiC [126], FoldX [103] and molecular mechanics
Poisson-Boltzmann surface area (MM/PBSA) [127]), showing
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Table 2. Overview of the datasets employed for training and testing of tools for the prediction of the effect of mutations and the performance
of the tools

Tool Source of data No. of

complexes/proteins

No. of mutations Pearson correlation

coefficient

Root-mean-square

error [kcal.mol−1]

Training datasets a

MutaBind SKEMPI database [112] 80 1925 0.68 1.41

iSEE DACUM database [113] 57 1102 0.80 1.41

mCSM-PPI2 SKEMPI 2.0 database [114] b 319 8338 0.75 1.30

mCSM-NA ProNIT database [115] 39 331 0.70 N.A.

PremPDI ProNIT and dbAMEPNI [116] databases

and SAMPDI training dataset [117]

49 219 0.63 0.95

mCSM-lig Platinum database [118] >200 763 0.63 2.06

DynaMut ProTherm database [119] b 131 4594 0.67 1.31

Independent

testing datasets

MutaBind TA55 from 26th round of the CAPRI [120] 1 1007 0.56 2.58

TA56 from 26th round of the CAPRI [120] 1 855 0.37 4.27

iSEE Subset of SKEMPI 2.0 database [114]

independent of DACUM database

56 487 0.25 1.32

mCSM-PPI2 TA55 from 26th round of the CAPRI [120] 1 1007 N.A. 2.55

TA56 from 26th round of the CAPRI [120] 1 855 N.A. 4.06

mCSM-NA Blind dataset by Barik et al. [121] 14 79 0.56 c N.A.

PremPDI N.A. N.A. N.A. N.A. N.A.

mCSM-lig FluA mutations by Vopel et al. [122] d 1 11 0.69 N.A.

DynaMut PoPMuSiC blind dataset [123] b 67 702 0.70 1.45

aPerformance of tools on the training datasets was evaluated using leave-one-complex-out cross-validation except for iSEE, mCSM-NA and DynaMut that were
evaluated by 10-fold cross-validation instead.
bDatasets were enriched with hypothetical reverse mutations.
cPCC increases to 0.68 for proximal mutations.
dOther testing datasets available but no PCC nor RMSE was reported from their evaluation; N.A., not available.

appreciable improvement in PCC by 0.16 over the second best-
performing method. The relatively low predictive power might
be caused by the use of de novo proteins forming an interface
that is not commonly present in the training dataset of native
proteins, the lack of respective crystal structures and the use of
enrichment value as a measurement of binding affinity changes.
Also, we would like to highlight that due to the limited number
of highly stabilizing mutations present in the SKEMPI and CAPRI
datasets, the prediction accuracy for such mutations cannot be
adequately estimated and is presumably less reliable. MutaBind
web-server can process up to 16 single-point mutations per
run, delivering the binding affinity change, confidence level and
structure model of each mutant.

A similar approach has been adopted by the iSEE method
[53], utilizing an RF approach to evaluate ��G at protein–
protein interfaces based on changes in structure-derived solvent
accessible surface area, van der Waals, Coulomb and solvation
energies and evolutionary information. A subset of the DACUM
database [113], consisting of 1102 mutations from 57 protein
dimers, was used for method training. In the authors hands,
iSEE exhibited 0.80 PCC and RMSE of 1.41 kcal.mol−1 during
10-fold cross-validation [53]. Unfortunately, when using a blind
dataset of 487 mutations from 56 protein complexes derived
from the new SKEMPI 2.0 database [114], iSEE exhibited a PCC of
only 0.25 and RMSE of 1.32 kcal.mol−1, which is comparable
to the performance of the other three state-of-the-art tools
evaluated by the authors [53], i.e. FoldX, mCSM [128] and
BindProfX [129]. The drop in the ranking performance observed
for all four tools is in line with relatively small ��G values
present in the dataset, making their evaluation rather sensitive
to errors of experimental measurement [53]. Nonetheless, iSEE
achieved good correspondence with experimental data on the
classification of mutations in the MDM2-p53 complex. It is
important to note that iSSE is provided as an R-model only
and requires non-trivial data as its input, i.e. the 3D structure
of both the WT and mutant complexes, eight energy terms,

and evolutionary information in the form of position specific
scoring matrix, which represent a marked barrier to widespread
application of this tool.

The most recent addition to the toolbox for evaluation of the
effects of mutations on protein–protein interaction is the mCSM-
PPI2 web-server [54]. A characteristic feature of the mCSM-PPI2
is the use of a graph-based structural signature to represent
the environment of the WT residue [128], where the residue
environment is described as a graph, with the atoms as nodes
and interactions among them as edges. In this scheme, atoms
are assigned physicochemical-based pharmacophore types such
as hydrophobic, positive, negative, acceptor, donor, aromatic,
sulfur and neutral. Aside from the graph-based signatures, seven
other types of features are employed in the model: pharma-
cophore changes due to mutation, structural and sequential
residue environment in the WT protein, the nature of the mutant
and WT residues, evolutionary information, non-covalent inter-
action network metrics, energetic terms and atomic fluctua-
tions. Using these features, the mCSM-PPI2 server was trained
using the ExtraTrees method on a derivative of the SKEMPI 2.0
database which consists of 4169 experimental variants and their
hypothetical reverse mutations from 319 different complexes,
giving a total of 8338 single-point mutants. During a leave-one-
complex-out cross-validation, the server achieved a PCC of 0.75
and RMSE of 1.30 kcal.mol−1 and showed an RMSE of 2.55 and
4.06 kcal.mol−1 for mutations of T55 and T56 targets from the
26th round of CAPRI competition [54]. Based on these results
and Kendall scores, mCSM-PPI2 is on par with MutaBind and
significantly better than the battery of 25 methods including
FoldX, BeAtMuSiC, mCSM and MM/PBSA [54]. The mCSM-PPI2
server provides two modes of operation: (i) evaluating the effects
of specific mutations defined by the user or (ii) assessing the
mutation effects on the interface region by alanine scanning or
saturation mutagenesis. For single-point mutations, the server
presents the predicted change in binding affinity together with
the visualization of the mutation in an interactive NGL viewer



8 Sequeiros-Borja et al.

[130]. In the interface evaluation mode, an overview of all iden-
tified interfaces is provided, with each interface linked to a
results page containing a summary with individual mutants
listed and available for further exploration, including hotspot
identification.

While there is no single study benchmarking all three
reviewed tools for predicting the effect of mutations on
protein–protein interactions, the results on the independent
datasets from the CAPRI competition (Table 2) indicate that
both MutaBind and mCSM-PPI2 are comparably accurate and
among the best quantitative predictors available. Regarding
iSEE performance, this tool reached similar performance to
MutaBind in the recent study [131] performed on the testing
dataset of iSEE (Table 2). From the user point of view, mCSM-PPI2
offers a convenient option of automated mutation scanning
of whole interfaces, and its results are presented in a far
more interactive manner. On the contrary, the iSEE method
requires the user to precompute all non-trivial input data
manually. As the oldest among reviewed tools for protein–
protein interaction analysis, Mutabind is the most established
in the community (Table 1 and see Supplementary Table 2
available online at https: //academic.oup.com/bib). Finally, our
testing indicates that mCMS-PPI2 can perform the complete
computation in the shortest time, followed by Mutabind
(Table 1 and see Supplementary Table 1 available online at https:
//academic.oup.com/bib).

Similarly to protein–protein interactions, interactions of pro-
teins with nucleic acids are the basis of many crucial cellular
processes such as replication, repair, recombination, transcrip-
tion, translation and gene expression regulation. However, the
development of rapid predictive methods has had much less
success given a notably different physicochemical nature of
these interactions, i.e. the prevalence of polar interactions that
are often much harder to model precisely [132], and the limited
availability of experimental structures as well as affinity data.

Benefiting from the recent release of high-quality data for
protein–nucleic acid interactions in the second version of ProNIT
database, the mCSM-NA web-server was developed. The tool
uses the previously described graph-based approach, adopting
additional descriptors for the atoms of nucleic acids, which are
divided into three categories: a phosphate group, sugar and
nitrogenous base [55]. From this representation, interactions
between the protein and nucleic acid atoms were encoded as
the graph-based structural signatures and served as an input
for Gaussian process regression to train the predictive model. As
a training dataset, the ProNIT database composed of 222 muta-
tions from 28 complexes of protein–dsDNA, 42 mutations on six
protein–ssDNA complexes and 67 mutations from five protein–
RNA complexes was used [115]. On the whole training dataset,
a PCC of 0.70 was achieved during 10-fold cross-validation, con-
stituting a small improvement over its generalist predecessor,
the mCSM tool, having PCC of 0.67 [128]. Interestingly, PCCs of
0.54, 0.85 and 0.75 were attained for dsDNA, ssDNA and RNA
complexes when considered separately, respectively [55]. The
authors also performed a blind test on 79 mutations from 14
protein–RNA complexes from the study by Barik and co-workers
[121], in which mCSM-NA achieved a PCC of 0.56, raising to 0.68
when considering only mutations in the proximity of the RNA
[55]. The user can submit up to 20 single-point mutations per
run to mCSM-NA web-server to obtain the predicted change in
binding affinity and the effect on protein stability. Importantly,
predictions concerning protein–dsDNA interactions should be
approached more cautiously, given their notably lower PCC on
the training dataset.

An alternative approach to assess the effect of mutations
on protein–DNA interactions was adopted by the PremPDI web-
server [56], relying primarily on the interaction energy terms
computed with the MM/PBSA method. The web-server uses the
FoldX tool to model a structure of mutation, which is then,
together with the WT structure, shortly energy minimized with
NAMD software [133] using CHARMM36 force field [134]. Mini-
mized complexes are then analyzed with the CHARMM package
[135] to calculate differences in polar solvation, Van der Waals
and electrostatic interaction energies, the number of hydro-
gen bonds, solvent accessible surface areas, which are further
supplemented by information if the mutation occurs on the
protein–DNA interface, the length of the protein chain and the
pairwise statistical potential for protein folding obtained from
the AAindex database [136]. Subsequently, the predictive model
is trained by multiple linear regression on a PremPDI dataset,
which was compiled from ProNIT and dbAMEPNI [116] databases
and training dataset of SAMPDI tool [117], comprising 219 muta-
tions from 49 protein–DNA complexes. A leave-one-complex-out
cross-validation yielded PCC of 0.63 and RMSE of 0.95 kcal.mol−1.
The authors evaluated the performance of PremPDI, SAMPDI
and mCSM-NA tools on subsets of training datasets overlapping
among the pairs of tools, showing that on these datasets, Prem-
PDI performs similarly to mCSM-NA and markedly outperforms
SAMPDI. The PremPDI server provides an interactive calculation
setup, enabling up to 16 single-point mutations to be specified,
for which the prediction of the effect of the mutation and mutant
3D structure is generated.

Again, the two reviewed tools exhibited similar predictive
performance for the effect of mutations on interactions of
proteins with DNA. The main difference comes from the user
experience and server applicability. Firstly, mCSM-NA can eval-
uate complexes containing RNA unlike PremPDI. The machine-
learning predictions by mCSM-NA are several-fold faster than
the demanding physics-based predictions implemented in
PremPDI, especially for larger biomolecular systems (Table 1
and see Supplementary Table 1 available online at https: //a-
cademic.oup.com/bib). Additionally, the mCSM-NA web-server
offers information on the effect of a mutation on protein stability
and interactive online visualization. The overall advantages of
the mCSM-NA tool are well reflected in its preferential use by
the researchers (Table 1 and see Supplementary Table 2 available
online at https: //academic.oup.com/bib).

Due to the importance of protein–ligand binding affinities
to drug design and enzymology, their predictions have been
the focus of numerous tools, including those employing deep-
learning algorithms like DeepDTA [137] or KDEEP [138]. How-
ever, these methods have not been developed for predicting the
impact of single-point mutations on binding affinity.

The recently assembled large-scale database of the effects
of mutations on the affinity of protein–ligand complexes, Plat-
inum [118], provided a foundation to develop the mCSM-lig
web-server [57] capable of such prediction. This web-server is
the last of the series of three tools based on the same graph-
based approach that, aside from graph-based descriptors of
interactions, employs physicochemical descriptors of the ligand,
which are complemented by several other features, including a
predicted change in stability, depth of evaluated residues, and
experimental affinity of WT protein to the ligand. Two sepa-
rate models for regression and classification of mutations were
derived by using a Gaussian process for predictive regression
and RF for classification tasks. For model training, a subset
of the Platinum database was used, composed of 763 muta-
tions from more than 200 protein–ligand complexes. During the
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leave-one-complex-out cross-validation on this dataset, the tool
reached a PCC of 0.63 and RMSE of 2.06 kcal.mol−1 [57]. Moreover,
the authors tested the capability of mCSM-lig to discriminate
resistance-mutation profiles of different drugs binding to the
same site. Evaluation of the binding of chemotherapeutics Ima-
tinib, Nilotinib and Dasatinib to human ABL-kinase with this
tool identified over 75% of resistance-causing mutations cor-
rectly [57]. In the same way, mutations affecting the binding
of Efacirenz and Rilpivirine to HIV-1 reverse transcriptase were
identified with more than 80% sensitivity [57]. Application of
mCSM-lig to identify mutations improving the binding affinity
of fluorescein was tested on the FluA protein. The tool achieved
appreciable PCC of 0.69 with experimental data, indicating an
aptness for protein engineering tasks [57]. The mCSM-lig web-
server requires a structure of a protein–ligand complex, and the
ligand affinity to the WT protein to deliver a prediction of the
effect of mutation and the mutant 3D structure.

Effects of mutations on protein dynamics

Mutations can also affect the dynamics of proteins, altering their
flexibility or rigidity [42,139,140]. The effect of mutations on pro-
tein dynamics can be studied with MD simulations, a powerful
method that is computationally demanding and requires consid-
erable expertise to perform. Therefore, quick and ready-to-use
methods such as NMA have been developed as an alternative.

To facilitate the use of NMA for evaluating effects of mutation
on protein dynamics and stability, DynaMut web-server [61]
employs two NMA tools Bio3D [141] and ENCoM [142]. Protein
dynamics is combined with the graph-based signature described
for mCSM-PPI2, mCSM-NA and mCSM-lig tools to represent the
WT structure, stability evaluation of individual conformations
via DUET [143], and structural descriptors of the environment
of the mutated residue like solvent accessible surface area,
residue depth and secondary structure. Using the RF algorithm,
the consensus predictor was trained on a dataset derived from
the ProTherm database [119], containing 4594 experimental and
hypothetical reverse mutations of 131 proteins. During 10-fold
cross-validation on the training dataset, DynaMut achieved a
PCC of 0.67 and RMSE of 1.31 kcal.mol−1, performance was fur-
ther confirmed with a blind dataset containing 702 forward and
reverse mutations (PCC of 0.70 and RMSE of 1.45 kcal.mol−1) [61].
With two types of analysis, the web-server can be used to study
the dynamic nature of a protein and the effect that point muta-
tions have on its flexibility. DynaMut provides a detailed compar-
ison of the interactions, flexibility and deformability of residues
in the WT and mutant protein. 3D structure of the protein is
supplemented by predicted energy change in DynaMut, and
presented along with three other methods: mCSM, DUET [143]
and SDM [144]. Here we would like to add that NMA is known
to have, in some instances, a limited sensitivity to a muta-
tion, unless it is responsible for a substantial conformational
change [145].

Effects of mutations on protein electrostatic potential

The electrostatic potential of proteins can affect protein adsorp-
tion, ligand binding or thermodynamic stability of a protein
complex [146–150]. Different software packages that calculate
the electrostatic potential of proteins are available [151–153].
Apart from tools targeting protein stability such as the pStab
web-server [154], there are not many tools that assess the effects
of mutations on this vital feature.

To overcome this deficiency, the Mutantelec web-server was
developed to enable evaluation of the effects that mutations
have on electrostatic potential [62]. Additionally, the effects
of phosphorylation of serine, threonine and tyrosine can
be assessed, broadening the type of analysis that can be
performed. The web-server uses Modeller [155] to optimize
mutant structures, PDB2PQR [156] to assign atom parameters
and APBS [151] to calculate electrostatic potential. As a result,
the difference in electrostatics for each residue is represented as
a histogram. Additionally, the web-server allows for download
of 3D structures and electrostatic maps to visualize in PyMOL
(Schrödinger, LLC., USA, http: //www.pymol.org/) or VMD [157].
The p53 protein was analyzed with Mutantelec to explain the
effects of Arg249 mutations shown to inactivate the protein
function [62].

Similar intentions have prompted a reimplementation of
the AESOP framework [158] into a more accessible Python 2
library and web-server [63]. The AESOP library was shown to be
applicable to study of the electrostatic similarity of protein fam-
ilies [159,160], perform an alanine scanning of ionizable amino
acids to identify possible electrostatic hotspots [161,162], and
assess the effects of single-point mutations on the free energy of
association [163,164]. Analogously to the Mutantelect workflow,
AESOP makes use of Modeller [165] to generate and optimize
mutant structures and PDB2PQR and APBS software packages to
calculate electrostatic potentials. The capabilities of this web-
server are currently limited to alanine scanning. As a result, the
AESOP library and web-server generate PDB files of mutants,
information on the energy change caused by the mutations, and
several predefined structural visualizations.

Data integration

Engineering efforts do not inevitably end with characterizing
properties of the altered protein since information about
the mutants can be stored and further reused. This way,
an additional cycle of design can be performed iteratively,
combining experimental and computational stages. For more
convenient analyses, data coming from different sources can
be mapped onto the 3D structure of proteins, and there are
web-services capable of mapping conservation [166], coevolution
[167], biochemical and biomedical annotations [168]. All those
services are, however, limited to displaying only one property at a
time.

Hence, the BioStructMap tool was developed [66], allowing
users to map any sequence-associated function that returns a
numeric value onto a 3D protein structure. The BioStructMap
package includes pre-defined functions to analyze data, such as
mapping polymorphic hotspots, amino acid propensity scales,
Tajima’s D index, nucleoside diversity and customized data
aggregation. As an input, the package requires a sequence
alignment, a PDB file, and a reference sequence matching the
sequence of the PDB. The output includes residue-values, as
a Python dictionary, which can be mapped to the PDB file
on the B-factor column or returned as a text file. Although
simple, the most attractive feature of the BioStructMap package
is the capability of customization, the only requirement is that
the function should return a numerical value. For instance, the
user could use numerical results coming from other tools like
MutaBind, AESOP or alanine scanning and map those values
onto the 3D structure. The resulting PDB file can be analyzed
with PyMOL to detect hotspots for the mapped property.
BioStructMap is also offered as a web-server that supports
analyses with the pre-defined functions.

www.pymol.org/
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Integrative platforms for protein engineering
The typical engineering workflow often covers a range of struc-
tural and evolutionary analyses, predictions of the effects of
mutation on protein function and stability, and their visualiza-
tion. Execution of such analysis requires bioengineers to search
for suitable computational tools and transfer data from one tool
to another, which is frequently complicated by incompatibilities
among these tools. To relieve bioengineers of such hurdles,
integrative services gather different methodologies for hotspot
identification and mutation analyses and streamline the flow of
data into automated workflows.

The HotSpot Wizard web-server is a platform developed with
the primary purpose of finding protein engineering hotspots by
combining structural and sequential analyses [169]. The second
version of the service notably expanded the original focus on
functional hotspots by providing access to the other three design
strategies: stability by structural flexibility, stability by sequence
consensus or correlated hotspots [64]. Functional hotspots are
identified based on the protein active site and transport tunnels.
At the same time, highly conserved residues that are often
indispensable for catalysis are avoided in order not to com-
promise enzyme function. This method of hotspot selection is
recommended when substrate specificity is the target prop-
erty. Regarding stabilizing hotspots, highly mobile residues are
identified by their thermal B-factors. Alternatively, an MSA of
homologous proteins can be analyzed to find residues differing
from the prevalent variant at any given position in homologous
proteins. Both strategies were shown to be useful when a pro-
tein with improved thermal stability is desired [170,171]. Lastly,
the correlated hotspot approach is based on the MSA that is
scrutinized by seven methods for coordinated changes in the
sequence and combined to a Z-score based consensus. Consid-
ering the vast number of identified correlated hotspots, further
analyses using alternative approaches are advisable to obtain
more focused predictions, unless the modulation of allostery is
the engineering target. The main innovation of the current third
version of the platform was the integration of an automated
protein structure modeling workflow to overcome the applica-
bility limit of previous versions [65]. Additionally, the Rosetta
and FoldX tools can now be utilized for the evaluation of the
effect of particular mutations at hotspots of interest. As the
input, a protein sequence, PDB file or PDB-ID code is required.
Additionally, some of the most influential parameters control-
ling calculations of integrated tools can be modified in advanced
settings. Once the calculations are finished, results for each
strategy can be accessed from the navigation panel. Further, the
effects of selected mutations can be evaluated, used to develop
an optimized smart library and generate nucleotide sequences
employing the codon usage of a target organism. Overall, the
HotSpot Wizard is a user-friendly and well-established service
for hotspot identification and library design that has been avail-
able for over 10 years and is kept up to date, with the latest ver-
sion published in 2018. It has been successfully verified in seven
engineering studies reported so far (see Supplementary Table 3
available online at https: //academic.oup.com/bib).

Conclusions, perspectives and challenges
The reviewed computational tools can provide valuable guid-
ance for protein engineering toward tailoring a wide range of
target properties. Notably, the applicability of the protein engi-
neering toolbox has been expanded from targeting traditionally
engineered regions of proteins, such as binding sites and

transport-pathways, to addressing even more elusive targets
including protein dynamics and allostery. Here, most tools
resorted to approximating the dynamics by rapid methods
based on NMA to minimize overall execution time and
required computing resources. However, we expect that other
approaches including the geometric-constraints-based method,
tCONCOORD [172], or the perturbation-based methods, L-
RIP or RIPlig [173], will be integrated as an alternative or
used alongside NMA to overcome the intrinsic limitations
of each method and to provide complementary insights into
the structure–dynamics–function relationships of engineered
proteins.

There is a clear trend of protein engineering software becom-
ing more user-friendly, commonly featuring an attractive web-
server interface. However, we have noted only a handful of
integrative efforts to provide meta-servers where the user can
employ different approaches to protein design. Even the cur-
rent one-stop-shop platforms like HotSpot Wizard do not yet
offer comprehensive approaches. In particular, they do not allow
analysis of possible interactions of the target protein with other
molecules, leaving such burdensome tasks to their users. There-
fore, an essential step toward complete workflows is to integrate
tools for the prediction of macromolecular binding sites and
evaluation of actual protein interactions with cognate binding
partners, ultimately creating complete pipelines which will be
even more attractive for protein engineers.

Since a significant fraction of the reviewed tools employs
various methods of supervised machine learning, the quality
of the available datasets for development and testing is of
utmost importance. We have seen an example of the role that
a more extensive dataset can play for the accuracy of the
predictive methods for the effect of a mutation on protein–
protein interactions. In that case, the release of the SKEMPI 2.0
database, which more than doubled the number of annotated
mutations and almost tripled the diversity in protein–protein
complexes, enabled the derivation of more accurate predictive
models adopted by the mCSA-PPI2 tool. However, even this
database is notably biased by the strategies and research
objectives traditionally applied in the protein engineering
community [114], for example, there is a prevalence of single-
point mutations (most frequently to alanines), the majority of
mutations being located at the interface (mostly at its core), and
the distribution of observed effects of mutations being shifted
toward destabilization. This lack of proportionality hampers the
development of more accurate and general predictive methods.
The impact of such biases on the development of machine
learning models for protein engineering and some necessary
steps toward resolving these issues have been discussed
elsewhere [174].

Another aspect related to the experimental datasets is
their sparsity. For most proteins, information on the effects of
mutations is available for a few sites only, and even for those that
were mutated, often not all variants were tested. Such situations
markedly complicate the performance evaluation of tools for
hotspot identification and mutation prioritization. The data
sparsity also makes any rigorous comparison among different
methods almost impossible since experimental data rarely
cover the top hits proposed by individual tools. As a remedy,
we suggest turning to datasets from systematic mutagenesis
projects like the dataset of 13 massively mutated proteins
compiled from the literature and patents [175] and, more
recently, datasets originating from deep mutation scanning
techniques that provide almost complete mapping of the muta-
tion landscape [176,177]. Also, we would like to highlight another
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initiative, ProtaBank repository [178], which introduces a
standardized format for storing and reporting data from protein
engineering studies to facilitate accurate comparisons among
them. Its utilization has the potential to overcome some of the
challenges discussed here.

Key Points
• Computationally supported rational and semi-

rational protein engineering constitute widely
accepted and efficient approaches. These approaches
become more accessible to the broad scientific
community due to the development of user-friendly
tools, 18 of which are reviewed here.

• These novel tools enable identification of engineering
hotspots promising for the modification of protein
function based on allosteric communication, interac-
tions with other proteins or ligands.

• Mutations can be evaluated for their impact on pro-
tein interactions with other macromolecules, protein
dynamics or an electrostatic potential that can be
estimated by user-friendly software covered in this
review.

• Identification of hotspot residues and prediction of
the effect of their mutation can be easily performed
via integrative platforms like HotSpot Wizard. This
platform was successfully applied in multiple design
experiments leading to the identification of enhanced
variants showcased here.
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Supplementary data are available at Briefings in Bioinformatics
online.
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