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Abstract: Harmful algal blooms (HABs) occur frequently in the Seto Inland Sea, bringing significant
economic and environmental losses for the area, which is well known as one of the world’s most
productive fisheries. Our objective was to develop a quantitative model using in situ hyperspectral
measurements in the Seto Inland Sea to estimate chlorophyll a (Chl-a) concentration, which is a
significant parameter for detecting HABs. We obtained spectra and Chl-a data at six stations from
12 ship-based surveys between December 2015 and September 2017. In this study, we used an iterative
stepwise elimination partial least squares (ISE-PLS) regression method along with several empirical
and semi-analytical methods such as ocean chlorophyll, three-band model, and two-band model
algorithms to retrieve Chl-a. Our results showed that ISE-PLS using both the water-leaving reflectance
(RL) and the first derivative reflectance (FDR) had a better predictive ability with higher coefficient of
determination (R2), lower root mean squared error (RMSE), and higher residual predictive deviation
(RPD) values (R2 = 0.77, RMSE = 1.47 and RPD = 2.1 for RL; R2 = 0.78, RMSE = 1.45 and RPD = 2.13
for FDR). However, in this study the ocean chlorophyll (OC) algorithms had poor predictive ability
and the three-band and two-band model algorithms did not perform well in areas with lower Chl-a
concentrations. These results support ISE-PLS as a potential coastal water quality assessment method
using hyperspectral measurements.

Keywords: water quality; remote sensing; harmful algal bloom; partial least squares regression

1. Introduction

The Seto Inland Sea is an approximately 23,000 km2 semi-enclosed coastal sea in western Japan,
with an average depth of 38 m. This sea is well-known as one of the world’s most productive fisheries
due to its abundance of fish and variety of fish species [1]. Approximately 35 million people live
around the Seto Inland Sea, bringing increased industrialization and urbanization that have made the
Seto Inland Sea one of Japan’s most industrialized regions [2]. However, productivity of fisheries is
sensitive and thus vulnerable to anthropogenic stress. Eutrophication of coastal waters has affected
fishing and other activities by contributing to harmful algal blooms (HABs), also known as red tides.
HABs frequently occurred in the Seto Inland Sea during a period of high economic growth in the
1970s [3]. Although HABs have decreased from about 300 cases per year in 1976 to about 100 cases per
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year more recently [4], severe damage to fisheries and significant economic losses due to HABs are still
occurring [5]. Therefore, monitoring HABs is vital for managing the fisheries industry and ensuring
sea water quality.

The scientific community and various agencies monitor HABs to manage and control them.
Many studies have conducted HABs observation, but most have relied on conventional in situ ship
surveys and buoy stations [6]. For each observation, water samples must be collected and analyzed
under controlled lab environments, which is costly and time consuming. Additionally, the spatial
scale of such surveys is limited. Remote sensing has been widely applied to monitor, in real time,
various ocean environment factors on a large scale using spaceborne or airborne instruments. Having a
high degree of spatial and temporal coverage over a large scale is convenient for monitoring HABs.
Several studies have shown distributions of HABs using satellite imagery and chlorophyll a (Chl-a)
concentration measurements [7,8]. Chl-a concentration in water is a major indicator of a trophic state
and oceanic Chl-a concentration is the most common property characterizing first trophic levels in
marine environments [9]. Chl-a acts as a link between nutrient concentration and algal production [10],
therefore, it can be used as a proxy to evaluate HABs.

Earlier studies indicated bio-optical models were usually used to estimate Chl-a concentrations
in water [11], which are based on the inherent optical properties (IOPs) in a water body, that is, the
absorption and backscattering dominated by Chl-a, colored dissolved organic matter (CDOM), and
suspended matters etc. Chl-a can be estimated when the relationship between IOPs and the remote
sensing reflectance (Rrs) is built. Basing on the bio-optical properties, several algorithms developed to
estimate Chl-a in the open sea and coastal area, such as the ocean chlorophyll 2-band (OC2), ocean
chlorophyll 3-band (OC3), and ocean chlorophyll 4-band (OC4) algorithms used for the standard
Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Chl-a product [12,13]. The strong Chl-a absorption
in red bands and diminishing Chl-a absorption and increasing water absorption in near infrared (NIR)
bands [14] yields a band ratio between the NIR and red bands that has frequently been used to estimate
Chl-a concentrations [15–17]. Han and Rundquist [18] found that the ratio of reflectance at 705 nm
(NIR) to reflectance at 670 nm (red) correlated well with Chl-a concentration in a turbid reservoir.
Additionally, a three-band semi-analytical reflectance model can be used to assess Chl-a concentration
by taking advantage of the red and NIR regions’ absorption characteristics. This model was originally
developed to estimate pigment content in higher plant leaves [19].

Partial least squares (PLS) regression, a statistical method developed by Wold [20], is an efficient
tool for multivariate modeling that is increasingly used to handle high-dimensional hyperspectral
data [21,22]. Its potential application for water quality quantification has been tested [23], and the
iterative stepwise elimination PLS (ISE-PLS) [24], which combines PLS and a wavelength selection
function, has proven effective at estimating Chl-a in inland irrigation ponds water [25]. However,
ISE-PLS has not been tested in coastal waters or compared with traditional algorithms.

Our objectives are: (1) to develop models to estimate Chl-a using in situ hyperspectral data; (2) to
evaluate traditional empirical and semi-analytical algorithms in the Seto Inland Sea; and (3) to evaluate
the ISE-PLS method’s accuracy in coastal waters.

2. Materials and Methods

2.1. Study Area

The study area is in the central part of the Seto Inland Sea near the city of Fukuyama as shown
in Figure 1. We selected six sites as sampling stations, which are described in Table 1. The study
area has an average water depth of 17.3 m and water temperatures range from 7.3 ◦C (winter) to
28.4 ◦C (summer). The Seto Inland Sea is rich in fishery resources, with more than 50% of the total
fish production contributed by aquaculture production. Additionally, there are approximately 17 fish
farms being operated in the Tashima and Yokota areas near our study area [26]. Consequently, there
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are a range of organic compounds released by fish farm waste that may affect eutrophication due to
dissolved nitrogen [27].
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Table 1. Stations for data collection in the study.

Station ID Latitude Longitude Depth (m)

1 34◦19′44” N 133◦15′24” E 29
2 34◦20′31” N 133◦19′26” E 17
3 34◦21′51” N 133◦22′10” E 10
4 34◦24′37” N 133◦24′44” E 10
5 34◦22′01” N 133◦24′58” E 21
6 34◦23′38” N 133◦27′58” E 17

2.2. Data Collection and Pre-Processing

We conducted 12 ship-based surveys between 16 December 2015, and 7 September 2017 at six
stations (Figure 1). We performed in situ measurements of water-leaving reflectance (RL) using a
MS-720 (Eiko Co. Ltd., Tokyo, Japan) spectrometer, with a spectral range of 350–1050 nm and a spectral
interval of 3.3 nm. We interpolated the spectral interval to 1 nm when exporting data. We gathered
spectral readings approximately 1 m above the water surface, with a probe field angle of 25◦, between
9:00 a.m. and 11:00 a.m. under clear sky conditions. We measured Chl-a using a Hydrolab DS5 (Hach,
Loveland, CO, USA) multiparameter data sonde with sensors for measuring Chl-a (range from 0 to
500 µg/L) and other water quality parameters (e.g., temperature, salinity, dissolved oxygen, etc.).
In this study we used Chl-a data from just beneath the water surface.

With respect to spectral data, we identified reflectance ranges of 325–399 nm and 901–1075 nm
as noise and removed them. We then smoothed the spectral data using a Savitzky-Golay filter with
15 smoothing points. To compare the performance for Chl-a estimation with the original water-leaving
reflectance, we also computed the first derivative reflectance (FDR), which is calculated as the difference
of water-leaving reflectance for two adjacent wavebands.

2.3. OC Algorithms

In this study we used the newest ocean chlorophyll (OC) algorithms (version 6) [28], which was
formulated as a fourth-order polynomial with five coefficients. The newest OC algorithms yielded
better statistical agreement between model data and Chl-a than the first version OC algorithm [12],
which was a modified cubic polynomial relationship between Chl-a and a ratio of remote sensing
reflectance Rrs.



Sensors 2018, 18, 2656 4 of 17

Remote sensing reflectance Rrs(λ) can be represented by the relationship with water-leaving
reflectance RL(λ) as follows [29]:

Rrs(λ) = πRL(λ) (1)

where λ is wavelength. The version 6 OC algorithms use a fourth-order polynomial equation that can
be written as:

log10(Chl_a) = a0 + a1R + a2R2 + a3R3 + a4R4 (2)

where R = log10(Rrs(λ1)/Rrs(λ2)) and the coefficients a0, a1, a2, a3, and a4 are different in the
OC2, OC3, and OC4 algorithms. OC2 uses the blue/green ratio Rrs (blue)/Rrs (green) and R is
described as R = log10 ( Rrs (blue)

Rrs (green) ). OC3 uses a three-band formulation with a maximum of Rrs

band ratios Rrs (blue1)/Rrs (green) and Rrs (blue2)/Rrs (green), and R is expressed as R = log10

( Rrs (blue1) > Rrs (blue2)
Rrs (green) ). Similarly, OC4 uses the maximum of three Rrs ratios Rrs (blue1)/Rrs (green),

Rrs (blue2)/Rrs (green) and Rrs (blue3)/Rrs (green)—to build the formulation, with R expressed as
R = log10 ( Rrs (blue1) > Rrs (blue2) > Rrs (blue3)

Rrs (green) ). The OC4 algorithm has been considered a standard
method for satellite detection of HABs over global waters [30,31].

In view of the sensor differences between the hyperspectral spectrometer used for in situ
measurements and the SeaWiFS satellite sensor, we recalculated the parameters for Equation (2)
by model recalibration using in situ Chl-a and Rrs, which was in accordance with specified OC
algorithm wavebands.

2.4. Three-Band Model

The three-band model uses the NIR and red wavebands and is formulated as [19,32]:

Chl− a ∝
(

R−1
λ1 − R−1

λ2

)
× Rλ3 (3)

where Rλi is the reflectance at a wavelength of λi nm. Previous study found the optimal spectral ranges
for these wavelengths to be, λ1 = 660–670 nm, which is maximally sensitive to absorption by Chl-a;
λ2 = 690–720 nm, which is minimally sensitive to absorption by Chl-a; and λ3 = 720–750 nm, which is
minimally affected by absorption by any constituents (e.g., Chl-a, suspended solids, etc.) [32,33].
We expected to find the optimal spectral ranges of λ1, λ2, and λ3 for Chl-a estimation by spectrally
tuning the conceptual model using a stepwise technique [34]. First, we set λ2 and λ3 to 700 nm and
750 nm, respectively, and then linearly regressed using all available bands and Chl-a to obtain the
first estimate of λ1, with which there was a high correlation coefficient (r). After we fixed λ1, we set
λ2 as an unknown waveband and linearly regressed to find an optimal λ2 based on the best r value
using the reflectance corresponding to a fixed λ1 and an assumed λ3. Analogously, we confirmed the
optimal λ3 using the reflectance corresponding with fixed λ1 and λ2 values.

2.5. Two-Band Model

The NIR/red two-band model has been widely used to retrieve Chl-a concentrations in turbid
productive waters to identify phytoplankton blooms [35]. This model is formulated as follows:

Chl− a ∝ R−1
λ1 × Rλ2 (4)

where λ1 is in the red region and λ2 is in NIR region. According to the band tuning method [34],
we tuned the model to select the optimal NIR and red bands for Chl-a retrieval in this research area
and compared its accuracy with the previous model, i.e., NIR/red model using wavelengths of 705 nm
in the NIR region and 670 nm in the red region [18].
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2.6. ISE-PLS

Partial least square (PLS) is useful for handling many descriptors even when co-linearity and
noise in the model building regression are present [36]. The standard PLS regression equation can be
expressed as follows:

y = β1x1 + β2x2 + . . . + βixi + ε (5)

where y is the response variable that represents Chl-a, xi is the predictor variable representing spectral
data such as RL or FDR values for spectral bands 1 to i (400–900 nm), βi is the estimated weighted
regression coefficient, and ε is the error vector. In the PLS model, the original predictor variables
(x) are projected onto a small number of orthogonal latent variables to simplify their relationships
with response variables (y) [37]. We selected the optimal number of latent variables (NLV) in the final
model using the leave-one-out (LOO) cross-validation method with a minimum value of the root mean
squared error (RMSE), which is calculated as follows:

RMSE =

√
∑n

i = 1
(
yi − yp

)2

n
(6)

where yi and yp represent sample i’s measured and predicted Chl-a, respectively, and n is the number
of samples in the dataset (n = 59).

The iterative stepwise elimination PLS (ISE-PLS) uses a model-wise elimination technique [24]
that permits the removal of less useful descriptors to improve predictive performance. This process is
based on the importance of the predictor zi, which is defined as:

zi =
|βi|si

∑I
i = 1|βi|si

(7)

where I is the maximum number of variables, si is the standard deviation of predictor xi (each predictor
includes 59 samples). PLS modeling uses all available wavebands (501 bands between 400 and 900 nm).
Predictors are then evaluated based on the value of the importance of predictor zi. The predictor with
minimum importance (i.e., the minimum zi) is eliminated in each elimination cycle and the remaining
predictors are used to recalibrate the model [38]. Finally, a model with maximum predictive ability is
selected using the minimum RMSE value from the cross-validation.

2.7. Evaluation of Predictive Ability

We used the coefficient of determination (R2), RMSE, and bias to evaluate the predictive ability
of empirical and semi-analytical algorithms such as OC, three-band, and two-band model algorithms.
Higher R2 values and a lower RMSE indicate better Chl-a estimation performance, and bias represents
systematic difference between actual and predicted values. To evaluate the ISE-PLS predictive
ability, we used R2 and RMSE from the LOO cross-validation in the final model. Additionally,
we introduced the residual predictive deviation (RPD), which is defined as the ratio of the standard
error of the prediction to the standard deviation, as the evaluating indicator. RPD can be expressed
as RPD = SD/RMSE [39]. As shown in a previous study by Chang and Laird (2002) [40], an RPD > 2
indicates a model with good predictive ability, 1.4 < RPD < 2 indicates moderately good model in need
of some improvement, and an RPD < 1.4 means the model has poor predictive ability. Finally, a method
for NLV selection was used in the final PLS model, which has been reported can lower the risk of
over-fitting [41]. The evaluation was basing on the sum of RMSE in cross-validation and Jaggedness (J),
defined as:

Jj =
I

∑
i=2

√(
β ji − β ji−1

)2 (8)

where j is NLV and βji represents the regression coefficient when using j latent variables. At first,
the RMSE in cross-validation and J were calculated from each NLV model (maximum of 10 latent
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variables were set) basing on ISE-PLS selected variables, then each value was rescaled to the range
[0–1] as follows:

RMSEr =
RMSE− RMSEmin

RMSEmax − RMSEmin
(9)

Jr =
J − Jmin

Jmax − Jmin
(10)

where the subscript r refers to rescaled. The lowest value of RMSEr + Jr indicates the optimal NLV for
the final PLS model.

We performed all data handling and regression analyses using Matlab software version 8.6
(MathWorks, Sherborn, MA, USA).

3. Results

3.1. Chl-a Characteristics and Spectral Data

Table 2 shows Chl-a concentration descriptive statistics from this study, including stations,
number of samples, minimum (Min), maximum (Max), mean, standard deviation (SD) and coefficient
of variation (CV).

Table 2. Chl-a concentration (µg/L) descriptive statistics.

Stations N Min Max Mean SD CV

1 12 0.83 4.2 2.73 0.95 0.35
2 12 1.06 6.72 3.82 2.15 0.56
3 12 1.72 7.84 4.5 1.71 0.38
4 12 2.31 14.33 8.13 4.54 0.56
5 6 1.75 5.46 3.92 1.25 0.32
6 5 1.2 8.74 4.41 2.84 0.64

Total 59 0.83 14.33 4.67 3.11 0.67

N, number of samples; SD, standard deviation; CV, coefficient of variation.

3.2. Comparison of Empirical and Semi-Analytical Models

3.2.1. Performance of Models for All Dataset

We used several empirical and semi-analytical models for Chl-a retrieval, the results of which
are shown in Table 3. We initially used three standard empirical algorithms, OC2, OC3, and OC4.
The first row of Figure 2 shows scatter plots between in situ measured Chl-a and Chl-a derived from
OC models. The results show a linear relationship between measured and modelled Chl-a for all
three OC algorithms, with poor R2 values (0.36, 0.31, and 0.30, respectively for OC2, OC3, and OC4).
In addition, results of all three OC algorithms underestimate Chl-a, indicated by the bias (−2.32, −2.71,
and −2.70, respectively for OC2, OC3, and OC4). The second row of Figure 2 shows scatter plots
between recalibrated OC algorithms and Chl-a. The R2 values for all three OC algorithms were slightly
improved (0.39, 0.36, and 0.35 respectively for OC2, OC3, and OC4), and scattered points were closer to
the 1:1 line with a smaller bias (−0.46, −0.49, and −0.49, respectively for OC2, OC3, and OC4). For both
the standard and recalibrated OC models, the OC2 algorithm performed better than OC3 and OC4 for
Chl-a retrieval in this study; however, its predictive ability remains poor due to its low R2 value.

The three-band and two-band algorithms were both based on the NIR region, which has high
absorption by water, and the red region, which has high absorption by Chl-a. Figure 3 shows the
three-band algorithm tuning process. The optimal λ1 appeared at 664 nm where the r value is highest
when using assumed λ2 and λ3 values of 700 nm and 750 nm, respectively. λ2 and λ3 appeared at
695 nm and 736 nm when using the tuning method. These results showed a linear relationship between
the three-band algorithm and Chl-a concentration with a R2 value of 0.46, as shown in Figure 4.
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Table 3. Regression models used to estimate Chl-a concentrations.

Algorithms Results Equation Bands Combination (R),
Coefficient a, and Intercept b R2 RMSE Bias

OC2 Chl_a = 10a0+a1R+a2R2+a3R3+a4R4 R = log10 ( Rrs(490)
Rrs(555) )

a = [0.2511 −2.0853 1.5035 −3.1747 0.3383]
0.36 3.96 −2.32

OC3 Chl_a = 10a0+a1R+a2R2+a3R3+a4R4
R = log10 ( Rrs(443) > Rrs(490)

Rrs(555) )
a = [0.2515 −2.3798 1.5823 −0.6372

−0.5692]
0.32 3.95 −2.71

OC4 Chl_a = 10a0+a1R+a2R2+a3R3+a4R4
R= log10 ( Rrs(443) > Rrs(490) > Rrs(510)

Rrs(555) )
a = [0.3272 −2.9940 2.7218 −1.2259

−0.5683]
0.30 3.66 −2.70

Recalibrated
OC2 Chl_a = 10a0+a1R+a2R2+a3R3+a4R4

R = log10 ( Rrs(490)
Rrs(555) )

a = [−8942.6 −2053.3 −100.25 −3.8257
0.5738]

0.39 2.65 −0.46

Recalibrated
OC3 Chl_a = 10a0+a1R+a2R2+a3R3+a4R4

R = log10 ( Rrs(443) > Rrs(490)
Rrs(555) )

a = [5204.7 −461.22 −41.033 −4.4207
0.5491]

0.36 2.50 −0.49

Recalibrated
OC4 Chl_a = 10a0+a1R+a2R2+a3R3+a4R4 R = log10 ( Rrs(443) > Rrs(490) > Rrs(510)

Rrs(555) )
a = [−30610 −4098 −57.405 −0.1942 0.5933]

0.35 2.53 −0.49

Three-band Chl_a =aR + b R = (R(664)−1 − R(695)−1) × R(736)
a = 85.096 b = 7.371

0.46 2.28 3.2 × 10−6

NIR/red Chl_a =aR + b R = R(705) × R(670)−1

a = 0.0044 b = 0.8863
0.17 4.88 1.8 × 10−4

NIR/red
tuning Chl_a =aR + b R = R(693) × R(666)−1

a = 66.633 b = −59.755
0.39 2.40 2.9 × 10−6

OC2, ocean chlorophyll-2; OC3, ocean chlorophyll-3; OC4, ocean chlorophyll-4; NIR, near-infrared.

The two-band NIR red model results showed an incompact linear relationship between the
reflectance ratios of 705 nm and 670 nm and measured Chl-a, with a poor R2 value of 0.17, as shown in
Figure 5a. As with the three-band model, we tuned the spectral position to obtain the optimal NIR and
red wavebands. We initially set the NIR waveband to 705 nm and then selected the optimal red region
waveband, which we set from 620 nm to 680 nm based on the highest r value. Figure 6a shows that
666 nm was the optimal red waveband with a r value of 0.43. After fixing the optimal red waveband,
we selected the optimal NIR region waveband, which we set from 680 nm to 740 nm. As shown in
Figure 6b, we selected 693 nm as the best NIR waveband with a r value of 0.63. Figure 5b shows a
linear relationship between the reflectance ratios of 693 nm and 666 nm and measured Chl-a, with a R2

of 0.39.
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3.2.2. Performance of Models for Separated Dataset

Remote sensing methods for retrieving water quality parameters contain spatial and temporal
variations because the water body components that affect reflection properties vary in space and time.
To further clarify the most fitted Chl-a retrieval method in the research area, we analysed algorithms
using a separated dataset of six stations. Figure 7 shows the RL and average RL of each station for
the research period. As we can see, the average RL of each station shows little difference those of the
others. Especially at station 4 (Figure 7d), there is an obvious reflectance peak around 580 nm, which is
a result of minimum absorption by all pigments [42]. Figure 1 shows that station 4 is near a river,
which could bring various nutrients from land to the coastal area. Consequently, the highest max Chl-a
and SD values were obtained at station 4, as shown in Table 2.
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We analysed regressions using all possible band ratios in the 400 to 900 nm range and analysed
Chl-a concentration for each station, as shown in Figure 8. Two-dimensional correlation matrixes
indicate the R2 distribution for all band ratios (250,000 combinations). The yellow regions indicate high
R2 values for calibration between band ratios and Chl-a concentration, with most figures indicating
that high R2 values appear in the NIR and red regions (near 680–710 nm) and green region (near
500–600 nm). However, Figure 8a shows no correlation between NIR/red ratio and Chl-a concentration,
which may indicate that the NIR/red ratio doesn’t fit for water areas with lower and narrower Chl-a
concentration ranges, as indicated the lowest mean and SD values shown in Table 2, which is consistent
with a previous study on band ratio analysis [18].
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Figure 8. Two-dimensional R2 distributions obtained through sequential regressions using all band
ratios and chlorophyll a (Chl-a) concentrations for each station ((a–f) are stations 1 to 6 in turn).

We conducted calibrations between the three-band algorithm and Chl-a concentration at each
station, the results of which are shown in Figure 9. We selected three optimal wavebands using a
tuning method before conducting calibration for each station. It is apparent that station 4 performed
better than other stations (1, 2, and 3) with the same dataset number (N = 12), with a R2 value of 0.66,
using wavebands of 674, 705, and 750 nm. However, we obtained a poor R2 at station 1, which had
the lowest Chl-a concentration in this study, using wavebands of 664, 689, and 750 nm. These results
may indicate that the three-band algorithm performs well in water with relatively higher Chl-a
concentrations, which is consistent with several previous studies [19,22]. Figure 9e,f also show better
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R2 values (0.63 at station 5 and 0.81 at station 6) with calibration between the three-band algorithm and
Chl-a concentration. This provides a possibility of using the three-band algorithm to estimate Chl-a in
these areas; nevertheless, a shortness of data (N = 6 at station 5, N = 5 at station 6) may also provide
uncertainty to the results.
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concentrations ((a–f) are stations 1 to 6 in turn).

3.3. ISE-PLS Calibration and Validation

ISE-PLS selected optimal variables both for RL and FDR data due to the iterative stepwise
elimination function, to select the optimal NLV in the final model, the relationship between RMSEr + Jr

and NLV (from 1 to 10) were analysed, as shown in Figure 10. The minimum value showed the optimal
NLV (6 for RL and 4 for FDR), larger NLV indicated over-fitting and lower NLV indicated under-fitting.
Table 4 summarizes ISE-PLS calibration and validation results using RL and FDR for Chl-a retrieval.
As Table 4 shows, ISE-PLS had the same R2 values (0.83 for both RL and FDR) and slightly different
RMSE values (1.29 for RL and 1.28 for FDR) for calibration. We also found that ISE-PLS using both
datasets had better Chl-a retrieval performance than other algorithms, which was indicated by R2

(0.77 for RL and 0.78 for FDR) and RPD (2.10 for RL and 2.13 for FDR) values in the validation results.
ISE-PLS using FDR performed marginally better than ISE-PLS using RL because of the higher R2 and
RPD and lower RMSE (1.47 for RL and 1.45 for FDR) values for validation. Figure 11a,c show validation
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plots for ISE-PLS using RL and FDR, respectively. Both figures show a close linear relationship between
predicted and observed Chl-a with the exception of a few scatter points.
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Figure 10. Results for the RMSEr + Jr when using different number of latent variables (NLV).

Because of the iterative stepwise elimination function, we selected the optimal wavebands
using ISE-PLS for both RL and FDR datasets based on the lowest RMSE for validation, as shown
in Figure 11b,d. Selected wavebands for RL ranged from 495 to 496 nm [43], 589 to 593 nm [44], and
660 to 667 nm [45], which had been proven related to phytoplankton absorption, 544 to 549 nm [43],
and 689 to 696 nm [32], which indicated relationship with Chl-a fluorescence, and 730 nm which is also
sometimes used for Chl-a retrieval [45]. We selected a total of 30 (6%) informative wavebands from all
501 wavebands. And for FDR, we selected 10 (2%) informative wavebands from all 501 wavebands.
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Figure 11. Relationship between observed and predicted chlorophyll a (Chl-a) (a) water-leaving
reflectance (RL); (c) first derivative reflectance (FDR), and selected wavebands by iterative stepwise
elimination partial least squares (ISE-PLS) for Chl-a retrieval (b) RL; (d) FDR.
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Table 4. The coefficient of determination (R2) and root mean square error (RMSE) for calibration of
iterative stepwise elimination partial least squares (ISE-PLS) and leave-one-out (LOO) cross-validation
using the entire dataset (N = 59), with residual predictive deviation (RPD), number of wavebands,
and percent ratio in the full spectrum (i = 501).

Dataset N
Calibration Validation Number of

Selected
Wavebands

Percentage of
Selected

Wavebands (%)NLV R2 RMSE R2 RMSE RPD

RL 59 6 0.83 1.29 0.77 1.47 2.1 30 6.0
FDR 59 4 0.83 1.28 0.78 1.45 2.13 10 2.0

N, number of samples; NLV, number of latent variables; RL, water-leaving reflectance; FDR,
first derivative reflectance.

In this study, station 4 may have been affected by river nutrients, we carried out ISE-PLS
regressions using the RL dataset except for at station 4 to decrease the impact of different water
types. Figure 12 shows the validation plot between observed and predicted Chl-a, which was obtained
using the LOO method in the ISE-PLS regression. As we can see, the maximum Chl-a concentration
(from 14.33 to 8.74 µg/L) decreased after removing the station 4 dataset. Results shows a close linear
relationship between observed and predicted Chl-a; however, compared to the R2 value (0.77) obtained
by ISE-PLS validation using all datasets (N = 59), a relatively lower R2 value (0.72) was obtained using
the datasets except station 4 (N = 47), which may indicate that ISE-PLS performed better in water areas
with a wide range of Chl-a concentrations.
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4. Discussion

4.1. Empirical and Semi-Analytical Models Performance

In the present study, several empirical and semi-analytical models have been established for
Chl-a estimation in the Seto Inland Sea. Results show all the standard empirical OC algorithms have
underestimated the in situ Chl-a, which turns out to be lower RMSE values. The underestimated Chl-a
calculated from standard satellite algorithms possibly due to the uncertainty in the performance of
atmospheric-correction algorithms [46]. The coefficients for OC algorithms have been recalculated
using in situ Chl-a and hyperspectral dataset, however, OC algorithms using recalculated coefficients
also show lower R2 and higher RMSE values. The three-band model utilized in this study shows a
better R2 than all OC algorithms, and the optimal spectral bands (664, 695, and 736 nm) selected from
band tuning are in accord with previous study [19]. However, the low accuracy may indicate the model
is unstable as the RMSE shown, which may attribute to the lower Chl-a concentration (maximum value
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of 14.33 µg/L) in this study, because other optically active constituents (CDOM, tripton etc.) may
affect the water reflection properties [47]. Similarly, the NIR/red tuning model also shows a better
R2 than OC algorithms, while a poor accuracy, the optimal spectral bands (666 and 693 nm) are in
accord with previous study [19]. For the NIR/red model using bands 670 and 705 nm, result shows
a poor accuracy, which may attribute to the red shift property [48], that is, there is a red shift in the
fluorescence peak to the longer wavelength in higher Chl-a concentration waters.

4.2. ISE-PLS Performance

Through the above analyses, it has been shown that ISE-PLS using both RL and FDR performed
better than other algorithms, including the OC, three-band model, and NIR/red two-band model
algorithms, indicated by higher R2 and lower RMSE values. This finding is consistent with
previous studies in which PLS method can be used as useful method in retrieval of water quality
parameters [22,25]. In addition, ISE-PLS using FDR performed better than ISE-PLS using RL as
indicated by higher R2 and RPD values and lower RMSE for validation. This may have resulted
from derivative analysis reducing random noise and removing the effects of suspended matter on
Chl-a concentration estimates [22]. Using ISE-PLS, a total of 30 (6%) wavebands for RL and 10 (2%)
wavebands for FDR have been selected as optimal bands from all 501 wavebands, separately, which
indicate that 94% wavebands when using RL and 98% wavebands when using FDR are redundant
for Chl-a estimation in the Seto Inland Sea. This result provide an evidence that ISE-PLS can be used
as an approach for optimal wavebands selection, especially when using hundreds wavebands of
hyperspectral data.

4.3. Applications of ISE-PLS Method

This study established a potential model for Chl-a estimation in the Seto Inland Sea, which provide
the possibility for detecting HABs, since Chl-a concentrations can be used as indices of HABs [30].
In general, HABs detection using Chl-a algorithms involve the generalized relationship between
a high chlorophyll content and HABs occurrences [6]. However, due to the sampling data show
lower Chl-a concentrations and short of HABs occurrences data, it is difficult to build the relationship
between HABs and Chl-a concentrations in this study. Nevertheless, the ISE-PLS is a useful method to
estimate Chl-a concentration, which can be used to evaluate the water quality, so as to management
the aquaculture in the Seto Inland Sea.

5. Conclusions

In this study, we developed various models for estimating water Chl-a concentration in the Seto
Inland Sea, including ISE-PLS using both RL and FDR and other methods such as OC, three-band
model, and two-band model algorithms. Our results showed that the ISE-PLS method is effective for
predicting Chl-a concentration in the Seto Inland Sea using in situ measured spectral data. With a
higher prediction accuracy, ISE-PLS also selects important wavebands that match previously published
studies. Additionally, ISE-PLS using FDR is marginally enhanced compared to using RL for Chl-a
retrieval. However, OC algorithms are not robust in this present study, and three-band and two-band
model algorithms did not perform well in water areas with lower Chl-a concentration. Our results also
indicate that the ISE-PLS method can perform better when used in water areas with a wide range of
Chl-a concentrations. These results provide potential insights into coastal water quality assessment by
using a Chl-a estimation method with hyperspectral measurements.
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