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Abstract

Introduction

Biological communities present in soil are essential to sustainable and productive agricul-

tural practices; however, an accurate determination of the ecological status of agricultural

soils remains to date an elusive task. An ideal indicator should be pervasive, play a relevant

role in the ecosystem, show a rapid and proportional answer to external perturbations and

be easily and economically measurable. Rhizobacteria play a major role in determining soil

properties, becoming an attractive candidate for the detection of ecological indicators. The

application of massive sequencing technologies to metagenomic analysis is providing an

increasingly more precise view of the structure and composition of soil communities. In this

work, we analyse soil rhizobacterial composition under various stress levels to search for

potential ecological indicators.

General Biodiversity Indicators

Our results suggest that the Shannon index requires observation of a relatively large num-

ber of individuals to be representative of the true population diversity, and that the Simpson

index may underestimate rare taxa in rhizobacterial environments.

Taxonomical Classification Methods

Detection of indicator taxa requires comparison of taxonomical classification of sequences.

We have compared RDP classifier, RTAX and similarity-based taxonomical classification

and selected the latter for taxonomical assignment because it provides larger detail.

Taxonomy-Based Ecological Indicators

The study of significant variations in common, clearly identified, taxa, using paired datasets

allows minimization of non-treatment effects and avoidance of false positives. We have

identified taxa associated to specific perturbations as well as taxa generally affected in

treated soils. Changes in these taxa, or combinations of them, may be used as ecological
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indicators of soil health. The overall number and magnitude of changes detected in taxo-

nomic groups does also increase with stress. These changes constitute an alternative indi-

cator to measuring specific taxa, although their determination requires large sample sizes,

better obtained by massive sequencing.

Summary

The main ecological indicators available are the Shannon index, OTU counts and estima-

tors, overall detection of the number and proportion of changes, and changes of specific

indicator taxa. Massive sequencing remains the most accurate tool to measure rhizobacter-

ial ecological indicators. When massive sequencing is not an option, various cultivable tax-

onomic groups, such as specific groups in the Actinobacteria tree, are attractive as

potential indicators of large disruptions to the rhizobiome.

Introduction

Soil is the substrate that sustains terrestrial life on Earth, constituting an essential resource for
the maintenance of most life processes, not only via agricultural production, but also by means
of organic matter decomposition and nutrient cycling. Soil composition includes minerals,
organic matter and a rich symbiotic community of micro- and meso-organisms that play a cru-
cial role in the life-sustaining ability of soil. Viewing soil as a living ecosystem allows definition
of soil health (also referred to as soil quality) in terms of its capacity to sustain plant and animal
productivity under changing conditions.
The diversity and evenness of the plant growth promoting bacteria (PGPB) and rhizobacteria

(PGPR) communities has been reported to increase agricultural yield via a variety of mecha-
nisms. Nitrogen fixing bacteria include symbiotic species and non-symbiotic species such as Pro-
teobacteria, and Actinobacteria. Phosphate solubilizingmicroorganisms provide a biological
rescue system for inorganic P and include bacteria and fungi. The most efficient belong to the
genera Bacillus and Pseudomonas among bacteria, and Aspergillus and Penicillium among fungi.
Other bacteria improve mineral and water uptake (NO3-, PO43- and K+) [1,2].
In addition to providing ready access to nutrients, rhizobacteria produce a broad array of

antibiosis products and functions, some of which target plant pathogens and therefore protect
the crop. On the other hand, some soil micro-organisms are naturally resistant to a broad
range of antibiotics (the "antibiotic resistome"). Depending on this balance, some soils have
long been known to restrict the activity of plant pathogens and are known as "suppressive
soils". The onset of suppressiveness in a soil is usually associated with a disease outbreak trig-
gering activation of disease-suppressor bacteria.Proteobacteria, Firmicutes and Actinobacteria
have been consistently associated with disease suppression, with Actinobacteria being the most
dynamic taxa when pathogenic fungi were added [1,3,4].
Soil health, depends largely on the composition and diversity of the rhizobacterial commu-

nity [5,6]. The rhizobacterial community symbiotically adapts to specific substances secreted
by the crop being cultivated. Bacterial diversity and soil health can be adversely affected by
stresses throughout the cultivation periods [5], increased salinity [7], acidity [8,9], soil compo-
sition and climate changes [10,11], tillage [12,13], cultivationmethods [14], pesticides and
heavy metals[15].Proper soil management strategies can reduce negative effects and restore the
balance in the soil bacterial ecosystem, increasing soil health. Organic farming may overcome
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or reduce these effects [5], although it may reduce yield as much as 20% [14]. Balanced fertili-
zation has also been found to increase soil biomass and activity [16]. The physical properties of
soil also affect the bacterial community. Bacteria depend on microhydration for cell transport
and nutrient diffusion. Sandy soils increase the number of isolated micro-habitats without
crossed competition [17].
To guidemanagement decisions, soil health is assessed using measurable quantities known

as environmental indicators. Among these, ecological indicators reflect the balance of biologi-
cal processes in the ecosystem. As such, soil ecological indicators are essential to assess soil
health, suppressiveness potential, contamination and potentially deleterious effects [18]. In this
study, we explore potential ecological indicators related to the rhizobacterial community. Such
indicators should directly reflect the role of major biological determinants of soil health. Addi-
tionally, an ideal ecological indicator should be pervasive, display a rapid and proportional
answer to external perturbations and be easily and economicallymeasurable.
In the absence of extensive rhizobacterial composition data, several indexes have been used

as overall indicators of soil diversity and richness. Frequently used indicators are the Shannon
and Simpson indexes, operational taxonomic unit (OTU) counts and richness estimators, such
as ACE or CHAO1. Both the Shannon and Simpson diversity indexes reflect the uniformity of
species abundance. OTU counts provide a direct estimation of genetic richness, but they
require very large sample sizes. Partial OTU counts suffer from a strong dependence on sample
size and may be compared only with similar sample sizes; they are usually reported together
with their corresponding rarefaction curves. Richness estimators (CHAO1 and ACE) predict
diversity from partial measures of OTU counts. They also depend on sample size, although
their values can stabilize earlier, reducing sample size requirements [19].
Next generation sequencing (NGS) facilitates the analysis of rhizobacterial populations in

greater detail, up to, in a few cases, practically saturating the existing diversity in a given soil
[20]. NGS studies have shown that soil diversity is far greater than originally expected, in the
order of several thousand species [14,15]. Sequences can be assigned to known taxa using a
variety of methods, although typically, a large fraction (~30%) of the sequences collected can-
not be ascribed to any known taxa.
The availability of this new NGS data facilitates the identification of novel and more specific

ecological indicators.
In this study, we have considered the minimum sample size required by general complexity

and diversity indicators, such as the Shannon and Simpson indexes, to produce realistically
representative estimates.
We have also considered the existence of taxonomic groups that may act as ecological indi-

cators. We have compared rhizobacterial communities subject to different perturbations to
identify associated taxonomic ecological indicators. Aiming for maximal generality, we paid
special attention to groups that are commonly present in soil and that respond consistently to
external influences. If such a group can be found, then small samples or relatively simple, spe-
cific tests might be designed to assert soil health.
Finally, any indicator should be economic and easy to determine, so that corrective actions

may be taken swiftly. Since NGS technology is not pervasive yet, we also paid attention to culti-
vable rhizobacteria, as they may be used in resource-starved environments.

Materials and Methods

Sources of data

In this study we make use of data gathered in Lérida (Spain), Toledo (Yunquera and Calera y
Chozas, Spain), Guadalajara (San Fernando de Henares, Spain), Zaragoza (Ejea de los
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Caballeros, Spain), [15,21,22,23] and Germany [24] (accession numbers PRJEB4333,
SRP001013, SRX063207, SRA009281, SRA022075). These studies encompass a variety of culti-
vations (cotton, maize, Bt Maize, grasslands) in different locations and soils, during one or
more cultivation cycles (from one up to four consecutive years), and climate conditions. In all
cases, the studies contrasted the effect of a variable number of external influences (treatment
with various herbicides or herbicide combinations and management methods) with corre-
sponding controls under similar conditions. Under these experimental set ups, variations
observedwithin the same experiment are due to differences in treatment, while differences
between experiments are due to the environment.

Metagenomic analysis

In all cases, soil samples were taken to analyse the rhizobacterial composition using metage-
nomics and 454-based pyrosequencing. The DNA was extracted and taggedwith multiplexing
identification tags, a hyper-variable region of the 16S rRNA (V6 or V3-V5) was amplified and
pyrosequenced as describedpreviously. Sequences obtained were quality and noise-filtered as
described in the corresponding papers [15, 21–24].
Taxonomical classifications were obtained comparing every read against the reference Silva

and RDP databases using Blast followed by taxonomic assignment usingMEGAN as previously
described [15]. Additional taxonomical classifications were computed using RDP Classifier
with the stock training set (as implemented in QIIME[25]) and using RTAX [26] with the
VAMPS database corresponding to each experiment. OTU-based analysis was conducted
using QIIME to group reads into OTUs at the 97% similarity level, and to perform an alpha-
diversity analysis computing the observeddiversity, ACE, Chao1, Shannon and Simpson diver-
sity indexes.

Dependence of Shannon and Simpson indexes on sample size

To test the dependence of the Shannon and Simpson indexes on sample size, rarefaction curves
for each index were computed using QIIME. After preliminary analyses, we settled on analys-
ing the dependence of the Shannon index using a maximum depth of 50,000 individual
sequences and 200 steps with a step size of 250 sequences, and the dependence of the Simpson
index using up to 3,600 sequences and 50 steps with a step size of 80 sequences.
The sample size values corresponding to 95% and 99% of the final value obtained for each

index in each sample were recorded, and the asymptoticity of the observedvalues was esti-
mated computing the relative distance between the final sample size and the size that recovered
95% and 99% of the final value. Experiments with a ratio> 0.7 show less than 5% or 1% change
of the indicator value in the final 70% of the rarefaction curve. The number of sequences
needed in these experiments to reach 95% and 99% of the final value represents the sample size
at which each index reaches a value within 5% or 1% of the final value. The average, standard
deviation and confidence interval (C.I.) of the mean were computed to delimit the sample sizes
needed to achieve significance.

Comparison of taxonomical classification methods

The complete datasets, consisting of samples collected under various environmental condi-
tions, were classified taxonomically as described.The total number of reads classified and the
number of different taxonomic groups identified at each taxonomic level by each method were
compared to check for differences in classification power, resolution and taxonomical detail.
RDP Classifier and RTAX provide imputation for bacterial sequences. Similarity-based clas-

sification can additionally find similarities to non-bacterial groups, as well as to unclassified
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and unspecific taxonomic groups (according to NCBI's taxonomy). These non-specific and
non-bacterial groups were removed prior to comparison with the other classificationmethods
to avoid biases. Taxonomic nomenclature has been checked against the list of prokaryotic
names with standing in nomenclature (LPSN) [27].

Statistical analysis

The frequencies of each taxonomic group at each taxonomic level for each experimental set-up
were compiled and converted to percentages for further study and comparison.
The average composition in each taxa, its corresponding standard deviation, and its nor-

malized standard deviation (NSD or coefficient of variance,NSD = σ /�x), were computed to
identify their relative conservation, their proportional presence, and their variability under the
range of environmental conditions considered.
Canonical CorrespondenceAnalysis (CCA) was used to look for trends between experimen-

tal fields and taxonomic groups at each level and for each classificationmethod. Next, the fields
were grouped according to treatment. The resulting groups were used to search for indicator
species using the Indicator Value method proposed by Dufrêne and Legendre [28] as modified
by De Cáceres [29].
More specific tests were carried out comparing samples subjected to major external disrup-

tions exclusively to their corresponding control. We selected samples that were larger, used the
same 16S rRNA hypervariable region and that corresponded to agricultural fields treated with
pesticides. Some pesticides have been reported to have an early impact on the rhizobacterial
community, a long lasting effect, or both. Perturbations having an early effect on the rhizobac-
terial community were studied on the samples collected early after application (t1). Perturba-
tions with a long-lasting effect were analysed on late-collection samples (t2). The treatments
chosen correspond to acetochlor plus terbuthylazine with (ATG) or without (AT) glyphosate,
pethoxamide and glyphosate (PG), mesotrione plus s-metolachlor and glyphosate (MSG), aclo-
nifen plus isoxaflutole and mesotrione (AIM) and glyphosate (G). The early and late effects of
each treatment has been describedpreviously [11, 15, 21–24]
The relative proportions of taxa common between treated soils and their respective controls

were compared using the likelihoodbased G-test followed by subsequent post-hoc tests (Fish-
er's exact test and χ2 test) applying the Holm-Bonferroni correction for multiple comparison to
identify taxa whose proportion had changed with P< 0.05.

Results

Dependence of Shannon and Simpson indexes on sample size

The dependence of the Shannon and Simpson indexes on sample size is plotted as rarefaction
curves in Figs 1 and 2. The Simpson index tends to its asymptotic value with very small sample
sizes: using a step size of 80 sequences, on average 153±0.1 (mean ± 95% C.I.) sequences were
required to recover 99% of the final, asymptotically-stabilized value. This makes the Simpson
index a useful tool when considering very small numbers of individuals/sequences,but also
implies that it will not change with sample sizes larger than a few hundred samples, thus ignor-
ing any additional information.
The Shannon index, required a larger number of individual reads to approximate its asymp-

totic value. Using a step size of 250 sequences, when all 81 samples were considered, the aver-
age numbers of reads neededwere 2,290±11 and 5,829 ±46 to recover 95% and 99% of the final
value. We can consider only the samples that have reached or are very close to asymptoticity by
selecting those that have a relative change of less than 5% in the last 50% of the rarefaction
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curve. There are 41 samples that meet this criterion, and when these are considered, the num-
ber of sequences needed to recover 95% and 99% of the final value, become 3,374±16 and 9,654
±73. We can increase the asymptoticity requirements to select only the samples with a change
of less than 5% of the index value in the last 70% of the rarefaction curve. In this case, we end
up with only 14 samples, where 95% and 99% of the final value can be recovered with 5,239±14
and 1,8542±97 individual observations. These findings suggest that a relatively large number of
individuals are needed to obtain accurate estimates for the Shannon index and that, below
these sample sizes, Shannon index values may be comparable only for very similar sample
sizes.

Analysis of taxonomic assignment methods

We have performed a taxonomic analysis to characterize potential taxonomic groups that
might serve as ecological indicators. To perform this analysis we first determined the method
best suited for our purposes by comparing the main methods proposed to identify taxonomic
groups in metagenomic samples.
Taxonomic classification was performed using three methods: similarity-based (Blast +

Megan), knowledge-based(RDP-classifier) and consensus-based (RTAX). Results are summa-
rized in Table 1.

Fig 1. Stabilization of the rarefaction curves for the Simpson index. The rarefaction curves use a step size of 80 individuals and

have been plotted only up to 3,600 individuals to facilitate the visualization. Each of the 82 samples is plotted in a different color.

Stabilization is achieved with very small sample sizes, indicating that Simpson’s index responds mainly to major groups and is

largely independent of rare taxa.

doi:10.1371/journal.pone.0165204.g001
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Only Similarity-based classification identified additional non-bacterial reads present in the
samples.

Fig 2. Stabilization of the rarefaction curves for the Shannon index. The rarefaction curves use a step size of 250 individuals

and have been plotted only up to 50,000 individuals to facilitate visualization. Each of the 82 samples is plotted in a different color.

Stabilization is achieved with large sample sizes, indicating that Shannon’s index may be more responsive to rare taxa than

Simpson’s but at a higher cost in individual reads.

doi:10.1371/journal.pone.0165204.g002

Table 1. Number of different taxa identified at each taxonomic level by each method.

Consensus-based Knowledge-based Similarity-based

All Bacteria All Bacteria All Bacteria

Kingdom 2 1 1 1 3 1

Phylum 36 34 35 35 73 59

Class 47 43 87 87 93 69

Order 98 98 187 187 162 155

Family 232 232 298 265

Genus 745 713

Species 1724 1697

The total number of different taxa identified by each method considering all samples together is reported. Knowledge-based classification was obtained

using the RDP classifier and identified only bacterial sequences. Consensus-based classification used RTAX and a reference database to classify

sequences employing information content to obtain a consensus reference assignment to identify bacterial and organelle sequences. Similarity-based

classification used BLAST against a reference database followed by taxonomy assignment with MEGAN.

doi:10.1371/journal.pone.0165204.t001
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The knowledge-basedmethod has been trained to identify only bacterial sequences down to
the order level, thus being best suited for coarse-grained taxonomical studies. With the datasets
employed (which encompass a wide range of sample sizes and environments), knowledge-
based classification assigns a taxonomy to the lowest number of sequences from the three
approaches considered. On the other hand, this method tends to identify more different bacte-
rial groups at each of the levels considered.
The consensus-basedmethod uses a reference database to compute a set of consensus refer-

ences for assignment. This approach results in the identification of a lower number of unique
bacterial groups. On the other hand, it classifies a larger number of sequences than the knowl-
edge-basedmethod (approximately 2.1 times as many), reaches the family level and, in addi-
tion, identifies sequences from organelles (chloroplast and mitochondria).
Similarity-based classification uses more extensive databases comparing each sequence

against every reference and, as a consequence, identifies a greater number of taxonomic groups
(including candidate bacterial divisions and non-bacterial groups), levels and sub-levels than
the two other methods. The similarity-basedmethod also classifies a larger number of bacterial
sequences than knowledge-basedmethods (approximately 1.8 times as many) although not as
many as consensus-basedmethods at the same levels. Similarity-based classification was
selected for subsequent analyses as the best compromise because it was able to produce the
greatest resolution and to identify a large proportion of sequences.

Identification of common taxonomic groups

Changes of an ecological indicator may be small or large, up to the total absence of a relevant
group. It must be noted however that, since the soil rhizobiome is expected to contain thou-
sands of species, most rare groups may escape detection unless a very large number of reads is
used.
We studied the taxa that had been observed and, which, among them, were commonly

detected in experimental agricultural fields at each taxonomic level. Inspection of the results
showed that similarity-based classification includedmany unspecific assignments. These
generic groups may act as a “black box” that collates sequences from actually different groups
at a given level. For these reasons, unspecific groups were not considered in the comparisons
between experiments. The removal of these taxa decreased the number of groups identified by
similarity assignment, but not enough to make any of the other classificationmethods prefera-
ble. The results are summarized in Figs 3 and 4.
We carried out analyses considering all experiments with more than 100 (58 soil samples),

1,000 (49 samples), 5,000 (27 samples) or 10,000 (21 samples) reads. As may be expected,
increasing the number of soil samples considered (namely, including experiments with smaller
sample sizes), and consequently the total number of reads included, also increased the total
number of groups detected. This indicates that many groups correspond to rare taxa, and that
they are detected or missed largely by chance (Fig 3). On the other hand, augmenting the size
of the samples considered (and ignoring experiments with small sample sizes) results in an
increase in the number of common groups detected. Smaller samples miss a larger number of
rare taxonomic groups, which therefore cannot be identified as common to all samples. Con-
sideration of only the larger samples facilitates the identification of additional common groups
(Fig 4).

Community composition

The extent of the perturbation that needs to be detected to discern external effects increases
with the natural variability of a taxonomic group in the samples considered. The average
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Fig 3. Total number of clearly identified taxonomic groups detected at each taxonomic level. Only taxa not to unspecific

groups such as “environmental samples”, “unclassified”, “No hits” or “Not assigned”, nor to Archaea or Eukaryota have been

considered. The figure shows that inclusion of additional information from experiments with smaller numbers of reads results in the

identification of more taxonomic groups at every level. New taxa not present in larger experimental collections are likely rare taxa,

and since they are detected with few reads, this suggests that there is a large proportion of rare taxonomic groups in agricultural

soil.

doi:10.1371/journal.pone.0165204.g003

Fig 4. Number of clearly identified taxonomic groups common to all the experiments considered. Only taxa not assigned to

unspecific groups such as “environmental samples”, “unclassified”, “No hits” or “Not assigned”, nor to Archaea or Eukaryota have

been considered. The figure shows that inclusion of experiments with a smaller number of reads makes it more difficult to spot

common groups (due to more rare taxa being missed) at every level. The reduction of common groups identifiable at lower levels

suggests that a sample size of 10000 reads is not enough to capture all the biodiversity of soil samples and further supports the

abundance of rare taxa.

doi:10.1371/journal.pone.0165204.g004
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presence of each taxonomic group showed a large variation, reflecting the unevenness of taxo-
nomic distributions in natural soils. The results are provided as S1 Table. These results explore
the average community composition and variability across the range of locations, times, culti-
vations and agriculturalmethods surveyed.
At the phylum level, the most frequent taxonomix groups identified, ignoring unspecific

groups, were Proteobacteria (�x= 0.34%/NSD = 0.32),Actinobacteria (26%/0.36),Acidobacteria
(15%/0.44) and Verrucomicrobia (12%/0.57); at the class level they were Actinobacteria (33%/
0.33), γ-proteobacteria (18%/0.51), α-proteobacteria (12%/0.73) and Acidobacteriia (12%/0.7);
at the order level, they were Actinomycetales (28%/0.37),Acidobacteriales (15%/0.66),Verruco-
microbiales (7%/0.95) and Rhizobiales (5%/0.51); at the family level,Acidobacteriaceae (16%/
0.69),Nocardioidaceae (8%/0.54),Verrucomicrobiaceae (5%/1.04) and Pseudomonadaceae
(5%/0.73); at the genus level,Acidobacterium (10%/0.97),Nocardioides (6%/0.7),Verrucomi-
crobium (6%/1.08) and Streptomyces (6%/0.58); and at the species level, E. coli (9%/1.75), P.
aeruginosa group (6%/0.84), P. aeruginosa (6%/0.84) and L. gummosus (4%/1.55). It must be
noted that upper levels also include non-specifically imputed individual reads from lower
levels.

Identification of statistically significant changes

To investigate the potential association of specific taxonomic groups with external perturba-
tions we performed a CCA of samples and species with respect to all the different treatments
applied. The CCAwas computed at each taxonomic level, and for each classificationmethod.
The results are provided in S1 Appendix. In each case, major components consistently showed
that early vs. late sampling time and control or conventional management vs. pesticide use are
major components segregating the samples.
The results of the analyses using the Indicator Value approach are included in S1 Appendix.

Analyses with each of the three taxonomic classificationmethods identifies several potential
indicator taxa at each level when all the taxa identified are included in the analysis. Many of
the potential indicators correspond to unspecific taxa. When the analysis is restricted to con-
sider only the taxa commonly present in the samples considered, no indicator is found at any
level with any of the taxonomic classificationmethods.
To study which proportions of common taxa had changed significantly, we compared the

taxonomic distributions of samples exposed to various pesticide treatments to their corre-
sponding control at each taxonomic level. Only groups common to each control and test sam-
ple were considered. This restriction was applied to avoid false positives due to rare groups
missed by chance. Significancewas checked using the G-test, followed by post-hoc tests (Fish-
er's exact test and χ2 test) with the Holm-Bonferroni correction for multiple comparisons. The
values obtained are listed at each taxonomic level and collection time (to allow distinction of
early and long-lasting effects) in S2 Table and summarized below. At the phylum level most
major groups were usually affected during the early response to external stress (Actinobacteria,
Acidobacteria, Chlamydiae / Verrucomicrobia, Firmicutes and Proteobacteria, being the last
two most commonly affected).When there were long-lasting effects, the groups most com-
monly affected were Actinobacteria, Acidobacteria, Chlamydiae / Verrucomicrobia and
Firmicutes.
At the class level, the groups most commonly associated to early response were Actinobac-

teria, Bacilli, α-, δ- and γ-proteobacteria and Verrucomicrobiae, and with long-lasting effects,
Actinobacteria, Acidobacteriia, Bacilli, α- β- γ- and δ-proteobacteria and Verrucomicrobiae.
At the order level, the groups most commonly associated to early response were Actinomy-

cetales, Bacillales, Sphingomonadales and Verrucomicrobiales, and with long-lasting response,
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Actinomycetales, Aeromonadales, Bacillales,Myxococcales, Enterobateriales, Pseudomonadales,
Verrucomicrobiales and Vibrionales.
At lower levels, the number of groups that are associated with the early and long-lasting

effects of pesticides increase, but so does the presence of groups observedonly in environmen-
tal samples without more detailed characterization (see S2 Table). At the extreme, at the species
level, most of the variability is associated to taxa characterised only as proceeding from uncul-
tured environmental samples. Among the well-known taxa, E. coli, the E.cloacae complex, the
P.aeruginosa group and the P. putida group where the most commonly affected at the species
level.
At all levels and times, the total number of taxa affected shows a large variability between

treatments. These differences are consistent for each treatment across taxonomic levels, i.e. the
treatments that show a larger number of affected taxa consistently do at all taxonomic levels.
Global variation provides a direct measure of the general impact of the treatment on the rhizo-
bacterial community.

Discussion

Given the lack of a powerful direct ecological indicator, soil ecological studies have relied on
indirect indicators of overall diversity and richness computed from limited experimental data.
Experiments have used phospholipid fatty acid analysis (PLFA), terminal restriction fragment
length polymorphisms (T-RFLP), single-strand conformation polymorphism (SSCP), denatur-
ing/temperature gradient gel electrophoresis (DGGE/TGGE) and sequencing of a small num-
ber of 16S metagenomic sequences. The main soil health indicators currently in use are the soil
chemical and physical properties, OTU content and the Shannon and Simpson indexes.
Soil physico-chemical properties will undergo little changes over time and may be consid-

ered as relatively invariant in most soils. Hence, while it may be used to compare different
edaphic backgrounds, it is unlikely to change in response to external stimuli making a poor
indicator of ecological changes. Actually, micro-habitat fragmentation in sandy soils results in
greater richness without associated changes in the Shannon and Simpson indexes [17].
The sample-size dependence of direct diversity measures (OTU and OTU-predictors such

as Chao1 or ACE) has already been studied. There is a large dependence of OTU counts on
sample size, requiring large and uniform samples (on the order of 50,000 to 500,000 individual
reads) to estimate the actual diversity of an agricultural soil. Diversity estimators, such as
Chao1 or ACE, can reduce this dependence depending on the characteristics of the underlying
population [19]. However, they still require relatively large sample sizes (usually in the order of
at least 10,000 to 25,000 individual sequences) to reach asymptotic levels.
To further reduce the sampling size and facilitate experimental detection of external influ-

ences, the next obvious choice is to use coarser indicators. The Shannon and Simpson indexes
are generally used to provide an estimation of richness and diversity in current studies.We
have analysed the dependence of both indexes on the number of individuals examined.
Our results show that the Simpson index may provide a reasonable estimate of its actual

population value with relatively small sample sizes (about 150 individual sequences) such as
those collected in many non-NGS studies. However, recent NGS studies have shown that agri-
cultural soils may host thousands of species. This suggests that Simpson's index, with its small
sample size requirements, is actually responding only to major taxa, and may be less sensitive
to changes in less-abundant taxa. Consequently, the Shannon index might reflect better the
actual landscape of the soil rhizobacterial diversity.
The Shannon index requires at least an order of magnitude more information to be reliable.

More than 5,000 individual sequences are required to obtain a value that might be within 95%
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of the actual population value (or more than 18,000 for 99%). According to our observations,
when using smaller sample sizes, the Shannon index should be used cautiously and, preferably,
to compare results only between experiments with similar sample size. Experiments with a
much larger sample size may be comparable even with unequal sample sizes.
It should be noted that we have used a relatively coarse precision to build the rarefaction

curves, and that the samples used do not represent the full spectrumof natural soils. The values
reported for the mean should be considered only a rough approximation despite the small val-
ues of their confidence intervals. These C.I. values should be considered a measure of the rela-
tive dispersion observed,not as limits for the values of the average sample size.
Since the Simpson index stabilizes too early, the Shannon index seemsmore suitable to con-

sider the rich information obtained from the analysis of modern experiments that yield larger
sample sizes. On the other hand, once we have access to this rich information, it makes sense to
search for other potential indicators. A case in point would be identification of an indicator tax-
onomic group. Such a group might permit elaboration of specific tests for the detection of
major environmental changes with less effort and at a lower cost.
Previous work has shown the relative dependence of different bacterial taxa on environ-

mental conditions.We have looked for taxonomic groups that may act as sensitive ecological
indicators. A desirable group should be present in most, if not all, soils, behave consistently
under external influences, should be easy to detect and, possibly, cultivable for cheaper detec-
tion in budget-constrained environments.
The analysis of various approaches to taxonomical classification confirms that similarity

based assignment provides the most fine-grained results. This increased detail requires a higher
computational cost. While RDP and RTAX only require a few seconds or minutes to classify a
large dataset in a modern computer, running blast against the VAMPS, Silva or RDP databases
may require an overnight, or longer, calculation.On the other hand, until more data is avail-
able, many individual sequences will remain unclassifiable introducing a bias in the analysis. In
addition, most studies do not exhaust species diversity as this requires extensive sequencing (in
the order of hundreds of thousands of reads). As NGS technology progresses and data accumu-
lates, we may expect these shortcomings to be less relevant.
Despite current limitations, NGS remains the most accurate approach for metagenomic

analysis. When using NGS data, similarity based taxonomy should be preferred whenevermax-
imal detail is desired. However, RDP Classifier and RTAX provide a practical way to speed up
analyses if practical concerns require a compromise for speed and if the sacrifice of the detail
from the lowest taxonomic levels is acceptable.
The presence of unspecific groups used to annotate environmentally-collectedmetagenomic

sequences further affects similarity based classification. The wealth of new data demands novel
approaches to taxonomical classification. In this work we decided to use only well-character-
ized groups, clearly reducing the information considered. A better approach might be to clas-
sify novel reads into new, provisionally labelled, taxonomic groups to enhance taxonomic
imputation of newly collected sequences. Such an approach would parallel OTU clustering fol-
lowed by taxonomic imputation and suffers similar drawbacks: there is a strong dependence of
similarity clustering on sample characteristics; 16S rRNA hypervariable regions may constitute
a genetic continuum blurring cluster limits; the correlation of the genetic diversity of 16S
rRNA sequences to overall genome diversity is unclear; and the relationship of percent similar-
ity with the definition of taxonomic levels is still open to debate. Furthermore, OTU clustering
followed by taxonomy assignment comports an initial step where several individual reads are
grouped and all of them are arbritrarily assigned the taxonomy of the cluster centroid (the
group's chosen representative). We have chosen to classify taxonomically each read indepen-
dently to increase precision and avoid biases associated to OTU clustering.
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Identification of common groups is hampered at lower taxonomic levels. This is most likely
because the number of expected groups increases as we proceed towards the species level and,
conversely, the number of individuals in any group will decrease. The proportion of extant,
clearly defined taxonomic groups also decreases as we proceed towards the species level and,
with current, reduced sample sizes, it is easy to miss and be unable to classify many lower level
groups.
The CCA analysis of all the samples included in the analysis revealed two common trends

irrespective of the taxonomic level and classificationmethod used. Time is often associated to
the first canonical coordinate, and control/conventional cultures tend to cluster separately on
the second component. These results support the feasibility of identifying rhizobacterial eco-
logical indicators of external stress.
The Indicator Value method has been successfully applied to test for indicator species using

metagenomic data [30] of tilled vs. non-tilled crop production. Its application to our datasets is
questionable as the classification of pesticide impact is normally based, among other parame-
ters, on the effect on taxonomic diversity at higher (usually class or phylum) levels. Still, since
CCA shows a clear separation of control and conventionally cultivated samples, it might be
useful to pool these samples into a common group and look for indicators comparing it to the
other samples separated by treatment.
The analysis identifiedmany potential indicators, usually grouping samples in accordance

to previous classifications. These indicators are, however, subject to another criticism: cur-
rent metagenomic studies explore only a minor fraction of the existing species (as deduced
from OTU and estimator values). It is impossible to rule out that any absent species have not
beenmissed by chance. If a species has beenmissed by chance, it may be erroneously identi-
fied as a false positive indicator. When all non-common species were removed from the
study, no indicators were found at any level. This does not invalidate the indicators found,
but as all of themmight potentially be a false positive, we cannot rely on them without addi-
tional confirmation.
The Indicator value approach groups many samples by treatment and relies on group size

for the effects of non-treatment differences to cancel out. In this case, variation between experi-
ments might plausibly obscure variation within independent experiments.We can overcome
this by fixing all non-treatment variables.We have selected larger samples and compared each
treated sample with its respective control from the same location, soil and, time/climate cycle.
An interpretation of comparative taxonomic data is difficult due to various reasons. The

treatments considered have varying degrees of impact on the soil ecosystem, thereby challeng-
ing the interpretation of the changes observed.They also have different time dependences,
with some treatments displaying an initial impact that can quickly be recovered, while others
may display small initial effects that accumulate and increase with time. Lastly, the information
available pertains to a reduced number of soils that do not reflect the overall variability poten-
tially existing in agricultural soils.
With the taxonomic information currently available, the analyses show that there are many

potential indicators associated to specific treatments. Many of these correspond to taxa cata-
logued generically as environmental samples, suggesting that many additional indicators are
possibly present, although they have not been catalogued yet. Our results indicate that our cur-
rent knowledge is unlikely to identify any rhizobacterial group at the various levels that is
always associated to all aggressive conditions. Nevertheless, we have been able to identify at
each level the groups most commonly associated with early or long-lasting aggression and
these provide a useful starting point to diagnose deleterious effects in the soil environment.
Until more data is collected, it is sensible to use changes in the proportion of any of

these groups, or their combinations, as indicators of alterations in soil health. NGS is
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nowadays the most accurate method to explore the soil bacterial community, but depend-
ing on resources, it may compensate to compromise for less accurate detectionmethods. In
the most restricted environments, detection of cultivable groups at higher levels may be an
optional approximation.
Choosing an appropriate group that may function as ecological indicator in the absence of

NGS data is not easy. From the major taxa present in all soils, groups at various levels in the
trees of Verrucomicrobia and Actinobacteria show a response to external influence, pervasive-
ness (within our samples) and low variability (as measured by NSD) so that their proportional
variations in response to external influences should be easier to detect. Groups in the Proteo-
bacteria, and more specifically, δ-proteobacteria tree are also commonly affected. At the species
level, E. coli, Enterobacter cloacae and Pseudomonas are frequently affected in agreement with
previously published work and, combined, provide a good indicator of long-lasting damage to
the soil ecosystem.
There are easy and efficientmethods to determine the presence of Actinobacteria in soil

[31], making them attractive as potential indicators. In addition, the proportion of Actinobac-
teria in any given soil tends to stabilize under normal conditions [32] being resilient to pH
changes (which strongly affects other major phyla) [9,13]. They are producers of antimicrobial
compounds [6] and they are normally present in greater proportions in agricultural soil than
Verrucomicrobia. Hence, the determination of Actinobacteria should be easier and require
smaller samples.
We have observed early and late changes in Actinobacteria, showing an increasing effect

with more aggressive treatments, in the rhizobacterial communities of maize and cotton fields
treated with various herbicides or herbicide combinations [10,15,23,33]. Other authors have
reported similar changes associated to tillage and crop rotation/succession [12]; larger abun-
dance of Actinobacteria in suppressive soils with greater changes after the addition of fungal
pathogens [4]; long term fertilization and intensive herbivory plus mowing in grasslands [34];
intensive coffee farming [14]; desert versus cultivated soil [35]; and different depths of perma-
frost soil samples [36].
This suggests that relative changes in the proportion of Actinobacteria groups (for instance,

actynomycetes) may act as potential ecological indicators when NGS technology is not
available.
However, given the relative scarcity of data available, these observations should be taken

with caution until more information is collected.Our knowledge of the rhizobiome is still too
limited and, as data accrues, new information will need to be considered, possibly demanding a
reconsideration of these observations.
An alternative approach is to consider the total number of changes observed: generally

speaking,more aggressive treatments affect a larger number of taxa. This suggests that the
total number of significantly altered taxonomic groups and the magnitude of the change in
their proportional presence may also be used to define the impact of external influences. A
statistical test of the number of changes weighted by their relative magnitude should pro-
vide a useful measure of the impact of external influences on soil health. Additional meta-
genomic data is needed to parametrize weights and measure correlations. The main
drawback is that, to be useful, many sequences are needed to properly sample the rare
microbiome.
Comparison of complete rhizobiomes will yield more information and, with the extension

of sequencing technologies,may become the option of choice. With the characterization of the
complete rhizobiomes from sufficient diverse samples, the identification of a better taxon or
group of taxa that may act as indicator will also become easier.
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Conclusion

We have considered several potential ecological indexes based on the current availability of
metagenomic data. Our results show that the Shannon index requires large sample sizes
(~5000 individuals) and the Simpson index likely underestimates rare species. OTU-based
methods to measure diversity require even larger sample sizes, although they may be reduced
by the use of conscientious selection of the CHAO1 or ACE estimators. Taxonomy-based
indicators may provide a sensible alternative. This approach requires taxonomic imputation
of individual sequences, which -according to our results- is best achieved using similarity-
basedmethods, although other approaches such as RDP or RTAX may provide a coarser but
faster short-cut for huge datasets. Choosing one or more groups to use as ecological indicator
is limited by the relatively reduced NGS data available. The Indicator Value approach can
provide useful information in controlled experiments or when enough data is available, and
should become a routine procedure in future metagenomic analyses. When tit is not applica-
ble, a more specific case-control approach such as the one described here should be more
sensitive.
As a rule, NGS technology is currently the most accurate tool to explore rhizobacterial com-

munities, allowing identification of ecological indicators as changes in specific taxa or in the
overall number and proportions of changes. When NGS is not an option, various taxa in the
Actinobacteria, Verrucomicrobia and Proteobacteria trees may be selected as indicators at vari-
ous taxonomic levels. In particular, relative changes in the proportions of Actinobacteria are
easy to detect and commonly associated to major external perturbations.
Most of the data currently available describes the rhizobacterial communities under normal

agricultural practices and there is a scarcity of contrasted data on the effects of other major
external perturbations.We have consideredmainly soils treated with pesticides having a well-
known, proven impact, and our results agree with other observations.However, all the results
reported in this work should be revised as additional data collected from ecologically affected
soils becomes available.

Supporting Information

S1 Appendix. Preliminary statistical analysis.The results of CCA and Indicator Value analy-
ses obtained with each of the three classificationmethods are provided in separate subfolders
as a compressed Zip archive.
(ZIP)

S1 Table. Taxonomic groups observed.Details of all the taxonomic groups observed in the
samples. The values reported are organized by taxonomic level and sample. Both, the frequen-
cies (total number) of reads assigned to each taxonomic group and the percent that a group
represents at each level in each sample are provided.
(XLS)

S2 Table. Statistical analysis of taxonomic changes observed.The table contains the statisti-
cal analysis (G-test followed by post-hoc Fisher's exact and χ2 tests) of taxonomical changes
observedbetween each sample subject to an external stress and its respective control. Changes
have been classified by taxonomic level, experiment, stress applied and time of collection (early
or late). Early samples are expected to reflect responses to rapid effects, and late samples are
expected to reflect responses to long-lasting effects. Significant differences identified by the G-
test are marked with three stars (���) for easier identification.
(XLS)

Ecological Indicators in Agricultural Soils

PLOS ONE | DOI:10.1371/journal.pone.0165204 October 25, 2016 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165204.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165204.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0165204.s003


Author Contributions

Conceptualization: JRV SG RPM.

Data curation: JRV.

Formal analysis: JRV.

Funding acquisition: RPM.

Investigation: SG RPM.

Methodology: JRV SG RPM.

Project administration: JRV RPM.

Resources: JRV SG RPM.

Software: JRV.

Supervision: JRV RPM.

Validation: SG RPM.

Visualization: JRV.

Writing – original draft: JRV RPM.

Writing – review& editing: JRV RPM.

References
1. Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, et al. Diversity of plant growth

and soil health supporting bacteria. Current science. 2005; 89(1):136–150.

2. de-Bashan LE, Hernandez JP, Bashan Y. The potential contribution of plant growth-promoting bacteria

to reduce environmental degradation–A comprehensive evaluation. Applied Soil Ecology, 2012;

61:171–189.
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29. De Cáceres M, Legendre P, Moretti M. Improving indicator species analysis by combining groups of

sites. Oikos 2010; 119(10): 1674–1684.

30. Figuerola EL, Guerrero LD, Rosa SM, Simonetti L, Duval ME, Galantini JA, et al. Bacterial indicator of

agricultural management for soil under no-till crop production. PLoS One, 2012; 7(11): e51075. doi:

10.1371/journal.pone.0051075 PMID: 23226466
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