
ORIGINAL RESEARCH
published: 27 May 2015

doi: 10.3389/fnsys.2015.00082

Frontiers in Systems Neuroscience | www.frontiersin.org 1 May 2015 | Volume 9 | Article 82

Edited by:

Mikhail Lebedev,

Duke University, USA

Reviewed by:

Alexander Maier,

Vanderbilt University, USA

Semir Zeki,

University College London, UK

*Correspondence:

James A. Mazer,

Department of Neurobiology, Yale

School of Medicine, POB 208001,

New Haven, CT 06520-8001, USA

james.mazer@yale.edu

†
Present Address:

Jon Touryan,

Human Research and Engineering

Directorate, U.S. Army Research

Laboratory, Aberdeen Proving

Ground, Aberdeen, USA

Received: 12 December 2014

Accepted: 11 May 2015

Published: 27 May 2015

Citation:

Touryan J and Mazer JA (2015) Linear

and non-linear properties of feature

selectivity in V4 neurons.

Front. Syst. Neurosci. 9:82.

doi: 10.3389/fnsys.2015.00082

Linear and non-linear properties of
feature selectivity in V4 neurons
Jon Touryan 1, 2 † and James A. Mazer 1, 3*

1Department of Neurobiology, Yale School of Medicine, New Haven, CT, USA, 2Human Research and Engineering

Directorate, U.S. Army Research Laboratory, Aberdeen, MD, USA, 3Department of Psychology, Yale University, New Haven,

CT, USA

Extrastriate area V4 is a critical component of visual form processing in both humans

and non-human primates. Previous studies have shown that the tuning properties of V4

neurons demonstrate an intermediate level of complexity that lies between the narrow

band orientation and spatial frequency tuning of neurons in primary visual cortex and the

highly complex object selectivity seen in inferotemporal neurons. However, the nature

of feature selectivity within this cortical area is not well understood, especially in the

context of natural stimuli. Specifically, little is known about how the tuning properties of

V4 neurons, measured in isolation, translate to feature selectivity within natural scenes. In

this study, we assessed the degree to which preferences for natural image components

can readily be inferred from classical orientation and spatial frequency tuning functions.

Using a psychophysically-inspired method we isolated and identified the specific visual

“driving features” occurring in natural scene photographs that reliably elicited spiking

activity from single V4 neurons. We then compared the measured driving features to

those predicted based on the spectral receptive field (SRF), estimated from responses to

narrowband sinusoidal grating stimuli. This approach provided a quantitative framework

for assessing the degree to which linear feature selectivity was preserved during natural

vision. First, we found evidence of both spectrally and spatially tuned suppression within

the receptive field, neither of which were present in the linear SRF. Second, we found

driving features that were stable during translation of the image across the receptive field

(due to small fixational eye movements). The degree of translation invariance fell along

a continuum, with some cells showing nearly complete invariance across the receptive

field and others exhibiting little to no position invariance. This form of limited translation

invariance could indicate that a subset of V4 neurons are insensitive to small fixational

eye movements, supporting perceptual stability during natural vision.

Keywords: feature selectivity, extra-striate visual cortex, receptive field, natural scenes, Gaussian bubbles

Introduction

A fundamental challenge in visual neuroscience is to understand and model the relationship
between arbitrary complex visual stimuli and the corresponding patterns of activity they evoke
in visual neurons. There has been an ongoing debate about whether or not the stimulus-
response relationship measured in visual neurons is dependent on the class of visual stimuli
used or method taken to characterize the relationship. Specifically, some have questioned
whether the visual features that drive neuronal activity during natural vision are the same
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features that allow synthetic or “unnatural” stimuli to drive
neurons under laboratory conditions (Felsen and Dan, 2005;
Rust and Movshon, 2005). In primary visual cortex (V1), the
spectral receptive field (SRF) provides a compact representation
of the linear component of neuronal selectivity for stimulus
orientation, spatial frequency and often spatial phase (Deangelis
et al., 1993; Wu et al., 2006). In V1 SRFs are frequently estimated
from responses to narrowband or so-called “simple” stimuli, like
sinusoidal gratings (Ringach et al., 1997; Mazer et al., 2002)
(although see David et al. (2004) and Touryan et al. (2005)
for examples of estimating SRFs from responses to spectrally
complex stimuli). Despite the fact that V1 neurons exhibit a
number of well-established static and dynamic non-linearities
[e.g., spiking thresholds (Chichilnisky, 2001) and contrast gain
control (Ohzawa et al., 1982; Heeger, 1992)], in many instances
the linear SRF accurately predicts responses to both narrowband
(i.e., sinusoidal gratings) and more complex natural scene stimuli
(Theunissen et al., 2001; David et al., 2004). Importantly, if the
SRF reflects an independent model of feature selectivity, then
it should be able to predict responses to any stimuli, natural or
unnatural, with a reasonable degree of accuracy. Consistent with
this, Felsen et al. (2005) demonstrated that in V1 the SRF, even
when computed from responses to simple stimuli, can be used to
readily identify key features in natural scenes that drive neurons
to spike.

This universality is notably absent in area V4, where SRFs
estimated from responses to narrowband stimuli generally fail to
predict responses to broadband or natural stimuli (David et al.,
2006; Oleskiw et al., 2014), a strong indicator that non-linear
mechanisms substantially influence responses. Many studies have
used carefully designed broadband, but not necessarily natural,
stimuli to demonstrate that V4 encodes a substantial amount of
information about complex 2D image properties. These include
stimulus shape (Desimone and Schein, 1987; Gallant et al., 1993;
Kobatake and Tanaka, 1994; Pasupathy and Connor, 2001, 2002),
color (Zeki, 1980), texture (Hanazawa and Komatsu, 2001) and
disparity (Hinkle and Connor, 2001, 2002). However, it is unclear
how linear or quasi-linear tuning for isolated stimulus properties
(e.g., tuning curves or surfaces for orientation, spatial frequency
or contour curvature) can be generalized to predict the response
of neurons to more complex shapes or objects that occur within
the context of natural scenes. Importantly, while there is broad
agreement that linear SRF models fail to predict responses to
complex stimuli in V4, the reasons for these failures are not yet
well understood. Likewise, there is currently no model of V4
feature selectivity that can be universally applied to all classes of
stimuli; that is, a model that can accurately predict responses to
stimuli of arbitrary complexity independent of the stimulus set
used to construct the model.

To address these issues, we adapted a psychophysical masking
technique known as “bubbles” (Gosselin and Schyns, 2001) to
identify and characterize the non-linear shape or feature tuning
properties of V4 neurons. Bubble-masking has been previously
used in conjunction with neurophysiological methods to relate
the visual selectivity of inferotemporal neurons to the features
used by human and monkey observers to discriminate complex
images (Nielsen et al., 2006, 2008). The approach taken in

the present study was specifically designed to identify non-
linearities active during natural vision that are related to the
neural encoding of spectrally complex stimuli in the early stages
of extrastriate processing. Specifically, we recorded neuronal
responses to repeated presentations of natural scene stimuli
partially masked at random locations during each presentation.
We used sets of spatially localized, transparent Gaussian windows
to identify the neuronal “driving features,” corresponding to the
minimum set of pixels that reliably drives the neural response,
for each image. We then compared the spatial and spectral
properties of measured driving features to those predicted by the
linear SRF, which was estimated from responses to a dynamic
sinusoidal luminance grating sequence (Ringach et al., 1997;
Mazer et al., 2002). Mismatches between measured and predicted
driving features reflect inherent non-linearities in each neuron’s
tuning function. The specific pattern of mismatches, or failures of
the linear model, allowed us to garner new insights into how V4
circuits contribute to shape selectivity.

Materials and Methods

Data Collection
Data were collected from two adult male monkeys (Macaca
mulatta), 10–12 kg. All procedures were in accordance with
the NIH Guide for the Care and Use of Laboratory Animals
and approved by the Yale University Institutional Animal
Care and Use Committee. In two separate sterile surgeries
performed under isoflurane anesthesia, a Titanium headpost
(AZ Machining, Boston, MA) and acrylic recording platform
(Dentsply, Milford, DE) were affixed to the skull using bone
screws (Synthes, West Chester, PA). Following acclimation to
head restraint and subsequent behavioral training on a fixation
task (see below), a stainless steel 5mm recording chamber
was attached to the platform directly over V4 and a burr-
hole craniotomy was performed under Ketamine (10mg/kg)
andMidazolam (0.1mg/kg) anesthesia to provide microelectrode
access. V4 was targeted using stereotaxic coordinates and
skull morphology and subsequently confirmed based on
physiological properties of recorded cells (i.e., neuronal response
latency, receptive field size and visual field eccentricity [see
Supplementary Material]).

Task timing, stimulus presentation and data collection were
controlled by a Linux PC running pype (https://github.com/
mazerj/pype3). Stimuli were presented on a gamma corrected
(linearized) Viewsonic G810 CRT display with an 85Hz frame
rate and a resolution of 1025 × 768 pixels (39 × 29 cm) viewed
at a distance of 66 cm. Eye movements were recorded digitally
at a minimum of 500Hz using an infrared eye tracker (EyeLink
1000, SR Research, Toronto, Canada), and single neuron activity
was recorded with high impedance (nominally 10–25M�) epoxy
coated tungsten microelectrodes (125–200µm diameter, 20–25
degree taper; Frederick Haer Co., New Brunswick, ME). One
to two electrodes at a time were advanced transdurally with a
motorized microdrive system (Graymatter Research, Bozeman,
MT). Neural signals were amplified, filtered and discriminated
(MAP, Plexon Inc., Dallas, TX) and spike times recorded with
1ms precision.
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Fixation Task and Receptive Field
Characterization
Animals were trained to fixate on a 2–3 arcmin 100% contrast
square fixation target for up to 3 s (1◦ radius window). After a
random time interval (truncated exponential distribution), the
fixation target dimmed and animals had to either contact or
release a touch bar within 300ms to obtain a liquid reward.
Following fixation breaks, premature (<70ms) and late touch
bar responses, the display was briefly flashed red to indicate an
error, followed by a 1–2 s timeout period. During periods of
fixation, high contrast black and white probe stimuli were flashed
in randomized order on an invisible grid at 5–10Hz to map the
spatial RF of each neuron studied. Preliminary hand mapping
was used to set probe orientation and grid position. RF location
and size (radius) were determined by fitting the half-maximal
iso-response contour of the spike-triggered average with a circle
(Jones and Palmer, 1987; Mazer et al., 2002).

Each neuron’s linear feature selectivity was estimated from
responses to a dynamic sequence of sinusoidal gratings presented
at 10Hz centered in the RF. Grating orientation, spatial
frequency and spatial phase (Ringach et al., 1997; Mazer et al.,
2002) were selected at random for each 100ms stimulus frame.
Gratings were sized to fill the classical RF (CRF) and smoothly
alpha-blended into the uniform gray screen background, using
a trapezoidal envelope function, to avoid high spatial frequency
transients at the stimulus boundary. SRFs were estimated by
computing the parametric spike-triggered average stimulus in
the spatial frequency domain using a fixed latency of 50ms
and a 100ms integration window. These values were selected to
capture the complete response period for all neurons included
in the study based on an exploratory analysis of impulse response
functions in our data. Consistent with previous reports, we found
little evidence of tuning for absolute spatial phase in V4 neurons
(David et al., 2006) and therefore collapsed SRFs across phase for
all subsequent analyses.

Bubble-masked Natural Scenes
Identification of the neuronal driving features was a two-step
process illustrated in Figures 1–2. We first identified a small
number of vignetted natural scene photographs (black and white)
that robustly elicited neuronal firing by presenting a sequence of
100 randomly selected natural scene stimuli at 4.25Hz, centered
in the RF (Figure 1A). Although many V4 neurons are color-
selective (Zeki, 1980), Bushnell and Pasupathy (2012) recently
demonstrated that form selectivity in V4 is color invariant;
therefore we used only black and white images in this study to
maximize the number of stimulus repetitions for each neuron.
The set of images was presented in random order 4–10 times
for each cell. As with the sinusoidal gratings, each image was
scaled or cropped to fill the CRF of the neuron being studied
and smoothly blended into the gray background. We then
identified 2–6 images that evoked the highest average firing
rates. Subsequently, these “top” images were randomly masked
with bubbles and presented in a continuous stream centered
in the RF at 4.25Hz while monkeys maintained fixation. Each
opaque bubble mask covered the entire underlying image and
contained 20 transparent Gaussian windows (σ = 7 pixels)

FIGURE 1 | Image selection and spike-triggered masks. (A) Response

(mean ± std) of a single V4 neuron to a set of 100 randomly selected natural

scene images sorted by firing rate. #1–#4 indicates the four “top” (maximal

evoked response) images. Spike-triggered masks were estimated for the top 4

images. (B) Spike-triggered masks from the same cell for images #2 and #4 in

(A). The dashed yellow circle indicates the RF position and size (see text for

details). Scale bar indicates 0.5 degree and the size of an individual Gaussian

window is indicated (red circle) in the lower right corner of image #2.

distributed at randomized locations throughout the mask. The
positions of all 20 windows were selected at random from a
uniform distribution on each frame of the stimulus sequence
(Figure 2B). Each Gaussian window revealed a different portion
of the underlying image; on average, 32% of the image was
visible on any given frame. The selection of this window size and
density was determined from a pilot study (data not shown) and
represents a balance between resolution, mapping time, and the
average effectiveness of the masked images to elicit a response.
The 2–6 most effective natural images were randomly interleaved
on each frame to minimize neuronal adaptation effects and to
reduce the likelihood of perceptual completion or filling in, which
could result in non-stationary neuronal response dynamics.

Driving Feature Identification
Responses to bubble masked images were analyzed off-line
using custom MATLAB (MathWorks, Natick, MA) functions.
For each of the top images used, mask patterns (ignoring
the underlying image pixels) were weighted by the evoked
response and averaged to calculate the spike-triggered mask
(Chichilnisky, 2001; Touryan et al., 2002). Initially, the evoked
responses were averaged and spike-triggered masks calculated
in a sequence of 40ms bins from stimulus onset (Figure 1B).
To improve the statistical power of the spike-triggered masking
technique we subsequently limited our calculation of the evoked
response to a single window between 50 and 150ms after
stimulus onset, which captured the majority of the response
dynamics observed in the initial analysis (see below). These
spike-triggered masks isolate image regions in each stimulus
that effectively modulate neuronal firing. Bootstrapping and
reshuffling methods (Efron and Tibshirani, 1993) were used to
assess the statistical significance of each mask pixel: for each
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FIGURE 2 | Identification of driving features using bubble-masked

natural images. (A) Each frame of the stimulus sequence was created by

combining a pre-selected natural scene photograph (see Materials and

Methods) with an opaque mask perforated by randomly distributed Gaussian

windows. (B) Example stimulus frames for a single image and a simulated

response. In each frame, the positions of the Gaussian windows are

randomized. During the actual experiment, underlying base images were

randomly interleaved to minimize adaptation effects (see text for details).

Stimuli were presented at 4.25Hz (240ms/frame) and responses to each

stimuli (wn) were determined by computing the mean firing rate in a window

50–150ms after stimulus onset (gray boxes). (C) For each underlying image,

masks were weighted by the recorded neuronal response and averaged to

estimate an image-specific spike-triggered mask.

cell, we generated a null distribution of spike-triggered masks by
shuffling spike rates across the ensemble ofmask stimuli.We then
calculated 99.5% confidence intervals on the null distribution and
set pixels in the measured spike-triggered mask to zero if they
fell within that confidence interval. The resulting spike-triggered
mask represents the weighted contribution of each image pixel to
the neuronal firing rate for a given base image (Figure 2).

Although the Gaussian window positions were independent
and uncorrelated, the windows themselves have local spatial
correlation structure (i.e., adjacent mask positions tend to have
similar values). This accounts for the visible smoothness in
the spike-triggered masks even though these masks were never
smoothed. Importantly, since the spike-triggered masks in this
study were used solely to identify and characterize image regions
that elicit a response, as opposed to measuring fine-grained
feature selectivity, we made no attempt at spatial de-correlation.
One consequence of this approach is that our spike-triggered
masks represent an upper-bound on the pixels required to elicit
responses. The degree to which spike-triggered masks could

FIGURE 3 | V4 linear receptive fields. (A,B) Spatial and spectral receptive

fields for two typical V4 neurons. Left panels show spatial RFs estimated by

reverse correlation of responses to black and white probe stimuli flashed on a

randomized grid in and around the receptive field. Yellow circles indicate RF

location and extent (see text for details). Right panels show SRFs estimated

from responses to sinusoidal flashed grating stimuli. Each plot shows the joint

orientation-spatial frequency tuning of a single neuron. Iso-response contours

(white lines) are separated by intervals of 10 spikes/s.

overestimate the number of driving pixels is dictated by the size of
the individual bubbles. In our stimuli, the bubbles were relatively
small (area < 150 pixels; see Figure 1B) compared to the size
of the estimated masks (mean mask area = 733 ± 607 pixels; all
values are mean± STD unless otherwise noted). As noted above,
the bubble size represents an empirically derived compromise for
maximizing spatial resolution while minimizing recording time.
On average, the area of the estimated masks was less than 6% of
the underlying 128× 128 pixel base images.

Linear Model
Each neuron’s spatial and spectral RFs (Figure 3), derived from
responses to flashed bars and gratings, were used to predict
the excitatory and suppressive features in the natural image
stimuli using a quasi-linear model (David et al., 2004, 2006).
The phase-collapsed SRF used here incorporates a single, explicit
non-linearity similar to the phase invariance found in striate
cortex complex cells (Touryan et al., 2002). For each neuron,
the SRF was used to construct a Fourier domain, amplitude-
only filter (i.e., no spatial phase selectivity) corresponding to the
joint orientation-spatial frequency tuning matrix (Mazer et al.,
2002). Filters were normalized to produce a unity response to the
optimal grating stimulus and applied to the top natural images
for each neuron (Figure 1A). Thus, only image components with
orientations and spatial frequencies within the neuron’s passband
were preserved. To isolate excitatory features, we identified the
squared pixel values of the filtered image that were above a pre-
defined threshold. Threshold values were determined for each
filtered image to equate the number of above-threshold pixels
with the size of the corresponding spike-triggered mask.

Predicted suppressive features were computed by filtering
with 1-SRF and applying the same threshold value used to isolate
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excitatory features. Since V4 neurons often exhibit little or no
spontaneous activity, this method is likely to overestimate the
area of the suppressive features. However, our approach provides
a reasonable approximation given the intrinsic limitations on
measuring inhibitory processes using extracellular recording
methods and closely resembles approaches taken in previous
studies (Chen et al., 2005; Rust et al., 2005).

Results

We obtained spatial receptive fields, SRFs, and spike-triggered
masks from 91V4 neurons in two monkeys (37 in monkey P
and 54 in monkey F) performing a passive fixation task. Our
preliminary analysis revealed no significant differences between
data from the two animals so they were combined. The spike-
triggered masks calculated for a typical V4 neuron are shown
in Figure 1B, along with the corresponding natural images used
to estimate each mask. Across the population, response latencies
(i.e., time to peak) for unmasked natural image stimuli were
90.9 ± 35.5ms (n = 91). Latencies for masked image stimuli
were similar (n = 91; 101.9± 33.0ms). Based on these numbers,
we used a fixed temporal integration window of 50–150ms
after stimulus onset to calculate spike-triggered masks across the
entire set of V4 neurons studied here. Pixels that contributed
significantly to each spike-triggered mask were identified using
the bootstrap method (see Materials and Methods) and the
remaining pixels (p > 0.01) were set to zero. We obtained a valid
spike-triggered mask, with at least one statistically significant
driving feature, in 95% (89/91) of V4 neurons.

Spike-triggered masks from three neurons representative of
the overall population are illustrated in Figure 4. In all three
example neurons, the spike-triggered masks were smaller than
the CRF (dashed yellow circle)—the mask shown in Figure 4B

was a full order of magnitude smaller than the RF. Across the
population of neurons, spike-triggered masks were significantly
smaller than the CRF (24.2 ± 32.1%, p < 0.001 Wilcoxon
signed-rank test, n = 89). The bottom panels in Figure 4 show
orientation power of the image pixels inside the spike-triggered
masks (green and purple lines) compared with the neuron’s
orientation tuning from the SRF (black line). For the neuron
in Figure 4A the orientation spectra within the masks for both
images were similar and closely matched the cell’s SRF-derived
orientation tuning. In contrast, the orientation content in masks
for the two different images in Figure 4B was almost orthogonal,
while the neuron’s SRF indicated little or no orientation tuning
at all. Figure 4C illustrates an intermediate case, a neuron
with strong SRF orientation tuning which matches the spectral
content of only one of the spike-triggered masks. These examples
reflect the diversity of both SRF tuning in V4 and the range of
correspondence between the SRF and the spectral content within
the spike-triggered masks.

For each neuron we characterized orientation tuning strength
using the orientation selectivity index (OSI, Chen et al.,
2005), which ranged from 0.09 (non-selective) to 7.81 (highly
selective), with an average value of 2.07 ± 1.60 (see Figure 5).
However, as illustrated in Figure 4B and summarized in
the scatter plot in Figure 5, the driving features of many
broadly tuned V4 neurons had narrowband orientation spectra,

FIGURE 4 | Orientation content of driving features. (A–C) Upper two

rows (#1, #2) indicate spike-triggered masks obtained from a single

neuron for two different base images. The left side of each panel shows

the underlying base image with red and blue coding excitatory and

suppressive driving features, respectively. The right side of each panel

shows the image pixels determined to significantly contribute to neuronal

responses (see Materials and Methods). Dashed yellow circle indicates

RF size and position. Plots in the lower row of each panel illustrate the

relationship between each neuron’s orientation tuning profile (from the

SRF) and the orientation power of the measured driving features in

each spike-triggered mask. Green and purple curves indicate orientation

power for the combined masks and images in #1 and #2, respectively;

black curve indicates each neuron’s orientation tuning (± std) from the

SRF. (A) Example of a V4 neuron where conventional orientation tuning

closely matches the orientation spectrum of the image features captured

in the spike-triggered mask. For this neuron, the correspondence

between conventional tuning and driving feature content is maintained

for both base images. (B) V4 neuron with mismatched conventional

tuning and driving feature content. (C) V4 neuron with a partial match

between tuning and driving feature content. For this neuron, the tuning

profile closely matched the driving feature orientation for one base

image, but not the other. Scale bars = 0.5◦.
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FIGURE 5 | Pair-wise comparison of the Orientation Selectivity Index

(OSI) for each spike-triggered mask. Each neuron’s Grating OSI (x-axis)

was calculated from the responses to the dynamic grating sequence across all

spatial frequencies. Image + Mask OSIs (y-axis) were calculated by first

applying each neuron’s spike-triggered mask to the underlying base image

and computing the dot product (i.e., similarity) between the masked image

and dynamic grating stimuli. Histograms are marginal density plots and

dashed lines indicate the mean OSI values across the population (n = 292

masks, n = 89 neurons).

even though the stimulus set included many images with
spatially extensive broadband texture patterns that more closely
matched their broad orientation tuning profiles. For these
neurons, the SRF alone was insufficient to account for image
selectivity.

We wanted to confirm that mismatches between the spike-
triggered mask’s spectral content and corresponding SRF were
not simply a general failure of the method to correctly identify
driving features in natural images. To accomplish this, we
computed the dot product between the spike-trigged mask
and each mask in the stimulus sequence. This gave us an
index of how similar each frame of the stimulus sequence
was to the resulting spike-triggered mask (Figure 6A). Across
the population, we found that responses to those frames of
the stimulus sequence with masks most similar to the spike-
triggered mask (90th percentile) were only marginally attenuated
compared to the unmasked stimulus (62.0 ± 32.6 vs. 74.9 ±

38.9 spikes/s; Figure 6B). This was true even though only
32% of a masked image was visible on any given stimulus
frame. These results indicate that the spike-triggered masks
were effective in reliably isolating the portions of each image
driving the spiking response; or stated another way, stimulus
features outside the masks, but still inside the RF, made
little or no contribution to the spiking response, even though
they fell within the boundaries of the classical RF. Figure 7
summarizes the spatial relationship between the RF and the
spike-triggered masks across the population of neurons studied
and shows that masks were consistently smaller than the
classical RF.

Predicting Driving Features from the SRF
Accurately modeling and predicting the responses of visual
neurons to arbitrary stimuli is an essential step toward a
full understanding of visual cortex. Specific failures of well-
articulated models can be highly informative and provide insight
on how to improve said models. Our data reveal several
important failures of the linear model of feature selectivity
derived from the spatial and spectral tuning profiles. After
confirming the spike-triggered mask robustly identified driving
features in natural images, we asked to what degree spike-
triggered masks could be predicted from the SRF using a V1-
like quasi-linear model of selectivity (David et al., 2006). To
accomplish this, we computed the predicted excitatory feature
mask by filtering the unmasked natural image stimuli with the
normalized SRF and applying a threshold value that equated
the area of the predicted and measured spike-trigged mask (see
Materials and Methods). This approach preserves features that
contain spectral components within each neuron’s passband.
Although the “top” images used to isolate driving features were
selected because they robustly increased firing rate, in many
cases we observed suppressive mask regions containing pixels
which caused a reduction in firing rate. To include this in our
predictive model, we computed the suppressive feature masks
by filtering images with 1-SRF and applying the same threshold
used to isolate the excitatory features. Predicted and measured
masks for representative V4 neurons are shown in Figure 8.
Masks illustrated in Figures 8A,C are from cells depicted in
Figures 3A,B, respectively (i.e., the spatial and spectral RFs
shown in Figure 3 were used to generate the predicted masks in
Figure 8). We found that in general, the SRF failed to identify
the majority of suppressive features. For example, the measured
masks for the neurons illustrated in Figures 8A,B include
prominent suppressive regions, while little or no suppression is
apparent in the SRF-predicted masks.

Across the population, there was a partial overlap between
the predicted and measured spike-triggered masks for both
the excitatory and suppressive components (see Figure 9 for
summary of mask overlap and size difference). However,
we found better correspondence between the predicted and
measured excitatory spike-triggered masks (mean overlap: 24.0
± 28.1%; n = 265; Figure 9A) compared with the suppressive
masks (mean overlap: 15.9 ± 31.8%; n = 164; Figure 9C),
a significant difference in overlap (p < 0.01, sign test; n =

429). This indicates that the SRF, measured using traditional
narrowband stimuli, fails to adequately model feature selectivity,
particularly the spectrally tuned suppression found in V4.

Broadly Tuned but Highly Selective Neurons
We found many V4 neurons that displayed broad orientation
and/or spatial frequency tuning when probed with sinusoidal
gratings, yet exhibited highly significant and reproducible spike-
triggered masks (e.g., Figure 4B) not predicted by the SRF
model. This suggests that under naturalistic viewing conditions,
responsesmay be driven by a small subset of orientation or spatial
frequency channels that are components of a larger spectral
passband. This highly non-linear property is consistent with
previous findings that some V4 neurons respond preferentially to
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FIGURE 6 | (A) Sorted neural response during the bubbles stimulus

sequence from one neuron. Neural response is shown as a function of the

similarity (dot product) between each frame of the bubbles mask stimuli and

the resultant spike-triggered mask. Negative values can be achieved due to

the suppressive components of the spike-triggered mask. Dashed line

indicates 90th percentile threshold for this neuron. (B) Average response rate

from the original unmasked natural image compared with the response from

masked images with a similarity index in the 90th percentile.

FIGURE 7 | (A) Size of the spike-triggered mask relative to the spatial

RF. (B) Fractional (%) overlap between the multiple spike-triggered

masks derived from each neuron. Spike-triggered masks were

calculated for each of the 2–6 underlying natural images. (C) Mask

size difference between the multiple spike-triggered masks derived

from each neuron. Percentage calculated relative to the largest

spike-triggered mask for each neuron. Dashed lines indicate the

mean of each distribution.

feature conjunctions that occur only in spectrally complex stimuli
(Kobatake and Tanaka, 1994). Dynamic gratings, while a useful,
efficient and powerful stimulus, are spectrally narrowband and
consequently may not adequately sample the space of feature
conjunctions required to maximally drive highly selective V4
neurons. Natural images, however, are both spectrally complex
and have a high probability of containing multiple features
spanning a range of spatial scales (Field, 1987), which could
explain why many neurons with broadly-selective SRFs were
highly selective for complex feature components in the natural
scene stimuli.

Hidden Suppressive Tuning
Another important failure of the linear SRF model is an
inability to identify suppressive features that contain orientations
similar to the neuron’s preferred orientation. This can be
seen in Figures 8A,B, where the pixels inside the excitatory
and suppressive spike-triggered masks have similar orientation
content (e.g., Figure 8A: row 3 and Figure 8B: row 2). As

a result, features predicted by the SRF to be excitatory can
actually be either excitatory or suppressive, depending on their
location within the CRF. This similarity between the excitatory
and suppressive features reflects the fact that complex feature
selectivity in V4 is neither uniform nor exclusively excitatory
within the CRF. The narrow-band SRF, by its very design, is
unable to model this overlapping, differentially tuned aspect of
feature selectivity.

Excitatory Features Outside the CRF
We found more than 80% (73/91) of the neurons studied had
spike-triggered masks with significant excitatory components
lying outside the CRF. This is surprising, since the CRF is defined
(and measured here) as the region where isolated stimuli can
elicit action potentials (Allman et al., 1985). While today the
definition of the CRF is a matter of some debate, even in area V1,
studies in both striate and extrastriate areas have generally found
largely suppressive effects for stimuli outside the CRF (Li and Li,
1994; Walker et al., 2000).
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FIGURE 8 | Predicted and measured spike-triggered masks for three

representative V4 neurons (A–C). Left-most column shows underlying base

images, two middle columns show the SRF-filtered base image and image

contrast, respectively (see Materials and Methods). The right-most column

shows measured spike-triggered masks for the same images. In the two right

hand columns, red and blue overlay indicates excitatory and suppressive

feature components of the predicted and measured masks. For display

purposes, when the predicted excitatory and suppressive masks overlap, only

the excitatory mask is shown. Yellow dashed circles indicate RF size and

position. Scale bar = 0.5◦.

FIGURE 9 | (A,B) Overlap between the excitatory component of the predicted

and measured spike-triggered masks. Relative size difference between the

excitatory component of the predicted and measured spike-triggered masks.

(C,D) Overlap between the suppressive component of the predicted and

measured spike-triggered masks. Relative size difference between the

suppressive component of the predicted and measured spike-triggered

masks. Percentage calculated relative to the largest of each mask pair.

Dashed lines indicate the mean of each distribution.

Translation Invariance
Perhaps the most interesting failure of the linear model we
observed in this study is an intermediate form of translation
invariance that could provide V4 cells some degree of
insensitivity to small eye movements. Translation invariance,
where visual selectivity remains constant over a wide range
of spatial positions, is an emergent property of the ascending
ventral stream (Ungerleider and Mishkin, 1982; Desimone et al.,
1984; Op De Beeck and Vogels, 2000; Pasupathy and Connor,
2002) and has been previously described in V4 (Connor et al.,
1996, 1997; Rust and Dicarlo, 2010), but not in the context of
eye movements. Computational models of object recognition
posit that translation invariance is a critical and necessary
property of robust object recognition (Riesenhuber and Poggio,
2002). Phase invariance, such as that seen in complex cells
in V1, yields translation invariant selectivity for narrowband
stimuli which is likely preserved in the ascending visual
pathway. However, translation insensitive tuning for spectrally
complex features, which requires preservation of relative spatial
phase relations between spatial frequency channels, is more
difficult to reconcile with a simple feed-forward model of V4.
To characterize translation invariance in V4 natural image
responses, we re-compute spike-triggered masks using gaze
angle as a conditioning variable. Since monkeys were allowed
to make fixational eye movements of up to 1◦, there were
periods within each trial where the gaze angle was not directed
exactly at the fixation target. This behavior led to small but
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FIGURE 10 | Position sensitivity of spike-triggered masks. (A)

Gaze-angle contingent spike-triggered masks from a position sensitive V4

neuron. Colors (masks and histograms) denote modal vertical eye position

and correspond to the eye position histogram on the right. The portion of

image shown in low contrast was not visible during experiments and is

shown here for display purposes only. The linear relationship between mask

position and gaze angle is diagnostic for positive sensitivity (see text for

explanation). (B) Position insensitive V4 neuron. For this neuron, the

spike-triggered masks do not shift with eye position but rather remain fixed in

head-centered coordinates. (C) Center of mass (vertical component only) of

each of the spike-triggered masks from (A) and (B) plotted as a function of

vertical eye position. (D) Distribution of position sensitivity slopes across the

population of neurons. Average slope of 0.30 ± 1.61 is indicated by the

dashed line (n = 206 spike-triggered masks). Solid line indicates the

distribution of position sensitivity slopes for each neuron, averaging the slope

across all spike-triggered masks for that neuron (n = 84 neurons). The

average slope was significantly less than one, indicating a degree of position

invariance across the population of V4 neurons studied.

measurable shifts in the position of the stimulus sequence
within the RF. We took advantage of these small fixational eye
movements and explored how spike-triggered masks were
affected by the exact position of the stimulus relative to the
RF. Here, we focused exclusively on vertical eye movements
(both monkeys in this study had a tendency to make larger
and more frequent vertical rather than horizontal fixational
eye movements). We computed modal vertical eye position for
each stimulus frame and assigned both the stimulus frame and
corresponding response to one of four bins (see Figure 10).
We then computed spike-triggered masks from stimulus
frames assigned to each bin separately. Figures 10A,B shows
the conditional spike-triggered masks typical of translation
sensitive (Figure 10A) and insensitive (Figure 10B) neurons.
Mask centers (centroids) were plotted against eye position
(Figure 10C) and fit with linear regression. The slope of the
best-fit line indicates degree of translation invariance: one for
linear, translation sensitive neurons (purple) and near zero for
translation invariant neurons (light blue).

Assessing the statistical significant of this translation metric
for each neuron was difficult, due to the limitations of the
data; the linear regression fitting process contained at most four

points for each spike-triggered mask. Therefore, we assessed the
distribution of slope values across the population to determine
if the mean was significantly different from one (translation
sensitive). Indeed, the population of V4 neurons was significantly
translation insensitive (Figure 10D; p < 0.01, one-tailed t-
test, n = 260), with an average slope closer to zero (0.30 ±

1.61). Since we estimated spike-triggered masks using 2–6 base
images for each neuron, we also calculated position insensitivity
based on the average slope for each neuron and found a similar
result (average slope = 0.27 ± 0.92, p << 0.01 one-tailed t-test,
n = 84). Interestingly, the mean of this distribution was also
significantly greater than zero (p < 0.01 one-tailed t-test, n =

84), indicating some systematic relationship between eye position
and the spike-triggered masks. Likewise, while the fixational eye
movements described here were of a similar magnitude as the
average RF size (∼1◦), we found no evidence of a link between
RF size and the degree of translational invariance (correlation
coefficient between RF size and average slope = 0.142, p =

0.20). Thus, the a substantial portion of V4 neurons show some
measure of translation invariant selectivity for driving features
within their RF on the order of one degree (average RF radius =
0.98± 1.10◦, n = 90).
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Discussion

In this study we used neurophysiological responses to partially
masked natural scene stimuli to explore the origins of feature
selectivity in spectrally complex natural scene stimuli in area
V4 of the primate. Our results indicate feature selectivity in
V4 is highly non-linear, and while the quasi-linear SRF model
can predict a substantial fraction of V4 response variance
under some conditions, it is not sufficient to fully model
selectivity for spectrally complex stimuli (Oleskiw et al., 2014).
Importantly, the pattern of differences between the SRF model
and spike-triggered masks revealed at least four key failures of
the linear model, most significantly tuned suppression and a
complex form of translation invariance that appears to make
feature selectivity in some V4 neurons robust to fixational eye
movements. We also found that many V4 neurons whose SRFs
indicated broad or even non-selective spectral tuning were in
fact highly selective for specific visual features embedded in
natural images. These results support the idea of a continuum
of tuning properties in V4, ranging from “V1-like” linear cells,
to highly selective cells with highly non-linear preferences for
specific conjunctions of spectral features (Hegde and Van Essen,
2007).

Characterizing the feature selectivity of high-level visual
neurons can be a difficult proposition. In early visual areas,
system identification methods that use Gaussian white noise,
dynamic gratings or other uncorrelated stimuli offer a principled,
and in some sense optimal, way to obtain a comprehensive
description of first-order feature selectivity. However, in later
visual areas, where neurons are selective for feature conjunctions
and exhibit other non-linear properties (Pasupathy and Connor,
2002), these unbiased methods are unlikely to sample the
appropriate image subspace densely enough to build accurate
general models of selectivity. One way to address this problem
is to use stimuli derived from theoretical models of object
recognition. Previous studies have probed visual neurons with
stimuli that span a particular complete and over-complete basis
set, including non-Cartesian gratings (Gallant et al., 1993),
Walsh patterns (Richmond et al., 1987) or Hermite functions
(Victor et al., 2006). Other work has used fully parameterized,
but non-orthonormal, stimuli that span a perceptually defined
shape space (Pasupathy and Connor, 2002). This approach
consistently reveals that neurons in V4 (and other downstream
ventral areas) can be highly tuned along any number of complex
image dimensions. However, it has been difficult to relate
results from studies using one set or class of stimuli to those
obtained using others, since their neural representations are
not fully understood. Another alternative is to use naturalistic
stimuli to characterize visual selectivity (David et al., 2004, 2006;
Touryan et al., 2005; Willmore et al., 2010), as we have done
here. While this approach can still fail to span a sufficient
fraction of the image space, it is highly likely that evolutionary
pressure has guided vertebrate visual systems toward selectivity
for the features and feature conjunctions commonly found in
natural scenes (a subspace of all possible images of a given
dimensionality). However, the complexity of naturalistic stimuli,

along with their highly non-uniform spectral properties (Field,

1987), makes estimating linear selectivity, let alone higher
order non-linear tuning properties, a formidable methodological
challenge (Theunissen et al., 2001).

The bubble mask approach represents a compromise between
these two extremes. By using naturalistic stimuli, we are able
to reliably find stimuli that drive virtually all V4 neurons,
suggesting we have identified the right image subspace. The
uniform, random positioning of the Gaussian windows means
that distribution of mask positions is unbiased (i.e., white) and
therefore amenable to robust system identification techniques.
While the bubbles approach used here is not a complete system
identification method (Gosselin and Schyns, 2004; Murray and
Gold, 2004), it offers an efficient and robust approach for
identifying the key image components that modulate spiking
activity in individual V4 neurons. Understanding the significance
of those components requires a second step of analysis, in this
case hypothesis testing to compare measured image components
with predictions from the linear SRF model. When used this way,
the bubble technique allowed us to identify and characterize non-
linear feature selectivity with far less data than would have been
required using system identification methods like spike-triggered
covariance and other higher-order kernel estimation techniques
(Marmarelis and Marmarelis, 1978; Schwartz et al., 2006).

Given the diversity of tuning properties and high degree
of selectivity in V4, it should come as no surprise that non-
linearities are prevalent in this visual area. Nonetheless, our
findings indicate the linear model can still be a useful starting
point fromwhich to explore complex feature selectivity. It is clear
from our data that not all V4 neurons are simply excited by visual
features that fall within their spectral pass band and CRF. In this
study, we have shown that near-optimal spectral features (based
on first-order tuning) can be either excitatory or suppressive,
both within and outside the CRF. In addition, we have shown
that a number of V4 neurons exhibit a form of translation
invariance that potentially makes complex feature selectivity
immune to small eye movements. Explicit incorporation of
these non-linearities into physiologically motivated models of
visual processing and object recognition will improve our
understanding of neural coding in extrastriate cortex.
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