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Abstract
The challenges with modeling the spread of Covid-19 are its power-type growth 
during the middle stages of the waves with the exponents depending on time, and 
that the saturation of the waves is mainly due to the protective measures and other 
restriction mechanisms working in the same direction. The two-phase solution we 
propose for modeling the total number of detected cases of Covid-19 describes the 
actual curves for many its waves and in many countries almost with the accuracy 
of physics laws. Bessel functions play the key role in our approach. The differential 
equations we obtain are of universal type and can be used in behavioral psychol-
ogy, invasion ecology (transient processes), etc. The initial transmission rate and 
the intensity of the restriction mechanisms are the key parameters. This theory pro-
vides a convincing explanation of the surprising uniformity of the Covid-19 waves 
in many places, and can be used for forecasting the epidemic spread. For instance, 
the early projections for the 3rd wave in the USA appeared sufficiently exact. The 
Delta-waves (2021) in India, South Africa, UK, and the Netherlands are discussed 
at the end.

Keywords Epidemics · Modeling epidemics · Power law · Invasion · Bessel 
functions

1 Introduction

The evidence is strong that the exponential growth of the total number of detected 
infections of Covid-19, denoted by u(t) in this work, can be observed only during 
short periods. This is in any countries and especially when the middle stages are 
considered. The corresponding curves are in fact of power type: u(t) ∼ tr (approx-
imately proportional to) in terms of the time t from the beginning of the current 
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wave for some exponent r, which heavily depends on time:  r approaches 1 near 
the turning point of the spread and then continues to diminish closer  to the end 
of the wave. In many countries (not all), this period (phase 1) is followed by a 
period of essentially linear-type growth of the total number of infections (phase 2 
in our theory).

Methodologically, we consider epidemics as “invasions”, and focus on “transien-
cies”; momentum managing epidemics is clearly of transitory nature. The resulting 
theory appeared very exact for modeling Covid-19. This is actually similar to Hast-
ings (2004): “The question of interest was the time course of the epidemic, rather 
than the final state, which is always one where the disease dies out”. The “predator-
prey” system for us is when the protective measures (including self-imposed ones) 
play the role of “predator”, and the “prey” is the number of infections.

This is significantly different from the SIR-type models, applicable mostly to the 
initial periods of exponential spread and to final stages of epidemics. SIR-type mod-
els were suggested in early 20th century. Since then, it was developed, but the expo-
nential growth until the herd immunity fully develops remains its essential feature. 
As we will show, the asymptotic periodicity of Bessel functions is absolutely rel-
evant here. Generally, Bessel function and Bessel processes are important in math-
ematics and physics: they were not employed for epidemics and in invasion ecology 
as far as we know.

Our approach seems promising in ecology. More specifically, Bessel functions 
can presumably describe various continuous 2-species models. Following (Hastings 
2004), the discretization, different time-scales, 3-species models are natural further 
steps. See also (Hethcote and Levin 1989; Lewis and Petrovskii 2016). Generally, 
basic hypergeometric functions and their variants are expected to occur.

The discretization will be discussed only a little. We also do not touch upon in 
this paper the concept of Momentum Risk Taking from Cherednik (2019), some-
what similar to Kahneman’s “thinking-fast”, which can be considered as a behavio-
ral counterpart of the “transiencies” in ecology.

The most ambitious here are the expectations that the same ODE model the pro-
cesses of momentum decision making in our brain, but this can be difficult to con-
firm. The number of neurons involved in the “momentum” analysis of an event is 
restricted here by the “predator”: restrictions on the allocation of resources of our 
brain for a particular task. The asymptotic periodicity of Bessel functions provides 
some “saturation” of its analysis in our brain before switching to something else. 
Generally, it is surprising that Bessel functions, invented by Daniel Bernoulli long 
ago, are not one of the main tools in mathematical theory of epidemics, ecology, 
behavioral science, and beyond.

The usage of the basic and current reproduction numbers R0,R is common 
for epidemics. The basic one, R0 , is defined as the initial average number of peo-
ple infected by one person who contracted the virus; see (Carrasco-Hernandez 
et  al. 2017; Cobey 2020; Cushing 2016; Diekmann and Heesterbeek 2014; Heth-
cote 2000; Hethcote and Levin 1989). However, R can be used only qualitatively 
for Covid-19 and other epidemics of power growth: the formula u(t) ∼ const Rt for 
the total number of infections will stop working very quickly and cannot be of real 
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help for forecasting the spread of epidemics. Mathematically, this is an attempt to 
approximate power-type functions by exponential ones.

It is not unusual when R is reported as 2, 0.7 or so almost back-to-back in the 
middle stages of the waves of Covid-19; such fluctuations show that R is highly 
unstable. They are provided constantly by Robert Koch Institute (for Germany) and 
quite a few other centers. We replace R by c, the initial transmission rate; in our 
approach,   c  is a parameter of the whole wave of the epidemic (in a given area).

One of the possibilities to adjust SIR to the power growth of Covid-19 and epi-
demics of non-exponential type is to assume that R ≈ 1 , i.e. to invoke the theory 
of resonances. This results in some linear growth of the total number of infections, 
but resonances are very unstable, which contradicts to what we see with the waves 
of Covid-19. Our modeling is based on a combination of the local herd immunity, 
which provides u(t) ∼ tr , with the impact of prevention mechanisms, which eventu-
ally make r → 0 and result in the saturation of the wave.

One of the most efficient prevention mechanisms is (and always was) the  self-
restriction of our contacts, for instance avoiding infected areas. The information 
from disease control centers on the spread of the epidemic is important here, which 
is obviously “active epidemic management”.

It was already intensively discussed in the literature that the herd immunity can 
influence the spread of Covid-19 well before it reaches the levels of 70% or so. See 
e.g. Britton and Ball (2020). The protective measures play a significant role in this 
reduction. Vice versa, their relaxation can result in the recurrence of the waves of 
the infection.

We actually make the next step: claim that local herd immunity begins almost 
from day one and deduce from this the power-type growth of the total number of 
infections, u(t) . The dependence of r on time is captured in our theory via Bessel 
functions. This approach works very well for many waves (all we considered).

Our theory was posted in the middle of April 2020, when the saturation of the 
spread was observed only in several countries; they were mostly in phase one, 
under mode (A) in our terminology. We also provided a variant for phase two, under 
mode (B), when the hard measures are significantly reduced. The (B)-mode system 
of ODE appeared really necessary for modeling the spread correctly. Qualitatively, 
phase two is the switch to some less aggressive management: the phase with rela-
tively low numbers of daily infections.

Generally, the parameter c is such that u(t) ∼ tc in the beginning of the wave. It 
determines the corresponding Bessel function for the 1st phase. The second phase 
is described by u(t) ∼ tc∕2 cos(d log(t)) for some d, and the same c. The Bessel-type 
formula (alone) for u(t) works well “almost” until the saturation for quite a few 
waves, and can be generally used to forecast their durations and magnitudes.

The spread of Covid-19 in the USA was mathematically quite a challenge for us; 
the results of our prior efforts are systematically reported in Cherednik (2020a). The 
first wave in the USA went through several stages, more than with any other coun-
tries we considered. Our understanding is that it was so mostly because the pro-
tective measures were constantly relaxed in the USA on the first signs of improve-
ments, well before the saturation. This was in contrast to quite a few countries in 
Europe/Asia during the 1st waves.
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The costs and consequences of hard measures, especially lockdowns, are huge. 
Moreover, the saturation due to the active management is generally not the end of 
the spread; recurrences of the epidemic are likely if the protective measures are 
reduced or abandoned. Our theory provides an approach to evaluating the efficiency 
of the measures and controlling them real-time. Such applications and forecasting 
the waves are always a challenge. See e.g. Fraser et al. (2004). Though we will pro-
vide quite a few examples when forecasting was doable.

2  Prior Approaches

There is an increasing number of works where the power growth of the total num-
ber of infections is considered for modeling Covid-19, though not many and mostly 
of experimental nature. Let us mention at least (Cherednik 2020a; Manchein et al. 
2020; Meyer 2014; Thurner and Klimek 2020).

Well before Covid-19, an ambiguity with the definition and practical calculation 
of R0,R was discussed in Cushing (2016): “It is reassuring to know, however, that 
the sign of R0−1 is independent of the decomposition used and that the prediction 
of exponential growth or decay is therefore correctly made by any of the counting 
schemes.” This is our impression too: the sign of R−1 is what is mainly used practi-
cally, not the exact value of R (calculated by some simple formulas). However the 
spread was mostly assumed of exponential type in Cushing (2016). Considering 
R ≈ 1 was mentioned there: “As far as we know, little can be said in general about 
the exceptional case that R0 is not strictly dominant”.

In Manchein et  al. (2020), the authors comment on the power growth of the 
spread of Covid-19: “the nature is full of surprises”. In Thurner and Klimek (2020): 
“this new contamination regime is hard to explain by traditional models”. In our 
one: “power law of epidemics must be the starting point of any analysis if we want 
our mathematical models to be up to date”. See also Ray (2020) and works men-
tioned there concerning a potential usage of small-world interaction network, where 
individuals are assumed to contact (mostly) local neighbors and have occasional 
long-range connections.

In a different direction, paper (Britton and Ball 2020) and some other works sug-
gest that the levels of herd immunity sufficient to impact the spread of Covid-19 can 
be lower than the “classical” 70%, or so: as low as 40% in some areas due to the 
population heterogeneity. We just make the next step in this direction. Our starting 
assumption is that local herd immunity shapes the spread from the very beginning 
of an epidemic and quickly reduces its exponential growth (if any) to the power one. 
This is related to the concept of small-world.

Spatial modeling. This approach is actually similar to the one via “small-world”. 
The graph of contacts, especially geographically related ones, is the key for spa-
tial modeling. For instance, Fig.  8 in Bertrand (2021) shows the initial spread of 
Covid-19 in Germany, which is naturally related to the geographic locations. The 
authors change there the SEIRD model (susceptible- exposed- infected- recovered- 
deceased) to SEIQRD by adding the quarantined compartment. Obviously quaran-
tines and travel restrictions are important to model epidemics. See also Fig. 2 from 
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Kergaßner et al. (2020) (Germany too). The population heterogeneity is an impor-
tant consideration here.

Producing meso-scale forecasts with specific information and for some concrete 
location is quite a challenge. See e.g. Jha et al. (2020) (for Texas). Partial differential 
reaction-diffusion equations are used there; see also Viguerie et al. (2021). The total 
number of detected cases for the whole country (in our approach) is obviously insuf-
ficient for those in charge of practical managing the epidemic.

Classical methods “least-squares”, “Bayes”, “k nearest neighbors”, and various 
statistical tools can be used for “meso-forecasts”. Machine learning is a possibility 
here, which we will not touch upon. Though this does not help much with theoreti-
cal understanding the spread: there are too many parameters and the uniqueness of 
the optimal ones is not granted.

Surprisingly, the dimension of the graph of contacts is “almost sufficient” for 
macro-forecasting the number of infections. This is our parameter  c; the total num-
ber of infections is then ∼ tc in the beginning of the corresponding wave. Our ODE 
can be applicable for meso-forecasting, even to viral load in infected individuals, but 
generally this is a macro-phenomenon (at least in this paper). The uniformity of the 
curves of total numbers of detected infections in so many so different countries and 
for different waves is still mysterious to us, though we think that we found proper 
mathematical tools to address this.

Power growth. The main problem with modeling Covid-19 appeared actually not 
the power growth itself, “power law of epidemics”, a starting point for us. This alone 
is insufficient for forecasting. Understanding the saturation is (and always was) the 
key challenge for modeling epidemics. However, we must note here that even the 
power growth of the number of infections is not commonly accepted; this is in spite 
of ample evidence of the power growth during the Covid-19 pandemic.

Practically, the exponents  r in u(t) ∼ tr heavily depend on the time passed from 
the beginning of the wave of the infection; we use Bessel functions to address this. 
Though there are quite a few examples of pure power growth of the total number of 
infections for sufficiently long periods (mostly due to a lack of hard measures): see 
e.g. Figs. 9, 18.

By now, the power growth (after small initial periods) is obvious in all waves of 
Covid-19, including the Delta-waves; see e.g. Fig. 18. The theory of this phenom-
enon was suggested in Cherednik (2020a). There were other papers discussing the 
power growth. For instance, the data in Fig.  1 in Manchein et  al. (2020) demon-
strate that the spread is of power type piece-wise, where the exponents depend on 
the corresponding portions of the wave. This generally cannot be used for forecast-
ing because the exponents change very much during the wave.

Our parameter c serves the whole wave (both phases); we suggest it as a replace-
ment of the classical initial reproduction number R0 . Our exponents are quite dif-
ferent practically from the exponents obtained in Manchein et al. (2020) and other 
papers addressing the power growth. We note that the SEIR model (susceptible- 
exposed- infectious- removed) was used in Manchein et al. (2020) as a theoretical 
tool, which does not result in the power growth. However, “small world” is men-
tioned there as a possibility.
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Paper (Thurner and Klimek 2020) is based on the Poissonian small-world net-
work. This approach results in the linear growth ( ∼ t) of the total number of infec-
tions. The linear growth is indeed present near the turning points of the curves of 
total numbers of infections, but it is far from linear anywhere apart from these mid-
dle portions and the end of the waves. The explanation of the linear growth and the 
saturation in Thurner and Klimek (2020) is very different from what we proposed in 
Cherednik (2020a) and present in this paper.

Among many confirmations of the power growth of the total number of infections 
of Covid-19, the period 3/20-10/7 (2020) in India is very convincing; see Fig.  9. 
Here u(t) = const tr for r = 3.65 was practically exact (almost without modifications) 
for the total number of detected cases in India for a very long period: for at least 5 
months (!).

In this figure, the main parameters were determined on 08/03. This forecast was 
posted on 10/07 (2020): the saturation was predicted on 11/06, which appeared quite 
exact. Here and in many countries, some linear-type growth was observed after the 
top of the Bessel-type curve u(t), which can be seen in the graph for India after 
11/06.

In our theory, such late periods are described by the formula for mode (B); this 
is phase 2 in our terminology (for any waves). Generally, the same c serves both 
phases, and the starting point of both curves is the same: the beginning of the wave.

3  Saturation of Covid‑19 Waves

For us, the saturation, followed by some linear-type growth of the total number of 
infections, is due to protective measures, mostly the hard ones, and other mecha-
nisms restricting the spread. The key hard measure is detection-isolation-tracing, 
which includes closing the places where the spread of infection is the most likely. 
Its societal cost is huge, but it proved to reduced the spread efficiently. The vac-
cination is obviously a very hard measure, by any standards. Self-imposed restric-
tions, including reducing our contacts during epidemics, are (and always were) very 
important too.

Biological mechanisms that limit life of any virus strain or result in strains with 
mostly mild or asymptomatic cases work in the same direction. Consecutive trans-
missions mostly destroy or weaken the virus. At later stages, “weakened” genomes 
of the virus generally dominate, and the corresponding cases are more likely to 
become asymptomatic or mild. The biological factors can be necessary to explain 
why the waves can affect only small fractions of population and then “stop”, even 
with a lack of hard measures in a country.

The mutations that make the virus stronger are rare statistically, but they are 
always present and can lead to new strains and new waves of the infection. With 
Covid-19, its “proofreading ability” reduces the total number of mutations but sig-
nificantly increases the fraction of “constructive ones”. The latter can occur in a sin-
gle infected individual. It is rare when individuals are infected by 2 different strains 
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at the same time, though such cases can lead to especially dangerous transforma-
tions of the virus.

Anyway, if the strain weakened by mutations dominates then the current wave of 
infection in this area is on its way to the (technical) saturation. Also, generally (not 
always) the strains with very high transmissibility can become less lethal.

The herd immunity, vaccinations and weakening the virus due to mutations are 
important factors. However it is not disputed that the saturation of the first 1–2 
waves of Covid-19 were not due to these factors. The herd immunity and vaccina-
tions require at least 40–60% (“classically” 70% or greater) of all susceptible popu-
lation to be affected to start working (Britton and Ball 2020). It was very far from 
these levels during the first waves. Thus, the saturation mechanism of SIR-type 
models is not applicable here, at least for the initial waves of Covid-19.

The analysis of the 2nd waves confirms the validity of our approach, based on the 
prime role of protective measures, mostly the hard ones. Recurrence of epidemics 
is quite frequent; see e.g. Hethcote and Levin (1989). For Covid-19, the 2nd waves 
began too quickly, sometimes even on the top of the unfinished first waves, as it 
happened in the USA. The relaxation of hard measures closer to the end of the 1st 
(and other) waves definitely contributed to such a kind of recurrence (unusual for 
epidemics).

In 2020, the summer vacations and closed schools in Western Europe reduced the 
spread there, which factors worked in the same direction as hard measures. How-
ever, at the end of August (2020), the second waves began practically everywhere in 
Europe. The epidemic resumed in the USA too: approximately from the middle of 
September.

The parameter  c , which we call the initial transmission rate, appeared increas-
ing from the first to the second wave in many countries. This parameter is one of 
the main in our theory; it reflects the virus transmissibility strength and the basic 
number of contacts in the area. We note that we determine   c  for the whole wave; 
the decrease of transmissiblity due to prevention mechanisms is incorporated via 
our ODE. Generally,  the objective is to reach the best match for the whole wave, 
then c is taken somewhat different than that determined during the initial stages. The 
2nd–3rd waves of Covid-19 appeared to be with greater c, partially due to the reduc-
tion of protective measures (including our own behavior). The virus intensified and 
reached broader areas.

The 2nd key parameter of our theory is a, the intensity of protective measures. It 
dropped very significantly for the 2nd waves, which was expected. The intensity of 
the hard measures during the 1st wave was difficult to sustain. The parameter a has 
a different meaning if the reduction of the spread is due to biological factors. Gen-
erally, diminishing   a  means that restrictions of any kind confining the spread are 
reduced or abandoned: protective measures, our own behavior or various biological 
factors.

Qualitatively, the duration of the wave is 1
√

a
 ; quantitatively, Bessel functions must 

be used here. Mathematically, we essentially repeated the first waves, but now with 
lower levels of  a. Longer periods of intensive spread of infections and, generally, 
greater magnitudes of the curves of total number of detected infections can be 
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expected if a decreases and c increases. Though, the magnitude depends very much 
on the ability of the virus to reach new areas, which is not directly connected with 
a,  c. For instance, the 2nd wave in India was with much   greater magnitude for 
smaller c and greater a vs. the 1st wave there. Obviously the virus evolved and was 
able to reach new strata of the population during the 2nd wave in India.

Further waves. The mechanisms restricted the duration of the waves became 
somewhat different for Delta-waves, when the vaccination, herd immunity, and the 
transformations of the virus due to mutations  began to take effect. Significantly 
longer “linear-type” 2nd phases occurred.

We note a striking similarity of the waves in South Africa and UK under the 
dominance of the Delta-strain of Covid-19 (March–August, 2021) and (later) in 
other countries. It indicates that there can be some biological limits for the durations 
of the waves of Covid-19. The countries can have very different situations (includ-
ing their health care systems and vaccinations), but the corresponding curves of total 
number of detected infections appeared quite similar for the Delta-waves.

Analyzing the waves until Summer-Fall 2021, we think that, generally, protec-
tion-restriction mechanisms are:

(a): protective measures especially the hard ones, where “detection-isolation-trac-
ing” of infected individuals is the key; (b): self-imposed restrictions by the popula-
tion directly or indirectly based on the data provided by the authorities in charge; 
(c): herd immunity, the vaccination programs, and improvements of the treatment 
of infected individuals; (d): possible weakening the virus due to the mutations of 
destructive type upon sequences of consecutive transmissions, though the proofread-
ing feature of Covid-19 is an important factor here.

Our ODE seem applicable to all 4. Our main assumption is that N “isolations” or 
“reductions” of those infected at the moment t0 due to (a, b, c, d) diminish the total 
number of infections at the moment t by (t − t0)N with some coefficient of propor-
tionality. Also, the number of “isolations” at t0 is assumed proportional to u(t0) , the 
total number of detected cases at t0 . In system (1) below: p(t), the protection func-
tion, is the number of “preventions” at t from all “isolations” that occurred before.

4  Power Law of Epidemics

With such complex processes as epidemics, there can be of course multiple fac-
tors contributing to the power growth, biological ones included (Castro et al. 2018). 
The “justification” from (Cherednik 2020a) goes as follows. First, we assume that 
infected people transmit the disease to their (susceptible) neighbors,  colleagues, 
etc., and that the population is distributed uniformly. The second assumption is that 
the wave of the infections expands linearly in a proper graph of contacts. The third 
assumption, the principle of local herd immunity, is that people “inside the infec-
tion zone” do not transmit the disease because they are surrounded by those already 
infected or recovered, i.e. the border of this zone mostly contributes to the spread 
of this disease. This readily gives that u(t) ∼ tc for the exponent 2 or greater (in the 
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absence of protective measures). Indeed, the lowest c we observed was c = 2.2 (the 
1st wave in the USA).

People from infected zones work, do shopping, travel, visit friends. So the higher 
dimensions N are needed to imbed the graph of contacts into some RN providing that 
the geometric distances between points representing people are essentially the num-
bers of links between them, i.e. that the distance reflects the intensity of the contacts.

Upon this embedding, we assume the uniform distribution of the points in RN 
representing people, and the linear spread of the disease in RN . This is basic physics. 
Then, indeed, u(t) ∼ Ctc , where c is the “dimension” of the image of this graph, a 
number from 2 to N.

Next, we represent such u(t) as a solution of the differential equation 
du(t)∕dt = cu(t)∕t . This is standard when we need to add “external forces”, which 
will be protective measures, more generally, mechanisms restricting the spread of 
the virus. We argued above that the exponential growth is generally unsustainable. 
However the power growth is unsustainable in the long term too. This will be “cor-
rected” as follows.

5  Adding Protection

Combining the initial power growth of the total number of detected infections u(t) 
with the impact of protective measures, or other factors working in the same direc-
tions, we obtain the following two systems of differential equations:

Here t is the time from the beginning of the intensive growth of infections, not 
always the very beginning of the corresponding wave of Covid-19 but sufficiently 
close to it. System (1) describes the impact of hard measures under the most aggres-
sive response to the spread, or the effect of restriction mechanisms acting in the 
same direction. The second system describes the impact of the soft measures: some 
travel restrictions, wearing the protective masks and social distancing are typical. 
We called these two modes (A) and (B) in (Cherednik 2020a, b).

When a = 0 in the 1st system and b = c2∕4 in the 2nd system, we obtain the 
power growth u(t) ∼ Ctc . The parameter c can be measured experimentally during 
the early stages of Covid-19 and is supposed to be the same for (1) and (2). Mostly 
it was in the range 2.2 − 2.8 for the first waves, but reached c = 4.5, 5.5 in Brazil and 
India during the first waves there.

There is a variant of these systems, when the second equation in (1) is replaced 
by that from (2), called the transitional (AB)-mode in Cherednik (2020a). It modeled 

(1)
{

du(t)

dt
= c

u(t)

t
− p(t),

dp(t)

dt
= au(t)

}

;

(2)
{

du(t)

dt
= c

u(t)

t
−

p(t)

t
,
dp(t)

dt
=

b

t
u(t)

}

.
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reasonably the 1st waves in the USA, UK, and Brazil, but the usage of (1) and (2) in 
our two-phase solution appeared sufficient for many countries, without mode (AB).

The protection function p(t) for (1) is basically the number of transmission pre-
ventions at t. More exactly, p(t) =

∑

i(t − ti) ≈ a ∫ t

0
u(�) d� , where the sum is over 

all infected individuals isolated at the moments 0 < ti < t for a measuring the inten-
sity of “isolations”. We assume that if not isolated, these people would contribute 
p(t) to du(t)/dt (so the transmission rate is conditionally taken 1 for them). For (2), 
p(t) ∼ the number of people under various (self-)restrictions.

Logistic modification. Let us touch upon the modification of system (2) under the 
assumption that u(t) is bounded. We will rescale u(t): divide it by the total number 
of susceptible individuals. Thus u(t) < 1 now, and we need to multiply the right-
hand side of the 1st equation by (1 − u(t)), which models the interaction of infected 
individual with the remaining (susceptible) ones. We obtain:

In the absence of p(t), it is a well-known logistic equation with the following modifi-
cation: the interaction is proportional now to 1/t.

The 2nd equation in (2) remains unchanged. It is not clear whether the corre-
sponding solutions are more relevant than those for the original system (2). For the 
following modification of the 2nd equation, this system can be readily integrated: 
d p(t)

dt
= b

d u(t)

dt
, i.e. u(t)/t (the average rate of change) is replaced by the actual deriv-

ative (the momentum rate of change). One has:

If B > 0, then u(0) = �∕r, p(0) = c�∕r, u(∞) = 1, p(∞) = b + �.

6  Related Random Processes

Both systems above are actually from (Cherednik 2019), where they were used to 
describe the dynamic of the (relative) stock prices p(t) under news-driven momen-
tum trading. The function u(t) there was the news propagation triggered by some 
event. It is of power growth in terms of time t passed since the event; the corre-
sponding exponents c are generally significantly smaller than 1.

The arguments there were from behavioral finance. This is actually related; the 
behavioral aspects of epidemics are of obvious importance (Strong 1990). However 
financial news fades, and this happens quickly (so c < 1 ); this is very different for 
the spread of epidemics ( c > 2 ). System (1) described in Cherednik (2019) profit 
taking in stock markets; the second one modeled the “usual” news-driven investing.

We think that these two systems are of very general nature. For instance, they 
are supposed to occur in any momentum risk taking. This concept, MRT   for 
short, is from (Cherednik 2019); it is somewhat similar to Kahneman’s “think-
ing-fast” (Kahneman 2011). Managing epidemics on the basis of the current data 

d u(t)

dt
= (1 − u(t))

(

c

t
u(t) −

1

t
p(t)

)

.

u(t) = (𝛽 + Btr−𝛽)∕(r + Btr−𝛽), r = c − b > 0,

p(t) = bu(t) + 𝛽, where 0 ≤ 𝛽 < r, B ≥ 0.
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is very much momentum. As in stock markets, people and authorities in charge 
must react promptly to any change of the situation. Another example there is tree 
growth, though there were no p(t) and the deduction of the equation were somewhat 
different.

It was expected in Cherednik (2019, 2020a), though without biological evidence, 
that both systems of equations may describe real neural processes in our brain. Here 
u(t) is the number of neurons involved in the analysis of a particular event at the 
moment t, counted from the event, and p(t) is the expected importance of this event 
and the corresponding expected  brain resources needed for its analysis. I.e. p(t) is 
basically the expected allocation of resources, which are very limited in our brain. 
We do not know much about decision-making in our brain, but confirmations of the 
power laws and related saturations are solid in the stock markets and, as we demon-
strate, in epidemics.

We note that a significant part of Cherednik (2019) is devoted to the discretiza-
tion. Decision-making always requires some action potentials, i.e. it is discrete by 
its nature. With epidemics, the usage of ODE worked very well so far, though the 
discretization is expected to be of importance.

Tree growth. We mention that the equation un = un−1 +
un−2

n−2
 describes reason-

ably middle stages of tree growth. This is a discrete version of du(t)∕dt = cu(t)∕t for 
c = 1 with the maturity set to 1 (1 time-unit, for instance, 1 year). Its obvious solu-
tion is un = n.

Under the initial conditions u1 = 0, u2 = 1 , the corresponding solution tends 
to n/e. This solution is directly related to the derangements Dn in combinatorics: 
un = Dn∕(n − 1)!.

The rationale for this model is that the volume of a tree is approximately propor-
tional to r3 , when the area of the root system is essentially proportional to r2 , where 
r is the tree radius, which can be assumed to grow linearly. Thus the “nutrition” 
provided by the root system to one cubic unit of a tree is proportional to 1/r and to 
1/(time). We omit the experimental support for this model; which is applicable to 
many trees during their middle stages.

The following recurrence is convenient to model the saturation stage of tree 
growth: un = un−1 +

(n−1)

(n−2)n(n+1)
un−2 . Its solution with the initial conditions 

u1 = 0, u2 =
1

3
 tends to 2J0(2) ≈ 0.447782 as n → ∞ , for 

J0(2) = 1 − 1 +
1

(2!)2
−

1

(3!)2
+… ; un =

n

n+1
 is another solution. We will publish the 

algebraic details somewhere. The term in front of un−1 is obviously adjusted to make 
this recurrence “solvable”.

7  Toward Discretization

We begin with some basics. Let un be the total number of infections at the n th 
moment from the beginning of some epidemic. Infected individuals transmit the dis-
ease mostly during some initial period, which we will make the unit of time. Let it 
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be 1 (about 1–2 weeks for Covid-19). The recurrence relation and the corresponding 
quadratic equation are:

Here R0 is the initial reproduction number.
We obtain: �1,2 =

(1+R0)

2
±
√

(1 + R0)
2∕4 − R0 = {1,R0} . Thus, un = C1 + C2(R0)

n 
for some C1,C2 . If C2 ≠ 0 and R0 > 1 , the growth of the total number of infections 
will be exponential.

This is unless the herd immunity is expected to be reached, when a difference 
version of SIR is needed. We will not address this here.

Power growth. Basically, there are 3 main mathematical possibilities to ensure 
a power growth: 

 (i) the presence of “predators”, forces restricting the epidemic spread, for exam-
ple, various protective measures,

 (ii) when R approaches 1, which results in “resonances” and can potentially pro-
vide some linear growth,

 (iii) when the “birth rate”, the transmission rate in this context, becomes inversely 
proportional to time.

Obviously (i) is applicable: we do fight epidemics. The resonances and linear 
growth occur when R ≈ 1 , but this is unstable and does not seem of actual impor-
tance for modeling epidemics. We think, a combination of (i) and (iii) is the key 
in epidemics.

The spread of any disease is the growth of the “circles” of those infected; these 
are combinatorial circles, not geometric ones (in a map of the affected area). The 
contacts of infected people are not only with their immediate neighbors; people 
work, study, do shopping, travel. This is the concept of “small world” and the basis 
of spatial modeling. Our main assumption is that the rate of change of the radii of 
these circles can be expected constant. However they are not planar ones. The com-
binatorial distance is in the graph of connections (links) between people: “one’s co-
worker” (the distance is 1), “a family member of one’s co-worker” (the distance is 
2), and so on. The geographic connections are of course important here, but there 
are other links too.

The individuals at the frontier of such a circle transmit the disease the most 
because:

(a) they are the “latest” and therefore in their most infectious stages,
(b) people inside the circle are “surrounded” by those with immunity. 

We assume that the infected people “inside the circle” contribute to the transmis-
sion of the disease significantly less than those at its boundary. Then the circle of 
infected people can be presented as a ball of dimension c; accordingly, the growth of 
un will be ∼ nc . Here c can be any positive number, not only an integer. For instance, 
c ≈ 2 if our contacts are mostly with those who live near us, but c ≈ 3.65 in Fig. 9. 

un = un−1 + R0 (un−1 − un−2), �
2 = (1 + R0)� − R0.
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We never saw countries with c < 2 during the 1st and the 2nd waves. Recall that c, 
the initial transmission rate, reflects the virus transmissibility strength and the basic 
number of contacts in the area. It is constant for the whole wave in our model.

Disregarding the latent period when people are already infected but not infec-
tious, the number of “newly infected people” is basically the area of the bound-
ary of this “ball”, i.e. the area of the corresponding sphere. Presenting this num-
ber as c un−1∕(n − 1) , we arrive at the following recurrence: un − un−1 = c

un−1

(n−1)
. 

Asymptotically, nc is a solution of this recurrence. Let us comment on this.
We have un = (1 +

c

n−1
)(1 +

c

n−2
)⋯ (1 + c)u1 . Therefore, 

log(un) ≈ log(u1) + c
∑n

m=1

1

m
≈ log(u1) + c log(n) and un ≈ ncu1 . More exactly, 

un ≈
nc

Γ(c+1)
u1 for the Gamma function Γ . When c = r for a positive integer r:   

un = u1
1+r

1

2+r

2
⋯

1+2r

1+r
⋯

n−1

n−r+1
⋯

n+r−1

n−1
=

(

n + r − 1

r

)

u1.

Adding protective measures. In the most aggressive variant of protective 
measures (or similar restriction mechanisms) we have:

where a is the intensity of hard measures (or other restriction mechanisms); pn is 
basically the number of “preventions” at n, which we subtract from the total number 
of infections in the 1st equation.

This is parallel to the differential case; see (1). The main point here is that 
the “isolation” of one infected individual prevents the number of future virus 
transmissions roughly proportional to the time passed from this isolation. Then 
pn − pn−1 is proportional to the current total number of infections.

Let us eliminate pn from these relations. We obtain that 
pn−1 =

(

1 +
c

n−1

)

un−1 − un , pn = (1 +
c

n
)un − un+1 , and

 Finally, we obtain the recurrence relation:

When a = 0 , we have the solution un = n for any c. This is for u1 = 1, u2 = 2 . For 
a = 0 and arbitrary  initial conditions u1, u2 , the “function” un is essentially propor-
tional to nc , which follows from (3). When c = 0 , this equation is not applicable: 
pn = un − un+1 , the amount of protective measures, cannot be negative. Recall that 
un , the total  number of cases, cannot decrease.

Figure 1 is an example of the calculation with (4), where a = 0.1, c = 2.2 , and 
we begin with u1 = 1, u2 = 3 . We must stop at n = 8 (week 8  if the unit is one 
week), which is the saturation; the total number of cases cannot decrease. We 
note that the whole u(t) (including its negative part) can be considered here and 

(3)un − un−1 = c
un−1

n − 1
− pn−1, pn − pn−1 = a un−1,

p
n
− p

n−1 =
(

1 +
c

n

)

u
n
− u

n+1 −
(

1 +
c

n − 1

)

u
n−1

+ u
n
=
(

2 +
c

n

)

u
n
−
(

1 +
c

n − 1

)

u
n−1 − u

n+1 = au
n−1.

(4)un+1 = (2 +
c

n
)un − (1 + a +

c

n−1
)un−1.
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below, if u(t) is understood as the difference of the total numbers of infections in 
two different areas, say in 2 hemispheres.

8  Two‑Phase Solution

The solutions of (1) and (2) we need are

Here J�(x) =
∑∞

m=0

(−1)m(x∕2)2m+�

m!Γ(m+�+1)
 are Bessel functions  of the first kind; Watson (1944) 

(Ch.3, S 3.1). The solution u1(t) (the sign is + ) is the main; the second (non-domi-
nant) solution u2(t) is for −. The function uB is for d=

√

b−c2∕4 > 0 , to be used to 
model later stages of the waves.

Our two-phase solution is the usage of a proper linear combination u(t) of u1,2 
for phase 1, which is until u(t) reaches its top or (mostly) somewhat before this 
moment, and then the usage of uB for phase 2. Importantly: (a) the same c is used 
in both stages, and (b) uB(t) is calculated from the beginning of the wave, though 
it will be “seen” only later.

The 2-phase solution proved to be quite exact for modeling the curves of total 
numbers of detected infections of Covid-19. For t ≈ 0 : u1(t) ≈ tc and u2(t) is 
approximately ∼ t . I.e. u1 dominates for such t. This holds for any time, though u2 
capture some features. For forecasting, u1(t) is mostly sufficient.

The second fundamental solution of system (2) is with sin instead of cos , 
not used below. We note that when the protective measures are really mod-
est, D = c2∕4 − b > 0 . The leading fundamental solution is tr in this case, with 
r = c∕2 +

√

D , i.e. tc in the beginning of the spread diminishes to tc∕2 and then 
remains unchanged. This is of importance, but we will not touch the range D > 0 
in this work.

The 1st waves (2020). We mainly follow (Cherednik 2020a). In all figures, the 
horizontal t-axis is always the time measured in days from the beginning of the 
wave divided by 10. The y-axis gives the total number of detected cases from the 

u1,2(t) = t(c+1)∕2J± c−1

2

(
√

at),

uB(t) = tc∕2 cos(d log(Max(1, t))).

Fig. 1  Discrete modeling the 
number of infections
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beginning of the wave, and is divided by a proper power of 10. For all waves: it is 
10K unless for Japan (1K,1M), USA (always 100K), and India (10K, 100K).

Italy: 2/22-5/22, 2020. Figure 2. The total number of infections was 17 on 2/22. 
We always subtract the initial value when calculating our dots and the total numbers 
of detected infections. One has:

We use here both fundamental solutions u1,2(t) of system (1).
Germany: 3/07-5/22, 2020. See Fig.  3. We began with the initial number of 

total infections 684 (subtracted). This was approximately the moment when a sys-
tematic management began. One has:

Japan: 3/20- 5/22, 2020. See Fig. 4. There was some prior stage; we subtract 
950, the total number of infections on March 20. The curve for Japan is not 
too smooth, which is not unusual. However it is managed well by our 2-phase 
solution :

u1,2(t) = 0.8 t(c+1)∕2J± c−1

2

(
√

at), u(t) = u1(t) − u2(t), ,

uB(t) =2.85 tc∕2 cos(d log(Max(1, t))), c=2.6, a=0.2, d=0.5.

u(t) =1.3 (t(c+1)∕2(J+ c−1

2

− 0.7J− c−1

2

)(
√

at) for c=2.6,

uB(t) =2.95 tc∕2 cos(d log(Max(1, t))), a=0.35, d=0.56.

Fig. 2  Italy 2020: 
c=2.6, a=0.2, d=0.5

Fig. 3  Germany 2020: 
c=2.6, a=0.35, d=0.56
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UK: 03/16-06/13, 2020. This country was a challenge for us, though it “eventually” 

managed to reach phase 2. Actually the red dots  for UK are modeled better with the 
transitional (AB)-mode. However, we prefer to stick to the “original” u(t) determined 
for the period till April 15. The two-phase solution is a combination of two phases sep-
arated by a linear period, about 10 days. See Fig. 5. The formulas are:

The Netherlands: 03/13-5/22, 2020. The u-function here is with the same a, c as for 
UK. The parameter d = 0.54 is different from that for UK ( d = 0.465 ). This could 
be expected; the process toward the saturation of phase 2 was slower for UK.

See Fig. 6. The number of the total case was 383 on 3/13, the beginning of the inten-
sive spread from our perspective. The usage of the dominant u1 appeared sufficient:

u(t) =1.5 t(c+1)∕2(J+ c−1

2

− 0.4J− c−1

2

(
√

at), c=2.6,

uB(t) =3.15 tc∕2 cos(d log(Max(1, t))), a=0.3, d=0.6.

u(t) = 2.2 t(c+1)∕2 J c−1

2

(
√

at), c=2.4, a=0.2,

uB(t) =4 tc∕2 cos(d log(Max(1, t))), d=0.465.

u(t) = 0.5 t(c+1)∕2J c−1

2

(
√

at), c=2.4, a=0.2,

uB(t) =0.86 tc∕2 cos(d log(Max(1, t))), d=0.54.

Fig. 4  Japan 2020: 
u = 1.5t

1.8(J
0.8

− 0.4J−0.8)(t
√

0.3)

Fig. 5  UK 2020: 
u = 2.2t

1.7
J
0.7
(t
√

0.2)
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9  Further Waves

The mathematical similarity of the 2nd–3rd waves to the 1st waves is very 
remarkable, a strong confirmation of our approach. The parameters a, c, b though 
changed, which is mostly in an understandable way. The 2nd waves were quite 
uniform in Western Europe. The Netherlands is convenient to demonstrate the 
evolution of our parameters because the corresponding u-function does no involve 
the second, non-dominating, Bessel-type solution.

The Netherlands: the 2nd wave, 08/24-11/23, 2020. The similarity of Figs. 6 
and 7 is obvious. Compare with the similarity of the 1st, 2nd, and 3rd waves in 
the USA to be discussed below.

For the second wave in the Netherlands, one has:

The parameter c significantly increased in the Netherlands: from 2.4 (the 1st wave) 
to 3.4 (the 2nd). The intensity of the hard measures understandably dropped: from 
0.2 to 0.085. Such changes are actually common for the second waves in Europe. 

u(t) =0.7 t(c+1)∕2(J+ c−1

2

(
√

at), c=3.4,

uB(t) =1.65 tc∕2 cos(d log(Max(1, t))), a=0.085, d=0.43.

Fig. 6  The Netherlands: 
u = 0.5t

1.7
J
0.7
(t
√

0.2)

Fig. 7  The 2nd wave in the 
Netherlands
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The parameter d = 0.43 in uB diminished from the prior one: 0.54. Our projection 
worked well until the beginning of December, a pause before the 3rd wave.

In December of 2020, almost all Western Europe reached a modest linear-type 
growth of the total number of detected infections. Somewhat later, the 3rd waves 
began in Europe on top of the unfinished 2nd waves later. The usage of protec-
tive measures diminished, which can be partially due to the holiday season. The 
self-imposed restrictions are of obvious importance here; their reduction contrib-
uted too. The new strain, Alpha, was quite a factor of course. Anyway, the inten-
sity parameter a diminished further for the 3rd waves in Europe.

Japan: the 4th wave. See Fig. 8. It began in March, 2021. We take the period 
03/15-5/25, 2021. The formula for u(t) is:

The tendency for c to somewhat increase and for a to drop is similar for that in other 
countries we considered. Here we did not create the control period; all dots are red.

The 1st wave in India: 3/20-10/07-11/20, 2020. This country provides impor-
tant mathematical patterns of the dynamic of the spread of Covid-19. The (clear) 
first wave was later than in quite a few countries, but it was with the greatest c we 
observed. The starting number of detected cases was 191, which was subtracted.

The power function 0.0125(t + 0.07)3.65 gave a surprisingly good approximation 
for more than 5 months; see Fig. 9: the whole red period and almost all blue period. 

u(t) = 0.23 t c∕2+0.5
�

J c∕2−0.5(
√

at) + 0.53 J0.5−c∕2(
√

at)
�

,

where c = 2.8, a = 0.08.

Fig. 8  The 4th wave in Japan, 
2021

Fig. 9  India: 3/20-10/7, 
c=5.75, a=0.035,C=0.55
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Such a clear power growth is a very convincing argument in favor of the power law 
of epidemics. This kind of growth is the starting point of our approach.

The exponent r in u(t) ∼ tr began to decrease to r ≈ 1 (the turning point) much 
faster in other countries. Obviously, the size of population and its huge density in 
some parts of India are important factors. Also, the unusual stability of the exponent 
here, r = 3.65 , can be linked to a relatively low level of the active management of 
Covid-19 during the first wave in India (in the affected areas). In our theory, the 
waves under active management cannot be of pure power type too long.

In Fig. 9, the parameters a, c, C were determined around 08/03, 2020, i.e. actually 
before the turning point. They were considered conditional (to be improved later), 
but they worked until the saturation. After the turning point, they became signifi-
cantly more reliable. Notice that c = 5.75 is different from r = 3.65  from the gen-
eral approximation u(t) ∼ tr . The Bessel functions provide the time-evolution of the 
exponent from c to 1 , and then all the way to 0.

The conditional projection was that a (technical) saturation could be around 11/6 
with 8.25M of (total) cases. It matched the actual numbers. As almost always, a lin-
ear-type growth period (mode (B)) was expected somewhat before the top of the 
Bessel-type curve u(t). This period can be seen in the graph; it is described by uB(t) . 
The parameter c is the same for phase 2 as it was for phase 1 (used in the Bessel-
type u(t)). Recall that uB always begins from the starting point of the wave: “as if it 
were no phase 1”. We omit uB for India.

Let us mention here that our computer forecasting programs are for the 2nd phase 
only. They find the best uB(t) (from point 0) approximating the last 20 points. See 
below. It is not supposed to begin at 0, but it is frequently close enough to this point 
(unless there are recent significant changes of the trend). See e.g. Fig. 21.

In this figure, y =cases/10K; similarly, y is the total number of cases divided by 
proper powers of 10 in the other charts we will consider. It depends, for instance, we 
divided “cases” by 100K for the USA. The x-axis is always time in days divided by 
10 from the beginning of the curve. The red-blue-black dots give the corresponding 
actual total numbers of the detected cases. The u-function for India (the 1st wave) is:

where c= 5.75, a = 0.035 . It matched well the actual numbers of cases until the 
middle of December (until the 2nd phase of the 1st wave).

The 2nd wave in India: 03/25-05/25, 2021. The corresponding u-function is

We note that the parameter c, which is the key, became smaller  than during the 1st 
wave in India, though there is a somewhat greater contribution of the second solu-
tion u2 , the term 0.4J0.5−c∕2(⋅).

Generally, the latter can influence c, a (but not too much). Its “role” in our cal-
culations is mostly to adjust better the early stage of the wave. At later stages, 
J0.5−c∕2(t) becomes negative. So its presence with a positive coefficient can require 

u(t) = 0.55 tc∕2+0.5
�

Jc∕2−0.5(
√

at)+0.2J0.5−c∕2(
√

at)
�

,

u(t) = 15 t c∕2+0.5
�

J
c∕2−0.5(

√

at) + 0.4 J0.5−c∕2(
√

at)
�

,

where c = 2.85, a = 0.14.
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greater values of C. Recall, that this term was 0.2J0.5−c∕2(⋅) for the 1st wave in India. 
See Figs. 10, 11. 

The coefficient a for the 2nd wave is quite similar to those for the 1st waves in 
Europe, and greater than those for further waves in Europe and the USA. Recall that 
the duration of the wave is qualitatively proportional to 1∕

√

a . Indeed, the duration 
of the 2nd wave in India was smaller than that of the 2nd–3rd waves in the USA and 
Europe.

The coefficient c coincides   with that for the 3rd wave in the USA; it is much 
smaller than the one for the 1st wave in India, which was 5.75. Generally, this means 
that the population of India and the authorities in charge reacted faster when the 2nd 
wave arrived, and the number of contacts with those infected was reduced faster 
than with the 1st wave. The self-imposed restrictions are very efficient protective 
measures. This includes the restriction of contacts, prompt contacting the medical 
authorities, preemptive medicine, masks, physical distancing etc. The parameter a 
increased from 0.035 (the 1st wave) to 0.14.

India faced the Delta-strain during the 2nd wave, significantly more virulent. 
For instance, the likelihood increased dramatically for the whole family to become 
infected if one of its members is infectious vs. the 1st wave according to Indian med-
ical officials. The virus acquired greater ability to penetrate practically all strata and 
age groups of this very large and diverse country. This resulted in a much  greater 
number of detected cases and in the jump of the magnitude C. The latter is just 
mathematical scaling. However, when comparing different waves in the same  coun-
try, it contains valuable information.

The control period was until 06/26/2021. The accuracy of the Bessel u(t), for the 
1st phase of our 2-phase solution, was very high. As it was with many waves, the first 

Fig. 10  India: 2nd wave (1), 
c=2.85, a=0.14,C=15.

Fig. 11  India: 2nd wave (2), 
2-phase solution
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phase “smoothly” switched for this one to the 2nd phase (mode (B)). The formula for 
the 2nd phase of this wave in India was : uB(t) = 20.1tc∕2 cos(0.53 log(t)).

We note that in the USA and Europe, the changes between the first 2–3 waves were 
mostly due to the relaxation of the hard measure (including self-restrictions), i.e. due to 
a very significant drop of the coefficient a. Some increase of c was of the same origin. 
However in India, c diminished, a increased, and the magnitude dramatically increased: 
so the virus itself evolved: became a “broader one”.

Generally, the changes of c, a, C can be used to analyze the trends in the virus’s 
evolution, though they are very much linked to our response to the threat, not really 
“biological”.

10  USA: Waves 2 and 3

We use these waves to adjust the forecasting component of our theory. The 3rd wave 
was especially useful to understand the possibility of “early forecasts” for sufficiently 
long periods. This appeared possible, assuming that the virus did not change too much. 
The Delta-strain can be managed too (wave 4 in the USA), but the early forecasts 
(before the turning point) appeared not too exact: the curves of total number of detected 
cases for this strain are somewhat different from the prior ones, though not significantly.

The 2nd wave in the USA: 06/16-9/12, 2020. The two-phase solution worked well 
for the 2nd wave in the USA. The accuracy is comparable with what we had above 
for the 1st waves in Japan, Italy, Germany, the Netherlands and UK. Upon subtracting 
2.1M, the 2nd wave matched well the following functions:

We note that the initial transmission rate was c = 2.2 for the USA during the 
first wave, so it increased. The parameters c,  C and 0.6 in the first formula were 
determined for the period marked by the red dots; the black dots formed the con-
trol period. See Fig. 12. The projected saturation moment for uB (the 2nd phase) is 
given by the formula tend = exp

(

1

d
tan−1(

c

2d
)
)

 . Numerically, tend = 17.8463 , which is 
178 days from 06/16: December 11, 2020. This did not materialize since the USA 
entered the 3rd wave in the middle of September.

u(t) =3.4 t(c+1)∕2(J+ c−1

2

+ 0.6J− c−1

2

(
√

at), c=2.65,

uB(t) =4.1 tc∕2 cos(d log(Max(1, t))), a=0.06, d=0.435.

Fig. 12  2-phase solution for the 
2nd wave in the USA
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USA: the 3rd wave, 2020-21. This wave was used for long-term forecasting, 
which we will describe in 3 figures.

The 3rd wave was on top of the unfinished 2nd wave; we subtract the starting total 
number of infections, which was about 6.9M on 9/24, when our u(t) begins. The red 
dots used to determine the parameters of u(t) were taken from 9/24 to 11/17/2020, 
before the 3rd wave in the USA reached the turning point. The early projections 
based on our approach can be valuable.

The 1st control period (black dots) was until 12/13. The match was good: see 
Fig. 13. The accuracy became even better later, in March.

The formula obtained on 11/17 for u(t) was as follows:

So the new c for this wave increased to 2.85 from c = 2.65 for the 2nd wave, simi-
larly to the passage from the 1st wave to the 2nd. The parameter a significantly 
dropped again: from a = 0.06 for the 2nd wave to 0.02, i.e. threefold. We note that a 
was 0.2 for 1st wave, so the same tendency persisted. Recall that the duration of 
phase (A) is qualitatively ∼ 1

√

a
.

The projection for the saturation of the 3rd wave in the USA was 03/05/2021. It 
was supposed to be followed by some period of modest (essentially linear) growth 
under the (B)-mode (the 2nd phase). This projection was posted on 11/17/2020; see 
Fig. 14. The 1st control period (black dots) was until 12/13. The match was good: 
see Fig. 13.

The next control period was until the expected expiration; it is presented in 
Fig. 15. The accuracy of this forecast appeared even better in March than in Decem-
ber. The early forecasts can be sometimes no worse than later ones, but this is not 
really “scientific”.

We mention that the 1st wave in the USA was with some “unusually long” linear-
type periods in the middle. Because of this, forecasting the 1st wave was more dif-
ficult with the USA than in almost any other country we considered. This was not 
the case with the 3rd wave. Note that the massive vaccination began in the USA 
somewhat later; it did not influence the 3rd wave too much.

The 3rd wave in the USA was followed by some break until the 4th wave began. 
The 4th one was exceptionally small and short in the USA: until July 4 or so. The 

u(t) =5.5 t(c+1)∕2(J+ c−1

2

+ 0.65J− c−1

2

(
√

at), for c=2.85, a=0.02.

Fig. 13  The 3rd wave in the 
USA (1)
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country already reached the first stages of the herd immunity (for the current strains) 
in the middle of March, the vaccination program began to contribute, and the sum-
mer time helped. However the new Delta-wave began in the USA in Summer 2021 
after the 4th wave. It appeared quite possible to use our tools for its analysis, but we 
will focus on South Africa, UK, and the Netherlands.

11  Delta‑Waves

Let us discuss the Delta-waves in UK and South Africa ( ZAF ), though it was not 
only under Delta in the latter. The curves of the total number of detected cases in 
these countries are similar, and this is applicable to other Delta-waves.

The Delta-waves were with 3 clear segments; a relatively slow growth presum-
ably when the Delta-strain was establishing its dominance, then a period of fast 
power-type growth followed by a relatively fast decline of the number of daily cases 
until it became constant (though not a small one). In UK, the function 10(t∕2.8)2.9 
approximated well the number of total cases for the 2nd segment. This was similar 
to the Delta-waves in other countries. Such a 3-segment structure was not observed 
before, and made early forecasting more difficult (but doable).

The program of intensive vaccination of population in UK and summer vacations 
in July–August certainly contributed to the decline of the number of daily cases (in 
spite of the relaxation of the protective measures). It is quite possible that the biol-
ogy of the virus was an important factor here. Generally, viruses can be expected to 
lose their strength after sufficiently long sequences of transmissions and to evolve 

Fig. 14  The 3rd wave in the 
USA (2)

Fig. 15  The 3rd wave in the 
USA (3)
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in the direction of higher transmissibility but greater numbers of mild and asympto-
matic cases. Recall that only detected cases matter for us.

The chart for South Africa is quite similar to that in UK. Obviously UK and 
South Africa are in very different situations concerning the health care systems, the 
vaccinations and other factors. These charts are similar to the graph of total number 
of detected infections for the Delta-wave in the Netherlands in Fig. 20, though the 
latter is somewhat sharper and the duration of phase (A) is relatively short. This is 
probably due to the impact of the summer vacations and the intensive vaccination. 
Importantly, the later stages of the curves for the Delta-waves were with high num-
bers of new daily cases.

For the Netherlands, we provide the corresponding 2-phase solution in Fig. 20. 
Phase (B) can be clearly seen for UK too. There are some changes here versus our 
usual approach: we change the c coefficient from that for phase (A). Generally, the 
parameters of phase (B) are supposed to be found by automated programs and  the 
beginning of uB(t) can be not the origin of the wave, imposed in our 2-phase solu-
tion. In October 2021, new waves began in both countries.

In these 3 countries, Israel and some others, phase (B) of the Delta-waves 
was with relatively high number of new daily detected infections, longer than we 
observed before, and with some oscillations (which we do not observed before). 
This can be related to the impact of the vaccinations. Namely, the infection contin-
ues to spread but the number of asymptomatic and mild cases significantly increases 
and the effect of vaccinations  fades in time, as well as the impact of natural immu-
nity for those who had Covid-19 before. Such “essentially linear” periods after the 
end of phase (A) look more standard (for us) in India, South Africa, Japan etc.  

In South Africa, one  u-curve was essentially sufficient to approximate all 3 seg-
ments; see Fig. 16. In UK, the spike during the 2nd segment was somewhat beyond 
the u-curve providing the optimal approximation which is presented in Fig. 18. The 
projections focused on the 2nd, the most intensive, segment (until 7/15) were natu-
rally higher; compare Fig. 18 with 19, and Figs. 16 with 17.

Figures  16 and 17 provide the projections for ZAF with the red dots until 
06/26/2021 and until 07/15/2021 respectively. For UK, this period was until 
07/15/2021, but it was used somewhat differently in the figures. Recall that the 
dots, red and black (the control periods), are for the total number of detected cases 
minus the initial values. The projections are in terms of the absolute total numbers 
of detected cases (from the very beginning of the epidemic).

Fig. 16  South Africa: 05/04-
08/08, with the focus mostly on 
the initial relatively slow period 
till 06/26
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12  Auto‑forecasting

We mostly did this for the USA and Western Europe, but any waves can be “pro-
cessed” during their 2nd phases, which is under mode (B). Currently, there is no 
software for the 1st phases, i.e. for the periods “under” the Bessel-type modeling.

The USA: from 03 to 05, 2020. We will provide the automated forecast for 50 
states based on the period 03/17-05/27; the data were from https:// github. com/ nytim 
es/ covid- 19- data. Every state was processed individually; see (Cherednik 2020a) for 
details. Here we allow the curves for individual states to become decreasing as far 
as the total sum increases, which is some kind of interaction motivated by physics.

Our program focuses on the last 20 days; however, the match with the total num-
ber of detected infections appeared almost from 03/17/2020. See Fig. 21 and com-
pare it with Fig. 23.

Such a high level of stability is rare in any forecasting, which made the chances 
good for reaching the saturation around 9/19/2020. This was our projection based on 
Fig. 21 and on the assumption that the level of protective measures would remain 
essentially unchanged. Recall that the saturation for phase 1 is of technical nature: 
it does not mean the end of the wave. Normally, it is followed by a period of modest 
linear growth of the total number of infections, which we model using uB(t) ; this is 
the 2nd phase. Also, there are always remaining and new clusters of infection and no 
country is really isolated. In some countries, mode (A) alone was almost sufficient 
until the end of the wave; however, the second phases were mostly present.

Concerning the projection 9/19/2020 in the USA, the hard measures were signifi-
cantly reduced there at the end of May practically in all 50 states. As a result, the 

Fig. 17  South Africa: 05/04-
08/08, focus mostly on the 
period of relatively fast growth 
from 06/15

Fig. 18  UK: 05/19-08/08, opti-
mization for 05/19-07/15

https://github.com/nytimes/covid-19-data
https://github.com/nytimes/covid-19-data
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number of states that reached phase 2 dropped from about 22 at 5/27 to 8 at 7/12 
(2020). Then, in the second half of June, the USA entered the second wave.

Similarly, the program was quite stable for phase 2 for the 2nd wave in the USA 
before it entered the 3rd wave in the middle of September of 2020. We recall that the 
program is written for the 2nd phase only, when constant adjustments of projections 
are needed. A posteriori, using the data for the whole  wave, we never had difficul-
ties with finding the parameters b, d for the 2nd phase.

Europe: Summer 2020. The situation with Covid-19  was reasonably stable in 
Europe during Summer 2020. We provide in Fig.  22 a sample forecast our auto-
mated system produced for Western Europe till the end of July, 2020. It was for 45 
countries.

Here and below the curve average  is as follows. We consider the average of the 9 
last curves uB(t) (for 9 consecutive days) and then find its maximum: the top value. 

Fig. 19  UK: 05/19-08/08, with 
the focus on 06/15-07/15

Fig. 20  The Netherlands-2021: 
the Delta-wave

Fig. 21  USA, the sum of the 
curves for individual states
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The 9-day average  is the simple average of the corresponding maxima for these 9 
curves, a usual moving average. The main source of Covid-19 data we used was: 
https:// ourwo rldin data. org/ coron avirus.

As of July 8, 2020, the forecasts were sufficiently stable, though Sweden, Poland, 
Portugal and some other countries did not reach phase 2 at that time. Such stability 
changed in Fall 2020 due to the end of the vacation periods and the beginning of the 
school year.

Summer 2021. Fig.  23 provides an auto-generated projection for the USA as 
of 06/09/2021. This was without the state-by-state analysis: the total number of 
detected infections for the whole country was used. Such projections are supposed 
to be constantly renewed during phase 2. The fact that the curve of (actual) detected 
cases was very well approximated by our uB(t) for the whole period of 90 days is 
very remarkable; only the last 20 days are used for finding the (current) parameters. 
This is a strong confirmation of our theory of the (B)-mode. The USA was in the 
middle of the intensive vaccination program during this period. Also, it approached 
the initial levels of herd immunity (for the current strains) in March–May.

For Europe in Summer 2021, a similar projection is provided in Fig. 24. Simi-
larly to the USA, an almost perfect match with the actual data was for the whole 
period of 90 days (only the last 20 days were used by the program), so this is 
another indication of stability of such forecasts. The growth of the number of the 

Fig. 22  An auto-forecast for 
Europe as of 7/14 (2020)

Fig. 23  A sample forecast in the 
USA: 06/09/2021

https://ourworldindata.org/coronavirus
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cases was expected in Fall 2021 in Europe, the USA and other countries due to 
the continued impact of the Delta-strain and the end of summer vacations.

We emphasize that generally we need to switch to auto-forecasting during 
phase (B), where c is not assumed to be the same as for (A), and the initial point 
can be different from the origin of the wave (which we imposed in out 2-phase 
solution).

The vaccines created for the initial strains appeared efficient for the Delta-strain 
and Alpha-strain, which was of great importance. Generally, significant modifica-
tions and recombinations of the existing strains can be expected to emerge, including 
new strains evading the existing vaccines. The vaccination programs and the natural 
herd immunity alone can be insufficient to stop the new waves: it is expected that 
the protective measures remain important to fight the epidemic. Much will depend 
of course on the further evolution of the virus. We note that the “classical” seasonal 
periodicity of the waves appeared not really applicable to Covid-19. 

According to the latest data, the periodic vaccination of the population, improve-
ments with the treatment of Covid-19, the sequence “detection-isolation-tracing”, 
and all kinds of imposed and self-imposed restrictions will continue to be the key.

Hopefully we will be better prepared to new cycles of Covid-19, including 
improved mathematical tool for forecasting the spread of epidemics, better under-
standing the uniformity of the waves of the infections, and automated methods for 
finding the parameters of the spread. The purpose is of course to make solid math-
ematical predictions for the durations and magnitudes of the waves of infections.

13  Concluding Remarks

Modeling Covid-19 appeared quite a challenge for existing mathematical meth-
ods, which are mostly based on the SIR-type approach, suggested in the early 
20th century and remained without major revisions since then. The following fea-
tures of Covid-19 obviously require such a revision. 

Fig. 24  A sample forecast in 
Europe: 06/08/2021
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(1) The curves of total numbers of detected infections are mostly of power-type for 
Covid-19, where the exponent diminishes over time.

(2) The saturation of the initial waves of Covid-19 was mostly because of the protec-
tive measures, not due to the herd immunity.

(3) The range and intensity of the protective measures used to fight Covid-19 were 
exceptional in the history of epidemics.

These factors are not really new in epidemics, but they do require a new math-
ematical theory. The prior approaches appeared insufficient for modeling the 
spread of Covid-19. The power-type growth of the total number of infections and 
the role of hard measures cannot be addressed within the SIR-type models.

Our theory seems the first one designed to explain and model epidemics of 
power growth (quite a few) under active management. The resulting differential 
equations are in terms of the initial transmission rate and the intensity of the pro-
tective measures (and other restriction mechanisms). The  main parameter, c in 
this work, can be determined during early stages of the waves of Covid-19: it 
replaces R0 , the initial reproduction number.

The graphs of the total number of detected cases in many countries (all we 
considered) are described uniformly and with surprisingly high accuracy by our 
curves. The 2-phase solution is a combination of the Bessel-type curve for phase 
1, which is the key in our approach, and its certain version for phase 2 (in terms 
of elementary functions). The second phase, called phase (B) in this paper, gener-
ally requires auto-forecasting tools; the transmission rate c and the origin of the 
approximation curve are determined by these tools automatically, which can be 
different from the initial values.

The saturation due to the protective measure is of unstable nature. It was of 
this kind for the first-second waves of Covid-19: mostly due to the active man-
agement of the pandemic. At least, it was such before Summer 2021 (the Delta 
waves). Reducing the protective measures may result (and resulted) in the recur-
rence  of the pandemic. Modeling saturations of this kind requires sharp math-
ematical tools, which we try to provide.

With the Delta-strains, we see the first instances of the interaction of different 
strains. The original Delta-strain quickly suppressed the Alpha strain everywhere, 
and also appeared quite competitive vs. Gamma (at least in Brazil). Then we had 
the following sequence of the Delta-plus variants: Delta → AY.4.0 → AY.4.2 (and 
AY.33.1 too). Generally, hypergeometric functions can be necessary to describe 
the interaction of two competing strains under the protective measures. See equa-
tions (12),(13) in Cherednik (2019). The current data are insufficient for a quanti-
tative theory: the genome sequencing is not too systematic for Covid-19. Qualita-
tively, there are 2 possible mechanisms: 

(a) A new strain can infect some strata of population not susceptible to the current 
strain due to immunity, vaccinations or other reasons.

(b) A new strain has significantly greater transmission strength; a somewhat greater 
transmissibility can be insufficient here without (a).
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When the new strain essentially exhausts its “new niche” under (a) and its transmis-
sibility is not too different from that for the old one, then the ratio “old strain/new 
strain” for the daily infections can be expected (mathematically) to remain stable 
for some time. Presumably, the competition between the original Delta and AY.4.0 
was of this kind. The way to dominance can be slow for sub-lineages of the initial 
strain unless they have really superior characteristics. As for AY.4.2, other Delta-
plus strains and other strains, including recent Omicron, it remains to be seen.

Methods. The starting point of our approach to modeling the total number of 
infections during epidemics is the power growth hypothesis, which has solid confir-
mations with Covid-19 practically in all countries (beyond small initial periods). We 
deduce it from the principle of local herd immunity. This is without the impact of 
the epidemic management.

The saturation of the initial waves of the spread of Covid-19 was mainly due to 
the protective measures: active management of the epidemic and our own actions. 
Protective measures are not unique for Covid-19, but their range and intensity 
reached unprecedented levels. Our model interprets this kind of saturation via the 
asymptotic periodicity of Bessel functions, one of the deepest results in their theory.

This is very different from the classical approaches based on SID, SIR, SIER 
models and their variants, and the models used in the neighboring directions of inva-
sion ecology. We note that if there are 2 strains at the same time, then hypergeo-
metric functions are expected to be used instead of Bessel functions (3 species in 
invasion ecology).

The saturation for us is a dynamic equilibrium between the virus invasion and our 
protective measures, including very important self-imposed ones. This is mostly not 
because of the classical herd immunity; our approach is actually parallel to those in 
invasion ecology.

Due to a very limited number of parameters, 3 main and 5 totally, in our two-
phase solution, the corresponding modeling is much more rigid than in any other 
approaches. The curves we obtain match very well the actual graphs of the total 
numbers of  detected infections practically in all countries we examined (many). 
These parameters are quite meaningful mathematically and epidemiologically. The 
key are c, the initial transmission rate, and a, the intensity of hard protective meas-
ures, which can be determined reliably at relatively early stages of particular waves 
of the epidemic. Here a can reflect restriction mechanisms of any nature: vaccina-
tion programs, self-imposed restrictions, biological ones.

Accordingly, forecasting the waves can be potentially reduced to finding c, a, C 
and the coefficient of the non-dominant solution u2 in (1). The challenge is to do this 
at early stages of the waves; presumably it is doable near or somewhat before the 
turning point of the wave. Currently we find these parameters “manually”, which 
is almost a formal procedure (but not a computer program by now). Deep machine 
learning is expected to be added here for better forecasting.

Our parameters are generally different for different waves, but we see some pat-
terns here. The second waves were almost always with somewhat higher c and 
significantly lower a. Though the 2nd wave in India (the Delta-one) was excep-
tional: c dropped and a increased. Also, this wave was much broader than the 1st 
one: C, the magnification coefficient, was much greater. We attribute this to a high 
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transmissibility of the Delta-strain and much stronger response by the population of 
India and the authorities in charge to the threat. As with the 1st wave, the match of 
the real curve with our u(t) was very good.

We obtain a very good match practically for the whole periods of the waves of 
Covid-19 in many countries. It is actually surprising for such stochastic processes as 
epidemics, and of course this is a strong confirmation of our assumptions. In spite 
of various simplifications we made, it appeared that the systems of differential equa-
tions (1) and (2) capture very well the dynamic of the waves of Covid-19. We obtain 
our ODE from some “first principles”, however the true rationale can be beyond our 
arguments: the universality of these differential equations.

The main part of our theory was created and posted in the middle of April 2020, 
which was mostly in the middle of the 1st waves of Covid-19. We had a unique 
and valuable opportunity to test our theory real-time: in the course of the epidemic. 
Namely, we systematically determined the parameters of our curves during rela-
tively early stages, and then tested the corresponding projections for sufficiently 
long control periods.

Our usage of control periods is similar to routine testing the quality of the mod-
els used for forecasting share-prices in stock markets, where no approach can be 
accepted without real-time runs and carefully crafted historic experiments that 
exclude any “usage of future” as far as possible. This kind of “discipline” is not pre-
sent in forecasting epidemics, at least by now. The results of such “real-time testing” 
our theory and the outputs of the corresponding automated forecasting programs we 
provide are an important part of Cherednik (2020a, b).

One of the main examples of early forecasts in this paper is that for the 3rd wave 
in the USA. It shows that our tools can be potentially used to obtain reasonable pro-
jections at relatively early stages of the waves. Also, we discuss in detail our fore-
casting the Delta-wave in UK.

14  Summary

We demonstrated that Bessel-type functions describe very well the growth of the 
total number of detected cases in many countries. Mathematically, we successfully 
model the passage from ∼ tc , describing the initial growth of the total number of 
detected cases, to ∼ t near the turning point, when the number of new (daily) cases 
stabilizes, and then almost all the way to the (technical) saturation of the wave. This 
is the 1st phase, which is mode (A) in this paper.

At the late stages of the waves of Covid-19, we switch to mode (B). The corre-
sponding ODE describe a more relaxed management; their solutions are in terms of 
elementary functions. Though in some countries, mode (A) appeared “almost suf-
ficient” until the end of the wave.

Here c is the initial transmission rate, which can be captured at relatively early 
stages of the waves of Covid-19. Theoretically it is the same for both modes, (A) 
and (B). Practically, it may change  for the latter mode during the  late stages of 
the waves. Capturing the 2nd key parameter a, the intensity of hard measures, 
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generally requires longer periods than for c; it is the key for forecasting the dura-
tions of the waves.

Our differential equations describe epidemics under active management, the 
system of protective measures, where hard measures play the key role. The self-
imposed restrictions of the contacts during epidemics are and always were impor-
tant protective measures. Receiving reliable information on the course of the epi-
demic by the population is of obvious significance here. The travel restrictions, 
closing the places where the spread is the most likely and vaccination are classi-
cal state controlled measures.

The saturation due to active protection measures is of unstable nature unless the 
herd immunity and high levels of vaccination (for the current strains) become signif-
icant. Its forecasting requires an exact mathematical theory, which we try to provide. 
There will be an endless discussion of the efficiency of different measures and dif-
ferent management approaches until verifiable trustworthy mathematical models and 
the corresponding software are developed and implemented practically.

The verification of any models, including our one, does require algorithms that 
can be used by anyone, not only by their creators, which is considered the ulti-
mate test of their validity. This is one of the reasons why we wrote our programs. 
They are posted in Cherednik (2020a, b) and can be used by anyone for any coun-
tries and regions, though only for the late stages of Covid-19 so far (mode (B)).

Our 2-phase solution seems a solid basis for reaching the next level, which is 
forecasting. It describes the curves of total numbers of detected infections with 
high accuracy and with surprisingly high quality of projections; we pay great 
attention to the stability of our auto-forecsating  . Though forecasting (any) is 
always quite a challenge.

Basic parameters. The small number of the parameter we employ explains well 
the uniformity of the curves of total numbers of detected infections of Covid-19 
in many so different countries, as well as the mathematical similarity of different 
waves. They are:

(1) the initial transmission rate c, which can be determined at relatively early stages 
of the current wave (and it serves the whole phase 1),

(2) the intensity a of hard measures be or any restriction mechanisms, which 
becomes sufficiently stable near the turning point of the wave,

(3) the intensity b of the measures during the 2nd phase, which begins near the end 
of phase 1: the switch from mode (A) to mode (B).

We note that the same c is mostly applicable to both phases (modes (A), (B)), 
though we see some deviations for the 2nd phases in Delta-waves. Generally, 
our auto-forecasting programs determine c,  b and the starting point of the cor-
responding (B)-type curve automatically strictly on the basis of the latest “points” 
(not many).

In contract to c, the parameters    a and b   (the intensity of the measures) 
are more time-dependent, but   a   appeared sufficiently stable for long periods. 
Concerning b, it must be adjusted constantly at the later stages: no country is 
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really isolated and the management of the epidemic, including the self-imposed 
protection measures, becomes more flexible at later stages and less predictable 
mathematically.

Generally, the phase transition, from (A) to (B), is one of important conclu-
sions of our paper. There must be interesting biology involved here: this passage 
can be not only due to diminishing the measures.

The scaling coefficient C in the Bessel-type formula for u(t) is adjusted to 
match the real numbers of cases. The coefficient of u2(t) , the non-dominant solu-
tion of our system of ODE, is an additional parameter. It is mainly responsible for 
the “effects of the second order” and possibly can be disregarded for forecasting; 
the dominant Bessel-type solution u1(t) is expected to be sufficient for this. We 
confirmed in Cherednik (2020a) that both, u1(t) and u2(t) , do occur; both are used 
in this paper too. We note that u2(t) can become negative when u(t) still remains 
increasing. Actually, the whole u(t), positive or negative, can become meaningful 
if it is interpreted as the difference of the numbers of infections in 2 areas.

The coefficient C is generally a technicality, to make the output convenient 
to present as a graph. However it provides valuable information when different 
waves of the epidemic are compared in the same country. An example is our anal-
ysis of the 1st and 2nd waves in India. The whole country was affected during the 
2nd wave, when only some strata of this huge and diverse country were infected 
during the 1st wave. Accordingly, the coefficient C dramatically increased during 
the 2nd wave there, when c diminished and a increased, a mathematical indica-
tion that a new strain arrived, Delta. The match of our u(t) and the total number 
of detected cases was generally quite good for the Delta-waves, though the oscil-
lations after phase (B) were new to us.

The fact that we were able to describe such complex stochastic processes as 
epidemics with only 3 basic parameters seems a real discovery. This worked very 
well almost everywhere (in all countries we considered), but it will take time to 
understand the scope of this new theory and to begin using it practically.

Obviously such a remarkable universality is supposed to have deep roots in 
general biology. Mathematically, the same system of ODE is expected to serve 
various different processes, including those in invasion ecology. An example is 
MRT, momentum risk-taking, which has applications for momentum trading in 
stock markets. The protection function p(t) in (1) is replaced by the price function 
in momentum trading. MRT was expected in Cherednik (2019) as an important 
part of processes in our brain, especially those related to decision-making.

Some biological aspects. Needless to say that the herd immunity and vaccina-
tions make us well protected against the current strains of Covid-19, which were 
mostly Delta-strains in quite a few countries during Summer-Fall of 2021. There 
are many challenges here (Anderson et  al. 2020). For instance, measuring the 
efficiency of the vaccination programs requires sharp mathematical tools. In our 
approach, this means measuring the impact of the vaccination on the parameters, 
especially our c and a. The Delta-waves were clearly affected by the vaccination 
programs in Europe, Israel, the USA and some other countries.

Technically, we are still in the 1st cycle of the epidemic (in 2021). Basically, 
the cycles of epidemics end when the current strains become less infectious due 
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to the growing immunity, vaccinations, the change of a season and various other 
factors. A clear “break” must be present, which is still not the case with Covid-19.

The virus can be expected to weaken at the end of a cycle and the number of 
mild and asymptomatic cases can be expected to increase, though the transmissibil-
ity can remain very high. This change can be due to mutations, which are mostly 
of destructive type, and general trends of virus evolution. Understanding these pro-
cesses requires greater biological research on Covid-19, especially due to its high 
stability under the mutations (its “proofreading feature”). The following is essential.

(a) To determine experimentally the number of “passages” (consecutive experi-
ments) that may increase or decrease the transmissibility of SARS-Covid-19.

(b) To find the predominant mutations upon such sequences and their effect on the 
general abilities of the virus, including the transmissibility and immune evasion.

(c) To observe and analyze how and when the general strength of the virus begins to 
fade after sufficiently many transmissions for real waves of Covid-19 infections.

Paper (Shiliaev 2021) give some preliminary answers to (a,b); the experiments 
described there (in consecutive Petri dishes) were aimed at boosting of transmissibility. 
Understanding (c) and the process of the real evolution of Covid-19 is quite a challenge. 
An important argument in favor of weakening the virus is that the waves of Covid-19 
generally affected only some fractions of the susceptible population. The protective 
measures obviously restrict the waves of Covid-19, but this equally happens in quite a 
few countries with relatively low levels of active management of the epidemic.

For the Delta-waves, high vaccination rates, rising herd immunity and the 
evolution of the virus can be the reasons of relatively fast passage from phase 1 
to phase 2 (from mode (A) to mode (B)). Though mode (B) for  the Delta-strain 
lasted unusually long (vs. prior waves) with relatively high numbers of new daily 
cases and with some oscillations. Such oscillations and even some smaller waves 
can be clearly seen in UK and some other countries. Such prolonged 2nd phase 
can be due to the reduction of general protective measures, fading the strength of 
the vaccines and natural immunity over time, opening schools, the beginning of 
the fall-winter season and (of course) new strains.

After the end of the cycle in one area, the epidemic can continue somewhere 
else and in zoonotic reservoirs. Generally, a significant renewal of the strains is 
typical for new cycles. Covid-19 demonstrated its unique ability to produce many 
waves and many new strains one after another within one cycle, sometimes in the 
very same areas.

With new strains of Covid-19, about 6 months seem necessary for them to 
reach a significant presence counting from their “first appearance”, however it 
depends. The immunity after the recovery of infected individuals or upon the vac-
cination is (currently) expected to last about 6 months too. This may give us some 
time to become prepared for the next waves/cycles. Sharp mathematical tools will 
be needed to produce early forecasts when new waves begin.

The ability of Covid-19 to evolve resisting the vaccines and the treatment remains 
to be seen, but it can be expected ample. Generally, it can take only several infected 
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individuals where the virus can “stay” for 1–3 months to generated a lot of poten-
tially dangerous mutations, but fortunately only very few of them have a chance to 
reach any dominance. The mathematical theory of the spread of epidemics from 
(Cherednik 2020a, b) and in this paper can help to trace these developments. The 
effect of weakening the virus can be expected to be governed by the same ODE, but 
with a different meaning of the coefficients a, b.

Expected applications. Some practical objectives are as follows:

(1) Forecasting the duration and the intensity of the waves of Covid-19 and for other 
epidemics with the spread of “power-type”.

(2) Creating software for monitoring the dynamic of the waves of Covid-19, which 
is especially needed at their later stages.

(3) Comparing different waves in the same region aimed at understanding the virus 
evolution and the impact of the measures.

(4) Extending this theory to Invasion Ecology, more specifically, to transient pro-
cesses of the interaction between 2 and 3 species.
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