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The counterregulatory response to hypoglycemia is an
essential survival function. It is controlled by an inte-
grated network of glucose-responsive neurons, which
trigger endogenous glucose production to restore nor-
moglycemia. The complexity of this glucoregulatory
network is, however, only partly characterized. In a ge-
netic screen of a panel of recombinant inbred mice we
previously identified Fgf15, expressed in neurons of the
dorsomedial hypothalamus (DMH), as a negative regula-
tor of glucagon secretion. Here, we report on the gener-
ation of Fgf15CretdTomato mice and their use to further
characterize these neurons. We show that they were
glutamatergic and comprised glucose-inhibited and
glucose-excited neurons. When activated by chemoge-
netics, Fgf15 neurons prevented the increase in vagal
nerve firing and the secretion of glucagon normally trig-
gered by insulin-induced hypoglycemia. On the other
hand, they increased the activity of the sympathetic
nerve in the basal state and prevented its silencing by
glucose overload. Higher sympathetic tone increased
hepatic Creb1 phosphorylation, Pck1 mRNA expres-
sion, and hepatic glucose production leading to glucose
intolerance. Thus, Fgf15 neurons of the DMH participate
in the counterregulatory response to hypoglycemia by a
direct adrenergic stimulation of hepatic glucose pro-
duction while suppressing vagally induced glucagon se-
cretion. This study provides new insights into the
complex neuronal network that prevents the develop-
ment of hypoglycemia.

The central nervous system controls multiple aspects of
glucose homeostasis including pancreatic islet hormone
secretion and hepatic glucose production as well as glu-
cose utilization by muscle and fat. The connection

between the brain and these peripheral tissues is ensured,
in large part, by the autonomic nervous system. This is
activated in response to changes in the concentration of
circulating hormones such as insulin, leptin, or ghrelin
and of nutrients such as glucose and lipids. Glucose-re-
sponsive neurons, which increase their firing activity in
response to hyperglycemia (glucose-excited [GE] neurons)
or to hypoglycemia (glucose-inhibited [GI] neurons) (1–3),
are thought to couple fluctuations in blood glucose con-
centrations to the regulation of sympathetic or parasym-
pathetic nerve activity.

A major glucoregulatory role of the central nervous sys-
tem is to maintain glycemic levels at a minimum value of
�5 mmol/L to preserve sufficient glucose provision to the
brain. Hypoglycemia does not usually occur in healthy
subjects because of the rapid secretion of the counterregu-
latory hormones glucagon, epinephrine, norepinephrine,
cortisol, and growth hormones when blood glucose con-
centrations fall below the euglycemic level (4,5). However,
in insulin-treated patients with type 1 or type 2 diabetes,
this counterregulatory response becomes blunted, leading
to hypoglycemic episodes of progressively increased sever-
ity; this condition represents a major limitation in the in-
sulin treatment of diabetes (6–8). The cellular and
molecular basis for this deregulation are not understood
because of the insufficient knowledge of the complex cel-
lular network involved in hypoglycemia detection.

Glucose-responsive neurons involved in the counterregula-
tory response to hypoglycemia have been located in several
brain areas, including the hypothalamus and the brainstem
(2). In the brainstem, neurons activated by hypoglycemia or 2-
deoxy-D-glucose (2DG)-induced neuroglucopenia and that
stimulate glucagon secretion are present in the dorsal vagal
complex, in particular in the nucleus of the tractus solitarius
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(9,10) and in the basolateral medulla (11). In the hypothala-
mus, the ventromedial nucleus (VMN) contains glucose-sens-
ing neurons that also participate in the control of glucagon
secretion (12–15). These are part of a circuit that includes up-
stream neurons of the parabrachial nucleus and downstream
neurons of the bed nucleus of the stria terminalis (16) and of
the periaqueductal gray (17). Hypoglycemia is also detected by
neurons that are located at peripheral locations such as the
hepatoportal vein area and that are connected to the brain-
stem and hypothalamus glucoregulatory centers (18–20).
Thus, the currently emerging picture is that hypoglycemia
sensing occurs in a distributed system of glucose-sensing neu-
rons present not only in several brain nuclei but also at pe-
ripheral locations. These cells form a connected network that
generates an integrated hormonal response to prevent hypo-
glycemia development (21).

To uncover new aspects of this hypoglycemia monitor-
ing system, we previously performed a genetic screen in a
panel of advanced recombinant inbred BXD mice (22) in
search of hypothalamic genes regulating 2DG-induced glu-
cagon secretion (23). We identified Fgf15, whose expres-
sion in a subpopulation of dorsomedial hypothalamus
(DMH) neurons negatively correlated with glucagon secre-
tion. We showed that intracerebroventricular injection of
FGF19, the human ortholog of Fgf15, dampened 2DG-in-
duced glucagon secretion by inhibiting vagal activity and
that silencing Fgf15 expression specifically in the DMH in-
creased 2DG-induced glucagon secretion.

Here, we further explored the role of these Fgf15
neurons in the regulation of glucose homeostasis and
the counterregulatory response to insulin-induced hy-
poglycemia. We first generated a mouse line that ex-
presses the Cre recombinase and tdTomato from the
Fgf15 locus (Fgf15CretdT/1 mice), allowing for genetic
visualization and chemogenetic activation of Fgf15
neurons as well as for the identification of the afferent
input they receive and the site where they send projec-
tions. We found that Fgf15 neurons of the DMH have
a dual role in blunting vagal activity and glucagon se-
cretion while increasing sympathetic tone to increase
hepatic glucose production.

RESEARCH DESIGN AND METHODS

Mice
The Fgf15CretdT/1 mouse line was generated by Ozgene
Pty Ltd. (Bentley, Australia) by homologous recombina-
tion in C57BL/6 embryonic stem cells, which were in-
jected into goGermline blastocysts (24). Male chimeric
mice were crossed with C57BL/6J females to establish
Fgf15CretdT/1 mice. Mice were housed on a 12-h light/dark
cycle and were fed a standard rodent chow diet (Diet
3436; Provimi Kliba AG, Kaiseraugst, Switzerland). Ex-
periments were performed with 10- to 14-week-old male
mice. All animal experimentations were approved by the
Veterinary Office of Canton de Vaud.

Biochemical Measurements
Blood was collected from submandibullary or tail veins.
Glycemia was measured with a glucometer (Ascensia
Breeze 2, Bayer Healthcare, Leverkusen, Germany). ELISAs
were used to quantify glucagon (cat. no. 10-1271-01; Mer-
codia, Uppsala, Sweden), insulin (10-1247-10; Mercodia),
and corticosterone (ADI-900-097; Enzo Life Sciences,
Farmingdale, NY). Free fatty acids were measured with FU-
JIFILM Wako NEFA assay (Tokyo, Japan); hydroxybutyric
acid was determined with the D-3-Hydroxybutyrate Ranbut
reagent (Randox, Crumlin, U.K.), and plasma lactate levels
were determined with lactate determination reagents
(Roche, Basel, Switzerland). These measurements were per-
formed with a Roche Diagnostics cobas c 111 automatic
analyzer.

Viruses and Stereotactic Injections
Surgeries were performed under ketamine/xylazine anesthe-
sia. Recombinant AAV2-Ef1a-DIO-EYFP was purchased from
the University of North Carolina vector core. Recombinant
AAV8-hSyn-DIO-mCherry, AAV8-hSyn-DIO-hM3Dq-mCherry,
AAV1-syn-FLEX-splitTVA-EGFP-tTA, and AAV1-TREtight-mT-
agBFP2-B19G were purchased from Addgene (cat. nos. 44361,
50459, 100798, and 100799, respectively; Cambridge, MA).
EnvA-G-deleted-mCherry pseudotyped rabies virus was pur-
chased from the Salk Institute for Biological Studies. Ad-
CMV-synaptophysin-mCherry was a gift from Dr. M. Myers
(University of Michigan, Ann Arbor, MI). Recombinant adeno
associated viruses (AAVs) (200 nL; 1012–1013 viral genomes/
mL) were injected stereotactically with use of appropriate co-
ordinates (23,25). Animals were allowed to recover for 2
weeks with daily handling and body weight monitoring before
physiological measurements.

Activation of Fgf15 Neurons and Physiological
Measurements
Chemogenetic activation of hM3Dq-expessing neurons
was achieved by i.p. injection of clozapine (Clz) (cat. no.
C6305; Sigma-Aldrich, St. Louis, MO) at a dose of 0.1
mg/kg.

Intraperitoneal glucose (2 g/kg) and pyruvate (2 g/kg)
tolerance tests mice were performed in overnight-fasted
mice. Insulin tolerance tests (0.8 units/kg; Actrapid) were
performed in mice deprived of food for 6 h. b-2 adrener-
gic receptor blockade was achieved by i.p. injection of bu-
taxamine hydrochloride (10 mg/kg, cat. no. B1385;
Sigma-Aldrich). Glycemia and plasma insulin were mea-
sured from tail vein blood samples, and glucagon was
measured from blood collected under anesthesia from the
submandibular vein. Basal glucose turnover/hepatic glu-
cose production rates were measured as previously de-
scribed (26,27).

Quantitative RT-PCR
Tissue preparation, RNA extraction, and quantitative RT-PCR
were performed as previously described (28). Forward (F) and
reverse (R) primers were as follows: phosphoenolpyruvate
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carboxykinase (Pck-1), F5-ACAACTGTTGGCTGGCTCTC-3' and
F5'- TGAGGCCAGTTTTGGGGATG-3'; glucokinase (Gck), F5'-
ACTGCGGAGATGCTCTTTGA-3' and F5'-TCTCGGAGAAGTC-
CCACGAT-3'; and b-glucuronidase (Gusb), F5'-GTGATGGAG-
GAGCTGGTTCG-3' and R5'-AGCAGAGGAAGGCTCATTGG-3'.
Gusb was use as housekeeping gene to normalize gene expres-
sion in all experiments.

Western Blots
Livers were homogenized in ice-cold lysis buffer (250
mmol/L sucrose; 20 mmol/L HEPES, pH 7.4; 10 mmol/L
EDTA; and 2 mmol/L phenylmethylsulfonylfluoride). Ho-
mogenates were centrifuged first at 2,000 rpm for 5 min
at 4�C; the supernatant was then submitted to a second
centrifugation at 10,000 rpm for 15 min at 4�C. Proteins
from the final supernatant were separated by electropho-
resis on SDS-containing, 7.5% (Gys, phosphorylated
[p]Gys, Pygl, and pPygl) or 12% (Creb1 and pCreb1) poly-
acrylamide gels, transferred to nitrocellulose membranes
(cat. no. 10600001; GE Healthcare, Chicago, IL) with use
of a Mini Trans-Blot apparatus from Bio-Rad Laborato-
ries. The membranes were blocked in 5% BSA (w/v) (Gys,
pGys, Creb1, and pCreb1) or 3% milk (w/v) (Pygl and
pPygl) in Tris-buffered saline with Tween-20 (TBST) (in
millimoles per liter: 15 Tris-HCl, 137 NaCl, 0.1% Tween-
20, pH 7.6) at room temperature. Membranes were incu-
bated with anti-Gys (cat. no. 3886, 1/1,000; Cell Signaling
Technology, Danvers, MA), anti-pGys (cat. no. 3891, 1/
1,000; Cell Signaling Technology), anti-Pygl (cat. no.
1851-1, 1/1,000; Proteintech, Rosemont, IL), anti-pPygl
(1/500; University of Dundee), anti-Creb1 (cat. no. 9197,
1/1,000; Cell Signaling Technology), and anti-pCreb1 (cat.
no. 9198, 1/1,000; Cell Signaling Technology) in 5% BSA/
TBST or 3% milk/TBST overnight at 4 �C. After TBST 4 �
5 min washes, the membranes were incubated for 1 h at
room temperature with the appropriate secondary anti-
rabbit (cat. no. NA934, 1/8,000; Amersham, Little Chal-
font, U.K.) or anti-sheep (cat. no. 81-8620, 1/6,000; Invi-
trogen, Carlsbad, CA) horseradish peroxidase–conjugated
antibody in 5% BSA/TBST or 3% milk/TBST, followed by
further TBST 4 � 5 min washes. Bands corresponding
to the specific proteins were visualized with enhanced
chemiluminescence reagent (Advansta, San Jose, CA).
Digital images were acquired with FUSION FX7 system
(Vilber Lourmat) and Bio-1D software (Vilber Lourmat)
for quantification and normalization.

Immunofluorescence Microscopy
For c-fos immunodetection, Fgf15CretdT/1 mice were fixed
by cardiac perfusion of 4% cold paraformaldehyde in sodi-
um phosphate buffer (0.1 mol/L, pH 7.4). Brains were dis-
sected and kept for 2h in paraformaldehyde at 4�C,
incubated overnight in sucrose 30% at 4�C, and frozen at
�80�C. Serial hypothalamic 20-mm cryosections were pre-
pared and incubated first in 0.1 mol/L phosphate buffer
saline pH 7.4; 3% normal goat serum; and 0.3% Triton X-

100 for 1 hour then with a rabbit c-fos monoclonal anti-
body (cat. no. 2250, 1/7,000; Cell Signaling Technology)
for 24 h at 4�C and for 1.5 h at room temperature with
an Alexa Fluor 488–conjugated goat anti-rabbit IgG anti-
body (cat. no. 11008, 1/400; Life Technologies, Carlsbad,
CA).

For mCherry immunodetection, 30-mm cryosections
were prepared as described above and incubated overnight
at room temperature with an anti-mCherry rabbit poly-
clonal antibody (cat. no. 632496, 1/2,500; Clontech Labo-
ratories, Mountain View, CA) and for 1 h with an Alexa
Fluor 594–conjugated goat anti-rabbit IgG antibody (cat.
no. A-11012, 1/200; Life Technologies). For eGFP immu-
nodetection a chicken polyclonal antibody directed against
EGFP (cat. no. A10262 1/500; Invitrogen) and an Alexa
Fluor 647–conjugated rabbit anti-chicken IgY antibody
(cat. no. 303-605-003, 1/500; Jackson ImmunoResearch,
Ely, U.K.) were used. Nuclei were counterstained with
DAPI (cat. no. D9542, Sigma-Aldrich), and the slides were
mounted in Fluoromount (cat. no. 15664, Southern Bio-
technology, Birmingham, AL).

Images were acquired with a Zeiss Axio Imager D1 mi-
croscope interfaced with Axiovision software or a Zeiss
Axio Imager M2 microscope, equipped with ApoTome.2
and a Camera Axiocam 702 mono (Zeiss, Oberkochen,
Germany). Image analysis was performed with ImageJ.

In Situ Hybridization
For in situ hybridization detection of eYFP and Vglut2 or
Gad67, Fgf15CretdT/1 mouse brains were dissected with
use of a mouse brain matrix with 1-mm section dividers
(CellPoint Scientific, Gaithersburg, MD), fixed for 28 h in
10% formalin, and embedded in paraffin. Five-mm cryo-
sections were used for in situ hybridization with Ad-
vanced Cell Diagnostics probes (cat. nos. 312131-C2,
319171-C1, 400951-C1, and 320701). Sections were coun-
terstained with Mayer’s Hematoxylin Solution and
mounted with Aquatex mounting medium (cat. no.
363123S; VWR, Radnor, PA). Computerized cartography
of Fgf15-expressing neurons in the DMH was performed
with use of the camera lucida method (29).

Autonomic Nervous System Activity Recording
The firing rates of the thoracic branch of both vagal and
sympathetic nerves along the carotid artery were recorded
as previously described (30,31). Unipolar nerve activity
was recorded continuously under isoflurane anesthesia
with the LabChart 8 software (ADInstruments, Oxford,
U.K.). Data were digitized with PowerLab 16/35 (ADIn-
struments). Signals were amplified 105 times and filtered
with 200/1,000 Hz band pass filter. Firing rate analysis
was performed with LabChart 8.

Patch Clamp
Electrophysiological characterization of glucose respon-
siveness of Fgf15 neurons was performed on acute 250-
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mm brain sections. Electrophysiological recordings of
eYFP-labeled neurons were performed as previously de-
scribed (10). Whole-cell recordings were performed in cur-
rent-clamp mode with a MultiClamp 700B amplifier
(Molecular Devices, Berkshire, U.K.). Neurons with an ac-
cess resistance >25 mol/LV were excluded. A hyperpolari-
zation step (�20 pA, 500 ms) was applied every 30 s to
measure input resistance. Signals were filtered at 2 kHz,
digitized at 10 kHz, and collected online with a pClamp
10 data acquisition system (Molecular Devices).

Anterograde and Retrograde Mapping of DMH Fgf15
Neurons
For mapping of the Fgf15 neuron anterograde projec-
tions, Fgf15CretdT/1 mice were bilaterally injected in the
DMH with Ad-CMV-synaptophysin-mCherry (32) and
synaptic terminals were detected on cryosections pre-
pared as described above. Identification of neurons inner-
vating Fgf15 neurons was performed as previously
described (29,33). Fgf15CretdT/1 mice were injected bilater-
ally in the DMH with AAV1-syn-FLEX-splitTVA-EGFP-tTA
and AAV1-TREtight-mTagBFP2-B19G and 1 week later
with EnvA-G-deleted-mCherry pseudotyped rabies virus.
Fgf15 neuron presynaptic inputs were identified by the
presence of mCherry.

Statistical Analysis
Data are expressed as mean ± SEM. Statistical analysis
was performed with GraphPad Prism 7.0c with one-way
ANOVA followed by an appropriate post hoc test, two-
way ANOVA followed by an appropriate post hoc test, or
an unpaired two-tailed Student t test. P values <0.05
were considered significant.

Data and Resource Availability
The data sets generated during and/or analyzed during
the current study are available from the corresponding
author upon reasonable request.

RESULTS

Fgf15 Neurons of the DMH and Fgf15 Reporter Mice
We first performed a detailed analysis of the distribution
of Fgf15 neurons in the DMH by in situ hybridization
analysis. We found that Fgf15 was expressed along the
rostra-caudal axis in the dorsal, compact, and ventral
parts of the DMH; some expression was also found in
perifornical area (PeF) (Fig. 1A and B), as previously
reported (23). Then, we created a reporter mouse line
in which the Cre recombinase and the tdTomato sequen-
ces, separated by T2A sequences, were introduced just
before the stop codon present in exon 3 of the Fgf15
gene (Fgf15CretdT/1 mice) (Fig. 1C). TdTomato was found
to be expressed in all enterocytes lining the ileum villi,
the main site of Fgf15 expression (34) (Fig. 1D–F). In
brain, no fluorescent signal could be detected, suggesting
that the level of tdTomato expression directed by the

brain Fgf15 promoter was too low. We, thus, tested
whether stereotactic injection in the hypothalamus of
Fgf15CretdT/1 of a Cre-activated adenovirus (recombinant
AAV2-Ef1a-DIO-eYFP) would lead to expression of eYFP
in Fgf15 neurons. We found that eYFP was expressed
when the virus was injected in the DMH and PeF of
Fgf15CretdT/1 mice (Fig. 1H and J). No eYFP fluorescence
could be detected when the virus was injected in control
mice (Fig. 1G and I) or when it was injected in the VMN,
cortex, hippocampus, or paraventricular nucleus of the
thalamus of Fgf15CretdT/1 mice—regions that do not ex-
press Fgf15 (Fig. 2A–D). Interestingly, we found that
eYFP was expressed in the medial habenula (MHb), where
Fgf15 was also found to be expressed by in situ hybridiza-
tion (Fig. 2E). These data, thus, indicate that Cre expres-
sion faithfully reflects the sites of Fgf15 expression.

To identify the neurotransmitter expressed in DMH
Fgf15 neurons, we injected recombinant AAV2-EF1a-DIO-
eYFP bilaterally in the DMH and performed in situ hy-
bridization detection of eYFP and Vglut2 or Gad67. We
found that 97% of eYFP-positive neurons also expressed
Vglut2 (Fig. 2F, G, and J) and only 8% expressed Gad67
(Fig. 2H–J).

Fgf15 Neurons of the DMH Negatively Regulate
Insulin-Induced Glucagon Secretion
We previously found that Fgf15 expression in the DMH
negatively regulated 2DG-induced glucagon secretion.
Here, we investigated the role of the Fgf15 neurons in
the control of glucagon secretion triggered by insulin-in-
duced hypoglycemia with use of a chemogenetic approach.
Recombinant AAV8-hSyn-DIO-mCherry or AAV8-hSyn-
DIO-hM3Dq-mCherry vectors were bilaterally injected in
the DMH of Fgf15CretdT/1 mice (Fig. 3A). Neuronal activa-
tion induced by intraperitoneal Clz injection was first ver-
ified by assessment of c-fos expression in mCherry-
positive cells. Figure 3B shows that Clz, but not saline in-
jection, led to expression of c-fos in most hM3Dq-mcher-
ry–positive neurons; Clz failed to activate neurons that
only expressed mCherry (Fig. 3B).

For determination of the effect of Fgf15 neuron activa-
tion on glucagon secretion, 6-h-fasted Fgf15CretdT/1 and
Fgf151/1 mice, which had received bilateral intra-DMH
injections of recombinant AAV8-hSyn-DIO-hM3Dq-mch-
erry, were injected intraperitoneally with Clz and 60 min
later with a saline solution. After an additional hour, the
mice were bled for plasma glucagon measurements. Two
weeks later the same experiment was repeated, except
that instead of saline mice received insulin for induction
of hypoglycemia. Glycemic levels were measured at the
time of Clz, saline, or insulin injections and at the end of
the experiments (Fig. 3C and D). Plasma glucagon levels
were the same 60 min after saline injection in both
groups of mice, but upon hypoglycemia induction, they
were much less increased when Fgf15 neurons were acti-
vated (Fig. 3E). We next determined that chemogenetic
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activation of Fgf 15 neurons had no influence on the bas-
al firing activity of the vagal nerve but prevented its acti-
vation by insulin-induced hypoglycemia (Fig. 3F and G).

Plasma concentrations of free fatty acids, hydroxybutyric
acid, lactate, and corticosterone were similarly modified
by insulin-induced hypoglycemia whether Fgf15 neurons
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Figure 1—Reporter mice to characterize Fgf15 neurons. A: Camera lucida cartography of Fgf15 expression in the DMH at the indicated bregma
(mm). DMC, DMH compact part; DMD, DMH dorsal part; DMV, DMH ventral part; fx, fornix; LHA, lateral hypothalamic area; 3V, third ventricle.
B: In situ hybridization fluorescence detection of Fgf15mRNA in the dorsal, compact, and ventral divisions of the DMH at bregma�1.8 mm. Scale
bar = 50 mm. Inset: Scale bar = 25 mm. C: Structure of the modified Fgf15 allele for the monocistronic expression of Fgf15, Cre, and tdTomato.
D–F: Immunofluorescence detection of tdTomato (A), DAPI (B), and merge signals (C) in the ileal villi of Fgf15CreTdT/1 mice. Scale bar = 100 mm.
G–J: Immunofluorescence detection of eYFP in the DMH (B and C) and PeF (D and E) of Fgf151/1 and Fgf15CretdT/1 mice injected with recombi-
nant AAV2-EF1a-DIO-EYFP. Scale bar = 50mm.
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were activated or not (Fig. 3H–K). Thus, activation of
Fgf15 neurons selectively dampens hypoglycemia-induced
vagal activation and glucagon secretion (Fig. 8I).

Fgf15 Neurons Control Liver Neoglucogenesis Through
a Creb1/Pepck Axis
We found that chemogenetic activation of Fgf15 neurons
induced glucose intolerance (Fig. 4A). This deregulation
was not caused by insufficient secretion of insulin (Fig.
4B) or insulin resistance (Fig. 4C). However, glucose turn-
over measurements in mice deprived of food for 3 h
showed that activation of Fgf15 neurons significantly in-
creased endogenous glucose production (Fig. 4D). Consis-
tent with this observation, activation of Fgf15 neurons in
overnight-fasted mice increased glycemia (5.27 ± 0.14
mmol/L glucose vs. 6.13 ± 0.24 mmol/L glucose for
Fgf151/1 and Fgf15CretdT/1 mice, respectively) (Fig. 4E).
To obtain further evidence that activation of Fgf15 neu-
rons stimulated hepatic glucose production, we analyzed
the expression of Pck1 (encoding phosphoenolpyruvate
carboxykinase) and Gck (glucokinase) at 60, 90, and 120
min after Clz injection in mice deprived of food for 3 h.
At 60 min a significant induction of Pck1 was observed,
which was reduced at later time points (Fig. 4F). Gck ex-
pression was nonsignificantly decreased at the three time
points tested (Fig. 4G); however, the ratio of Pck1/Gck
was significantly increased 60 and 90 min after Fgf15
neurons activation (Fig. 4H), indicating a shift of hepatic
glucose metabolism toward neoglucogenesis. As Pck1 tran-
scription is regulated by cAMP-responsive element–bind-
ing protein (Creb)1 (35), which is activated by
phosphorylation on Ser133 by cAMP-dependent protein ki-
nase A, we assessed Creb1 phosphorylation by Western
blot analysis of liver protein extracts prepared 60 min af-
ter Clz injection. Activation of Fgf15 neurons indeed pro-
moted Creb1 phosphorylation (Fig. 4I and J). We then
quantified total and phosphorylated glycogen synthase
(Gys) and glycogen phosphorylase (Pygl) by Western blot
analysis. No differences were observed in the ratios of
pGys to Gys and pPygl to Pygl 60 min after activation of
Fgf15 neurons (Fig. 4K and L), indicating that glycogen
degradation was not regulated. Finally, to test whether
these modifications were inducing gluconeogenesis, we
performed a pyruvate tolerance test. This showed higher
glycemic excursion following pyruvate injection when
Fgf15 neurons had been activated 60 min earlier (Fig. 4M
and N).

Fgf15 Neurons Activate the Sympathetic Nervous
System
Activation of hepatic glucose production could be due to
an increase in glucagon secretion and activation of hepatic
glucagon receptor or to an adrenergic stimulation of the
liver b-2 adrenergic receptors (Adrb2). We found that ac-
tivation of Fgf15 neurons did not impact plasma glucagon
levels measured 30 min after an intraperitoneal glucose
injection (Fig. 5A). However, administration of the

selective Adrb2 blocker butaxamine abolished the glucose
intolerance induced by chemogenetic activation of Fgf15
neurons (Fig. 5B [compare with Fig. 4A]). Direct recording
of sympathetic nerve firing confirmed that chemogenetic
activation of Fgf15 neurons increased sympathetic activi-
ty in the basal state and prevented the suppressive effect
of glucose injection (Fig. 5C).

Finally, we also measured whether Fgf15 neurons acti-
vation would impact on the response to glucose of the va-
gal nerve. As expected, glucose increased vagal nerve
activity but Fgf15 neuron activation did not change basal
or glucose-activated firing activity (Fig. 5D). This is to be
compared with the data of Fig. 3 that showed that Fgf15
neurons activation prevented the stimulation of vagal
nerve by insulin-induced hypoglycemia.

Collectively, our data show that Fgf15 neurons of the
DMH control sympathetic nerve activity and Adrb2-de-
pendent induction of a Creb1/Pepck axis to increase he-
patic gluconeogenesis; the consequence of activating this
DMH-liver axis is induction of glucose intolerance (Fig.
8I).

Glucose Responsiveness of DMH Fgf15 Neurons
To assess whether the Fgf15 neurons were directly re-
sponsive to changes in extracellular glucose concentra-
tions, we injected recombinant AAV2-Ef1a-DIO-eYFP in
the DMH of Fgf15CretdT/1 mice (Fig. 6A) and performed
patch clamp analysis of eYFP-expressing neurons exposed
to 2.5 mmol/L or 0.5 mmol/L glucose (14,15). We found
that of 23 recorded neurons, 15 were glucose-nonres-
ponding neurons (NR) (Fig. 6C–E); 6 were GE neurons,
which had increased membrane potential and membrane
resistance when the glucose concentration was raised
(Fig. 6F–H); and 2 were GI neurons activated by a de-
crease in glucose concentrations (Fig. 6I–K).

DMH Fgf15 Neurons Efferent Projections and Afferent
Innervation
To map the anterograde projections of Fgf15 neurons, we
injected bilaterally in the DMH of Fgf15CretdT/1 mice an
adenoviral vector allowing for the Cre-dependent expres-
sion of a synaptophysin-mCherry fusion protein that la-
bels synaptic vesicles (32) (Fig. 7A). We found that Fgf15
neurons send numerous intra-DMH projections (Fig. 7B).
The other sites identified were the medial preoptic area
(MPA) (Fig. 7C and D), the medial preoptic nucleus
(MPO) (Fig. 7E and F), the arcuate nucleus of the hypo-
thalamus (ARH) (Fig. 7G and H), and the locus coeruleus
(Fig. 7I and K). The origin of presynaptic neurons contact-
ing Fgf15 neurons was assessed with a pseudorabies ret-
rograde labeling technique (Fig. 8A). The injection site
identified by the presence of eGFP and mCherry double-
positive neurons was restricted to the DMH (Fig. 8B).
Most of the presynaptic neuronal populations were local-
ized at the hypothalamic level in different nuclei of the
preoptic area (Fig. 8C and G), in the paraventricular
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nucleus (Fig. 8D and G), in the lateral hypothalamus and
PeF, and in the VMN and the ARH (Fig. 8E–G). Minor
presynaptic neuronal populations were identified in the
medial part of the medial mammillary nucleus, the ven-
tral part of the premammillary nucleus, the tuberal nu-
cleus, the retrochiasmatic area, the suprachiasmatic
nucleus, and the anterior nucleus of the hypothalamus
and in the anteroventral periventricular nucleus (Fig.
8G). Some neurons cells were also identified in the ante-
rior part of the bed nucleus of the stria terminalis, the
ventrolateral periaqueductal gray, and the raphe magnus
nucleus (data not shown). These data are summarized in
Fig. 8H.

DISCUSSION

In the current study, we generated a new mouse model
(Fgf15CretdT/1) that allowed for the further characteriza-
tion of the glucoregulatory role of Fgf15 neurons of the
DMH. We found that these neurons were glutamatergic
and displayed different sensitivities to changes in extra-
cellular glucose concentrations. Physiologically, we showed
that their chemogenetic activation had a dual role in the
regulation of the autonomic nervous system. On the one
hand, they prevented hypoglycemia-induced vagal nerve
firing and glucagon secretion, while on the other hand,
they increased sympathetic nervous activity leading to in-
duction of the liver Creb1/Pck1 axis, hepatic glucose
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production, and glucose intolerance. Together, these data
identify the role of a newly characterized subpopulation
of DMH neurons, which directly promote hepatic glucose
production by stimulating sympathetic nervous activity.

Fgf15 is a member of the fibroblast growth factor fami-
ly that lacks a heparan sulfate proteoglycan–binding motif
and, thus, diffuses in the circulation to act as a hormone
(36). The major site of Fgf15 production is the intestinal
endothelium, and Fgf15 was first characterized for its role
in regulating bile acid synthesis (34,37). In our search for
novel hypothalamic regulators of glucagon secretion, we
found that Fgf15 was also expressed in neurons of the

DMH and the PeF and that silencing its expression in the
DMH, but not in the PeF, increased glucagon secretion in
response to 2DG-induced neuroglucopenia (23), indicating
that Fgf15 can also be a neurotransmitter.

Here, we generated Fgf15CretdT/1 reporter mice, which
express the Cre recombinase and tdTomato from the
Fgf15 locus. The intestinal epithelial cells of these mice,
where Fgf15 is highly expressed, showed strong tdTomato
fluorescence. In the brain, Fgf15 is expressed at a much
lower level than in the intestine (23), and identification
of Cre-expressing cells required the stereotactic delivery
of a Cre-dependent eYFP viral expression system.
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Comparing the pattern of Fgf15 mRNA expression de-
tected by in situ hybridization with that of eYFP expres-
sion detected by fluorescence microscopy indicated that

the reporter mice allowed for specific expression of the
Cre recombinase in Fgf15 neurons. In addition to expres-
sion of eYFP in the DMH and PeF, we found expression
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in the MHb, a bilateral epithalamic nucleus involved in
the regulation of fear, anxiety, sleep, aversion, and reward
(38). The availability of Fgf15CretdT/1 mice may help with
investigation of the specific behavioral roles of these ha-
benula neurons.

In the DMH, Fgf15 neurons were found to be almost
exclusively glutamatergic, whereas this nucleus contains a
majority of GABAergic neurons (39,40). Chemogenetic ac-
tivation of Fgf15 neurons of the DMH induced glucose in-
tolerance as assessed following an intraperitoneal glucose
injection. This intolerance could not be explained by re-
duced insulin secretion, increased insulin resistance, or
higher plasma glucagon levels. Instead, it was associated
with increased hepatic glucose production, a response in-
duced by a stimulation of sympathetic nervous activity
leading to increased hepatic Creb1 phosphorylation and
Pck1 expression. We showed that, at the same time as
they increase liver gluconeogenesis, Fgf15 neurons nega-
tively regulate insulin-induced vagus nerve activity and
glucagon secretion. This impaired hormonal response is in
line with our previous study showing that intracerebro-
ventricular FGF19 injections reduced neuroglucopenia-in-
duced vagal activity and glucagon secretion, whereas
silencing Fgf15 expression in the DMH increased glucagon
secretion (23). The fact that the Fgf15 neurons stimulate
hepatic glucose production through sympathetic signaling
while restricting vagally induced glucagon secretion sug-
gests that these two counterregulatory mechanisms need
to be antagonistically regulated to prevent an exaggerated
hyperglycemic response. Alternatively, as glucagon has
many physiological effects beyond its glucoregulatory
role, in particular reducing food intake (41,42), a direct
sympathetic stimulation of hepatic glucose production
may avoid the anorectic effect of glucagon.

The Fgf15 neurons form a subpopulation of cells in the
DMH involved in glucoregulation. Our electrophysiologi-
cal analysis showed that they comprise GE, GI, and NR
neurons. However, whether their glucose sensitivity is di-
rectly involved in their physiological function needs to be
determined. Their activity may, however, be regulated by
homeostatic signals received from the several hypotha-
lamic nuclei identified by our retrograde-labeling experi-
ments, including the LH, ARH, or ventromedial hypothalamic
nucleus (VMH), which contain GI neurons that contribute to
the counterregulatory response to hypoglycemia. On the oth-
er hand, the downstream projections of Fgf15 neurons, which
control autonomic nervous activity, are not yet identified.
Nevertheless, it is interesting that efferent projections were
found in the locus coeruleus, a preautonomic center whose
activation increases sympathetic and decreases parasympa-
thetic activity (43), consistent with the consequences of acti-
vating Fgf15 neurons described here.

Collectively, our data provide compelling evidence that
Fgf15 neurons form a subpopulation of glutamatergic
DMH neurons involved in the control of glucose homeo-
stasis. When activated, they increase the sympathetic

tone to the liver to increase gluconeogenesis via the
Creb1/Pepck axis, and in the presence of insulin-induced
hypoglycemia, they blunt vagal nerve activation and re-
duce glucagon secretion. These neurons therefore contrib-
ute to the counterregulatory response to hypoglycemia by
increasing hepatic glucose production. It is, however, not
yet established whether they are directly activated by hy-
poglycemia to increase the counterregulatory response or
whether they form a link in an integrated neuronal circuit
that prevents hypoglycemia development and where they
would function as modulators of such circuit. Neverthe-
less, our observation of their dual role in preventing hy-
poglycemia-activated vagal activity and stimulating
parasympathetic nervous activity indicates that they play
an important role in the regulation of autonomous ner-
vous activity in glucose homeostasis.
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