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The vestibular system sub-serves a number of reflex and perceptual functions, com-
prising the peripheral apparatus, the vestibular nerve, the brainstem and cerebellar 
processing circuits, the thalamic relays, and the vestibular cerebral cortical network. 
This system provides signals of self-motion, important for gaze and postural control, 
and signals of traveled distance, for spatial orientation, especially in the dark. Current 
evidence suggests that certain aspects of this multi-faceted system may deteriorate with 
age and sometimes with severe consequences, such as falls. Often the deterioration in 
vestibular functioning relates to how the signal is processed by brain circuits rather than 
an impairment in the sensory transduction process. We review current data concerning 
age-related changes in the vestibular system, and how this may be important for clini-
cians dealing with balance disorders.
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inTRODUCTiOn

Age-related vestibular dysfunction and associated imbalance has a major impact on morbidity, 
mortality, and health-care resources. According to the National Institute of Deafness and Other 
Communication Disorders of the NIH, falls account for over 50% of all accidental deaths in the 
elderly (1), and a recent analysis calculated the medical costs associated with fatal and non-fatal falls 
in the USA to be over $19 billion annually (2).

The overall prevalence of vestibular dysfunction in adults aged over 40 in the USA is 35.4%, 
corresponding to 69 million individuals (3). Patients with vestibular dysfunction are at significantly 
greater risk of falls (odds ratio 12.3 for patients with concurrent dizziness). Although this is also 
associated with an increased risk of patient-reported dizziness, as many as 32% of individuals aged 
over 40 without any symptoms of dizziness have evidence of vestibular dysfunction. These patients, 
though asymptomatic, also have an increased risk of falls (odds ratio 6.3) (3). A case–control study in 
the UK, in a sample of 56 adults, found that the prevalence of vestibular impairment in older adults 
who fall was 80%, compared with 19% in age-matched non-fallers (4). Other prospective studies in 
general practice and neurology clinics have reported that in patients aged over 50 with dizziness, the 
prevalence of vestibular causes ranges from 18 to 56% (5, 6). Risk factors for decline in vestibular 
function include smoking, hypertension, and diabetes but even when these are controlled for the 
effect of age is far more pronounced (3).

Progressive disequilibrium of aging is a complex, multifactorial condition leading to instability 
and increased risk of falls (7, 8), with vestibular dysfunction, albeit in combination with other factors 
(e.g., musculoskeletal and visual impairment), being a key contributor to imbalance (9, 10). One 
factor in balance dysfunction may be changes in the robustness of peripheral vestibular signaling in 
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the elderly (11). Another factor may be changes in how sensory 
information is processed by central circuits, as exemplified by 
a study which found that compared with younger subjects, the 
elderly favor the use of proprioceptive rather than visual and 
vestibular cues for postural motor control (12). Overall, there is 
an age-related decline of peripheral vestibular sensing and the 
central combination of different sensory signals for balance. 
Herewith, we review the literature regarding these two aspects.

THe PeRiPHeRAL veSTiBULAR SYSTeM

Neuronal and hair cell loss are the two biggest effects that aging 
has on the peripheral vestibular system; affecting both the otolith 
organs and the semicircular canals. Multiple studies have shown 
that aging reduces the number of sensory hair cells in the ves-
tibular end organs (13–16). More recently, one group has studied 
human temporal bone sections from 67 subjects aged from 
birth to 100 years of age and found that there was a significant 
age-related decline in the number of hair cells and a decline in 
individual hair cell subtypes (1, 17).

Several studies have shown degeneration of the vestibular gan-
glion (Scarpa’s ganglion) and nerve (15, 18–20). The vestibular 
nerve has two divisions, receiving conveying afferents from both 
the semicircular canals and the otolith organs via the superior 
and inferior vestibular nerves, respectively (15, 21). Ganglion cell 
counts from 106 temporal bones from 75 individuals showed age-
related reduction in ganglion cell counts with a greater decline in 
the superior division compared with the inferior division.

Otolith Organs
The signal from the otolith organs (comprising the utricle and 
saccule) transduces linear acceleration (and detect tilt), and with 
respect to these organs, with age, they are not only affected by 
degeneration of the ganglion cells but also by hair cell loss, in 
addition to specific degenerative effects within the otolith organ 
ultrastructure. The use of vestibular evoked myogenic potentials 
(VEMPs) has been used in multiple studies to assess the effect of 
aging upon otolith function. VEMPs are short-latency myogenic 
potentials that are elicited from specific muscles, in response to 
vestibular stimulation (via sound). The muscle measured is the 
sternocleidomastoid (“cervical” VEMP—cVEMP), hence assess-
ing saccular and inferior vestibular nerve function as well as the 
inferior oblique muscle of the eye (“ocular” VEMP—oVEMP), 
which measures utricular and superior vestibular nerve function 
(22–24). Reduction in the amplitude of VEMPs is indicative of 
reduced otolith organ function, while increased VEMP latency 
may relate to slowed brainstem signal processing (25, 26).

Brantberg et  al. found an age-related decrease in cVEMP 
amplitude and increase in cVEMP latency in a study of 1,000 
patients ranging from 7 to 91 years old with no known vestibular 
disorders (25). These findings have been corroborated by Agrawal 
et al. who found reduced cVEMP as well as oVEMP amplitude in 
a group of 50 patients above 70 years of age compared to younger 
individuals (27). Other studies measuring oVEMP have reported 
similar findings including an age-related increase in oVEMP 
latencies (28, 29). Further, a more recent study by Li et al. in 257 
subjects demonstrated that with aging, there was a reduction in 

oVEMP amplitude by 2.9 µV per decade of life and an increase 
in latency of 0.12 ms per decade of life. With respect to cVEMP, 
they found that the amplitude decreased by 0.14 µV per decade 
but found no significant difference in latency between the age 
groups (30).

The otoconia contained in the utricle and saccule have also 
been shown to undergo morphological changes and degeneration 
during a human’s lifespan as observed in postmortem analyses 
(31). Aging has been associated with reduction in otoconia 
mass as well as fracture and fragment formation in both animals 
and humans (31–35). While it is easy to assume that reduction 
in otoconia would result in the reduction of organ function, 
otoconia degeneration has been shown to affect the utricle more 
than the saccule (31, 36), which would not explain the findings 
in the Agrawal et  al. study (27). In contrast, it has been previ-
ously reported that, while hair loss occurs in all the peripheral 
vestibular organs with increasing age, the utricle is relatively 
spared (17). Currently, the implications of otoconia degenera-
tion of otolith organ function are unknown, but it is suspected 
that these changes in otoconia are involved in the development 
of peripheral vestibular disorders, such as benign paroxysmal 
positional vertigo (BPPV) (37).

Benign paroxysmal positional vertigo is one of the most 
common causes of vertigo, especially in the elderly as there is an 
increase in the incidence with age, peaking at 60 (38–40). It is a 
disorder characterized by vertigo upon certain positional head 
movements. BPPV is caused by the presence of otoconia debris, 
which moves in the endolymph or cupula of the semicircular 
canals (41, 42). It is thought that the otoconia are dislodged from 
the utricular macula, which is precipitated by the morphological 
changes that can happen to the otoconia during aging (37). While 
BPPV can be effectively treated with repositioning maneuvers (43), 
a large observational study of 1,092 BPPV sufferers has recently 
shown that comorbidities, such as hypertension, osteoporosis, 
and diabetes, may be correlated with the risk of recurrence of 
BPPV in the elderly (44).

Semicircular Canals
The semicircular canals transduce head angular acceleration via 
the anterior, posterior, and horizontal semicircular canals. Decline 
in the semicircular canals forms a significant component of the 
overall age-related decline in the vestibular system. A study of 67 
human temporal bones from birth to age 100 found that Type I 
hair cells in the cristae are lost at a significantly greater rate than in 
the macula (1), further reflected by a cross-sectional study, which 
found the decline in semicircular canal function to be greater 
than the decline in otolith function (27). This age-related decline 
stands in contrast to what happens in peripheral vestibular dys-
function, such as Meniere’s disease, in which there is selective loss 
of Type II hair cells (45). Decline in the semicircular canals can 
be evaluated through the angular vestibule–ocular reflex (VOR), 
for example, using caloric testing; although this technique only 
tests the horizontal semicircular canals. Up to a few years ago, 
the only way to assess the VOR was with rotating chairs or by 
caloric ear stimulation. Recently, advances in understanding of 
vestibulo–ocular physiology, largely by Curthoys and Halmagyi 
in Sydney, have led to the development of, first, a bed-side clinical 
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head thrust or impulse test (HIT) and, subsequently, video-image-
based versions of the test that are now available commercially for 
clinical use (vHIT or videoHIT), which allow not only for the 
assessment of the horizontal but also the anterior and posterior 
semicircular canals (46).

Numerous studies have investigated age-related decline in 
the semicircular canal function. Baloh et al. followed 7 patients 
with severe bilateral vestibulopathy and 51 normal controls over 
a 5-year period; in the normal subjects, there was a significant 
decrease in gain and time constant and increase in phase lead of 
the VOR over this period. Notably, this decline was not associated 
with any symptoms or signs of disequilibrium (47). By contrast, 
the patients, whose VOR responses were depressed at the start 
of testing, did not show any significant decline (48). Carol et al. 
analyzed 109 subjects using data from the Baltimore Longitudinal 
Study of Aging and found that VOR gain remained stable from 
ages 26 to 79, after which it significantly declined at a rate of 
0.012/year; the prevalence of VOR gain less than 0.8 was 13% in 
individuals aged ≥80 compared with 2.8% in those aged under 
80 (48).

Agrawal et al. carried out head thrust dynamic visual acuity 
testing on 50 individuals aged ≥70, finding a significant decline in 
dynamic visual acuity during tests of all three semicircular canals. 
Decline in each semicircular canal was strongly correlated with 
decline in the other two; interestingly, decline in the horizontal 
and superior semicircular canals was well correlated with decline 
in utricular but not in saccular function. Decline in posterior 
semicircular canal function, however, showed no clear trend 
compared with function of the otolith organs. It was also found 
that the prevalence of vestibular dysfunction was significantly 
higher for the semicircular canals (82–94%) compared with the 
saccule (54–62%) and the utricle (18–24%) (27).

From reviewing the above studies, it can be observed that 
decline in the function of the semicircular canals plays a significant 
component of age-related decline in the vestibular system, with 
a significantly higher prevalence and severity than otolith associ-
ated age-related decline. Given the function of the semicircular 
canals is to measure angular acceleration, it could be postulated 
that decline in these structures may be more associated with 
patient-reported dizziness—the presence of which represents a 
significant increase in the risk of falls in patients with vestibular 
dysfunction (3).

THe CenTRAL veSTiBULAR SYSTeM

The Brainstem and Cerebellum
The main component of the brainstem vestibular system is the 
vestibular nuclear complex straddling the pontomedullary junc-
tion. This complex of nuclei receives primary vestibular afferents 
conveyed by the vestibular nerve and also connects to various 
structures, including the cerebellum (49). The main vestibular 
nuclei comprise the descending or inferior (DVN), lateral (LVN), 
superior (SVN), and medial (MVN) vestibular nuclei (49). Lopez 
et al., in a study of 15 vestibular nuclei from people aged 40–93, 
found a neuronal loss of 3% per decade in the vestibular nuclear 
complex (50, 51). They also found that neuronal loss was higher 

in the SVN and least in the MVN. This is in contrast to a more 
recent study of eight brainstems, which showed neuronal loss in 
the DVN, MVN, and LVN, but sparing of the SVN. This study 
also found that aging had no effect on the volume or length of 
the vestibular nuclei (49). However, both studies have found 
an increase in giant neurons in the elderly, related to lipofuscin 
deposits within the cells (49, 50). Similar studies have been 
done in animals, with one study showing an age-related decline 
in the number of neurons of the mouse vestibular nuclei (52). 
Conversely, a study in male golden hamsters found conflicting 
results (53).

The cerebellum plays a critical role in the function of the 
vestibular system and is known to receive efferent inputs from 
the vestibular nuclei (54, 55). In aging, cerebellar volume and 
Purkinje cell density in the cerebellar vermis and white matter in 
the floccular nodular lobe have been shown to decrease (56–58). 
There is also a vast network in the cerebral cortex that activates 
with vestibular stimulation (59–61). Cyran et  al. have recently 
used functional magnetic resonance imaging on 45 subjects aged 
20–70 to determine age-related effects on functional connectivity 
of this vestibular cortical network (62). Using galvanic vestibular 
stimulation (GVS), which bypasses the peripheral vestibular 
system and directly stimulates the vestibular nerve, they found 
a reduction in connectivity with increasing age while controlling 
for vascular, atrophic, or structural connectivity changes. Jahn 
et al. have also used GVS to study age-related vestibular function 
changes in 57 subjects aged 20–69 (63). Specifically, by measuring 
torsional nystagmus in response to GVS, they found a U-shaped 
distribution of central vestibular function by age. They speculate 
that due to a reduction in neuronal hair cells and other peripheral 
vestibular changes, central processing becomes hypersensitive in 
order to compensate for such a loss. After the sixth decade, central 
compensation will breakdown as well and thus lead to impaired 
vestibular function in the elderly.

The cerebellum is also involved in vestibular adaptation. 
Previous work has focused on the cerebellar role in VOR adapta-
tion (64). However, recent work has demonstrated an additional 
but critical role for the cerebellum, which mediates the partition-
ing of vestibular signals involved in eye movement control versus 
those that ascend to perceptual regions mediating sensations of 
self-motion (i.e., vertigo) and spatial orientation (65). Curiously, 
relatively little work has been focused on the effect of aging upon 
cerebellar function (66). However, it is likely that aging in the 
cerebellum will impact directly upon vestibular reflex and per-
ceptual functioning and adaptation to lesions or with training.

THe veSTiBULAR THALAMiC 
PROJeCTiOnS AnD THe veSTiBULAR 
CORTiCAL SYSTeM

Spatial orientation is a critically important function in everyday 
life. Up to third of newly diagnosed dementia patients complain 
of spatial disorientation (67), causing significant disruption of 
everyday life. A core brain area implicated in spatial orientation 
and memory is the hippocampus (67). Indeed, previous neuro-
imaging study has shown hippocampal atrophy with bilateral 
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vestibular failure (68). Animal neuronal recordings also show 
cells sensitive to spatial orientation status that are disrupted by 
vestibular loss. A key concept is the notion of converting vestibu-
lar motion signals to spatial signals. Given the above evidence, 
it has been argued that the hippocampus is important for this. 
However, some authors have found normal path integration 
function with hippocampal lesions in humans but not rats (69). 
This conundrum has recently been solved by a recent human 
lesion study, which shows in fact that the important region is the 
temporoparietal junction (70). In addition, this study also found 
no impact of hippocampal lesions upon angular path integration 
function. It follows that dementia, which is more frequent in the 
elderly, may affect spatial orientation by its effect on vestibular 
cortical regions such as the TPJ (70).

Another currently unsolved question is the cortical location 
mediating the sensation of vertigo. Current wisdom suggests 
that the posterior insular cortex is the primary vestibular cortex. 
However, focal stroke, including in the posterior insular, did not 
affect vestibular sensation of self-motion (kaski). Previous work 
(65, 71) suggests, however, that the vestibular sensation of self-
motion may be distributed and hence not localizable. Whether 
such vestibular cortical networks are disrupted by aging will 
require further work.

COnCLUSiOn

As with most systems in the body, aging causes a degenerative 
effect within the vestibular system. Aging in the vestibular 

system is a multifactorial process, affecting both the peripheral 
organ and central circuits, from the peripheral end-organ to the 
brainstem to the cerebellum to the cerebral cortex. It follows that 
diseases that affect any one of these brain areas will disrupt one 
or more facets of vestibular functioning. Recent studies using 
VEMP and VOR testing have shown that there is a quantifiable 
decline in function in specific peripheral vestibular organs with 
age, which theoretically correlates with the histological and 
microscopic changes previously seen. There is also similar ongo-
ing research using GVS to identify functional loss with age of 
central vestibular pathways. While the cause of dizziness in the 
elderly is a multisystem processes, the data suggest that aging 
causes a reduction in peripheral vestibular function and also the 
cortical efficiency with which these signals are used for balance, 
which together play a significant role in the increasing the risk of 
falls in the elderly.
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