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Iron is the most abundant metal in the human body and mainly works as a cofactor for
proteins such as hemoglobin and various enzymes. No independent life forms on earth can
survive without iron. However, excess iron is intimately associated with carcinogenesis
by increasing oxidative stress via its catalytic activity to generate hydroxyl radicals.
Biomolecules with redox-active sulfhydryl function(s) (thiol compounds) are necessary
for the maintenance of mildly reductive cellular environments to counteract oxidative
stress, and for the execution of redox reactions for metabolism and detoxification.
Involvement of glutathione S-transferase and thioredoxin has long attracted the attention
of cancer researchers. Here, I update recent findings on the involvement of iron and
thiol compounds during carcinogenesis and in cancer cells. It is now recognized that
the cystine/glutamate transporter (antiporter) is intimately associated with ferroptosis, an
iron-dependent, non-apoptotic form of cell death, observed in cancer cells, and also with
cancer stem cells; the former with transporter blockage but the latter with its stabilization.
Excess iron in the presence of oxygen appears the most common known mutagen.
Ironically, the persistent activation of antioxidant systems via genetic alterations in Nrf2
and Keap1 also contributes to carcinogenesis. Therefore, it is difficult to conclude the role
of iron and thiol compounds as friends or foes, which depends on the quantity/distribution
and induction/flexibility, respectively. Avoiding further mutation would be the most helpful
strategy for cancer prevention, and myriad of efforts are being made to sort out the
weaknesses of cancer cells.
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INTRODUCTION
During the past 6–7 decades following World War II, the
average human lifespan has been enormously extended from
less than 50 years to nearly or more than 80 years in most
developed countries (https://www.cia.gov/library/publications/
the-world-factbook/rankorder/2102rank.html). This has been
achieved at least in part by the discovery of antibiotics against
bacterial infections such as tuberculosis, which had been contin-
uously present deadly diseases until that period (Zhang, 2005).
After the major human conquest over bacterial diseases, two
pathologic conditions, atherosclerosis and cancer, have become
the most common causes of human mortality. Atherosclerosis via
the thickening of the arterial intima and rupture of atheroma-
tous plaques causes myocardial and cerebral infarctions, which
either kill the patients or dramatically decrease their quality of
lives (Beckman et al., 2002). Atherosclerosis is, in a sense, an “ana-
log” disease in that apparently nobody can escape from it (Kumar
et al., 2013); rather, the speed of disease progression is much
different among individuals, which is revealed with mathemat-
ical models (Hao and Friedman, 2014) (Figure 1). In contrast,
cancer is a “digital” disease, which means that it consists of
stepwise processes and is all or nothing for the generation of
a malignant tumor (Weinberg, 2013) (Figure 1). Some patients
develop secondary or even tertiary cancers after successful cancer

treatments (Travis et al., 2013). In this review, I will focus on
the recent advancements in the understanding of cancer regard-
ing iron and thiol compounds that appears independent but are
interdependent in many aspects.

CANCER AS A GENOMIC DISEASE
Since the discovery of oncogenes, decades of studies have
revealed that cancer is basically a disease of the genomic alter-
ation (Weinberg, 2013). Alteration of genome information after
genomic damage and its inadequate repair is responsible for
cancer development, and the alterations should occur in spe-
cific genes designated as oncogenes or tumor suppressor genes
(Figure 2). There are more than 100 oncogenes identified thus
far, and all of these genes are associated with cellular prolif-
eration (Weinberg, 2013). Oncogene activation is the result of
specific mutations in genes, leading to persistent activation of cel-
lular signals toward proliferation. The genetic alterations include
point mutations, gene amplifications, or gene fusions (Stratton
et al., 2009; Pleasance et al., 2010). Tumor suppressor genes work
as guardians of the genome by arresting the cell cycle, repair-
ing the genome, and even inducing apoptosis after unrepairable
excessive genomic injury occurs. These genes are inactivated
during the carcinogenic process. It is now recognized that sev-
eral (e.g., 5–8) independent or interdependent events of mixed
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FIGURE 1 | Differences between atherosclerosis and carcinogenesis as

oxidative stress-induced diseases.

activation of oncogenes and inactivation of tumor suppressor
genes are necessary to generate a malignant tumor (Hanahan
and Weinberg, 2000). Certain genetic alterations work as an
instigator, facilitating the occurrence of sequential independent
alterations at a significantly higher incidence (mutator pheno-
type) (Loeb, 2001). This is especially true of repair genes for the
genome. Both alleles have to be disrupted to inactivate tumor
suppressor genes. In addition, not only genetic alterations but
also epigenetic changes (methylation of the promoter region) are
important in halting the expression of specific genes (Feinberg
et al., 2006).

As an exception, epigenetic alterations may lead to a malignant
tumor in childhood cancer (Esteller and Herman, 2002). Recently,
it was shown that doxycycline-controlled reprogrammable trans-
genic mice overexpressing the four Yamanaka factors (Oct3/4,
Sox2, Klf4, and c-Myc) for induced pluripotent stem cell genera-
tion develop several cancers similar to childhood blastoma-type
cancer that do not revert to normal and continue dysplas-
tic growth, even after switching off those genes. Surprisingly,
these cancers reportedly do not have major alterations of
the genes, suggesting the importance of epigenetic mecha-
nisms as well (Ohnishi et al., 2014). However, it was recently
determined by next generation sequencing that genes regulat-
ing epigenetic mechanisms are one of the major targets of
carcinogenesis in certain cancers such as leukemia and breast
carcinoma (Smith et al., 2010; Dawson and Kouzarides, 2012).
Thus, in most cases, genetic alterations regulate epigenetic
mechanisms.

FIGURE 2 | Molecular carcinogenic processes in terms of oxidative

stress.

IRON AS A RISK OF CANCER
Iron is the most abundant metal in the human body.
Approximately 4 g is present in normal adult humans. Thus,
far, no life on earth can live without iron. Simultaneously, most
of higher organisms, including humans, cannot survive without
oxygen for 5 min. Oxygen is transported throughout the body
by the heme moiety of hemoglobin, which contains as much
as ∼60% of the total iron in the body (Wriggleworth and Baum,
1980; Toyokuni, 2011a). Thus, there is a natural affinity between
iron and oxygen. The most important characteristic of molecular
oxygen is that it is easy to be reduced via one or more of four one-
electron transfer processes, ending with the formation of water
(Figure 3). During this process, superoxide, hydrogen peroxide,
and hydroxyl radicals may be generated as intermediates either via
enzymatic or chemical reactions. Hydroxyl radicals are most reac-
tive among chemical species of the biological system. Fortunately,
unfavorable reactions of this kind is usually prevented via antiox-
idative mechanisms (Halliwell and Gutteridge, 2007; Toyokuni,
2011b).

Whereas iron is an essential component, stable Fe[III] is hardly
soluble at neutral pH (10−17 M) (Lippard and Berg, 1994).
Therefore, precise and overlapping regulatory mechanisms exist
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in iron metabolism, and thus, only subtle amounts of catalytic
iron are present in normal physiological conditions. Pathologic
conditions, such as failure of iron regulatory sensors, repeated
hemorrhage and chronic inflammation concomitant with con-
tinued parenchymal cell death, result in iron overload in the
corresponding locations (Ganz, 2003), leading to oxidative dam-
age through the Fenton reaction (Minotti and Aust, 1989; Miller
et al., 1990; Halliwell and Gutteridge, 2007). Hydroxyl radicals
are the most reactive species in the biological system, and the
Fenton reaction in vivo appears to occur in the presence of cat-
alytic ferrous iron (Samuni et al., 1983; Toyokuni, 2009), leading
to the extensive scission, modification (Dizdaroglu, 1991) and
cross-linking of biomolecules (Dizdaroglu, 1991). Such oxidative
molecules eventually induce genomic alterations, increasing the
risk of carcinogenesis. Recently, prompt formation of mono- or
poly-iron FeIV = O (ferryl) species was suggested at the aqueous
interface (Enami et al., 2014).

Indeed, iron overload has been associated with carcinogene-
sis both in human and animal experiments. It is well known that
there is no active excretion pathway for iron except for hemor-
rhage, presumably due to the supreme biological importance of
iron. Intriguingly, a US epidemiological study published in 2008
reported that for peripheral arterial disease patients, phlebotomy
twice a year reduced the incidence of visceral cancer by 35% and
the cancer mortality by 61% in a randomized trial involving 1277
patients. In this study, iron reduction did not stop the progression

FIGURE 3 | Oxygen as a medium for electron flow and the associated

role of catalytic ferrous iron (Fe[II]) toward Fenton reaction. Note that
only a small fraction generates hydroxyl radicals (·OH). Refer to text and
Figure 7.

of atherosclerosis, as originally intended, but did unexpectedly
prevent carcinogenesis, including that of most common cancers
(lung, colon, prostate, etc.) (Zacharski et al., 2007).

There are several review articles published on the direct
demonstration of iron overload and carcinogenesis in animal
experiments (Toyokuni, 1996, 2002, 2009; Beguin et al., 2014),
which I summarize as Table 1. Now, the role of iron in human car-
cinogenesis remains under intensive discussion (Cho et al., 2013;
Fonseca-Nunes et al., 2014). Here, I discuss the recent results
from a genuine Fenton reaction-induced carcinogenesis model
generated by intraperitoneal injections of an iron chelate, fer-
ric nitrilotriacetate (Fe-NTA), to rodents (Ebina et al., 1986; Li
et al., 1987). Nitrilotriacetate (NTA) has been used as a com-
ponent of detergents in Canada because of its potent chelating
activity with a variety of metals, including iron (Anderson et al.,
1982). First, Fe-NTA was used to load Fe[III] to transferrin, a
serum iron transporting protein, in biochemistry laboratories
(Pootrakul et al., 1977). Then, it was used by Awai et al. to gener-
ate an animal model of hemochromatosis (Awai et al., 1979). Of
note, Okada and Midorikawa found that Fe-NTA induces renal
cell carcinoma (RCC) after repeated intraperitoneal administra-
tion in wild-type rats (Figure 4) that were accidentally under
observation for more than 1 year after the confirmation of iron
accumulation in the liver (Okada and Midorikawa, 1982). Fe-
NTA is soluble at neutral pH and is the most potent catalyst thus
far of Fenton reaction with 3–4 free iron ligands (Toyokuni and
Sagripanti, 1992, 1993).

After intraperitoneal injection, Fe-NTA is absorbed through
the peritoneum into the portal vein and then enters the sys-
temic blood flow. Thereafter, Fe-NTA is filtered through the
glomeruli into the lumina of the renal proximal tubules, where
Fe(III)-NTA is reduced to Fe(II)-NTA, presumably by the pres-
ence of L-cysteine (Okada et al., 1993; Okada, 1996) (Figure 5).
The Fenton reaction indeed occurs in vivo in rats and mice
because a variety of modified products are demonstrated in this
model, including 4-hydroxy-2-nonenal (HNE) (Toyokuni et al.,
1997a), HNE-modified proteins (Toyokuni et al., 1994b; Fukuda
et al., 1996b), other lipid peroxidation products (Toyokuni et al.,
1990; Uchida et al., 1995), 8-oxoguanine (Toyokuni et al., 1994a,
1997b), thymine-tyrosine cross-links (Toyokuni et al., 1995a) and
other oxidative DNA base modifications (Toyokuni et al., 1994a).

Table 1 | Models of iron-induced carcinogenesis using wild-type animals.

Iron compounds Administration route Species Induced cancer References

Iron oxide Inhalation Mouse Lung adenocarcinoma,
fibrosarcoma

Campbell, 1940

Iron dextran complex Intramuscular Rat Spindle cell sarcoma Richmond, 1959

Ferric nitrilotriacetate Intraperitoneal Rat Renal cell carcinoma Ebina et al., 1986; Nishiyama et al., 1995; Tanaka
et al., 2000, 2004; Akatsuka et al., 2012

Ferric nitrilotriacetate Intraperitoneal Mouse Renal cell carcinoma Li et al., 1987

Ferric saccharate Intraperitoneal Rat Malignant mesothelioma Okada et al., 1989; Hu et al., 2010

Ferric ethylene-diamine-
N,N′-diacetate

Intraperitoneal Rat Renal cell carcinoma Liu and Okada, 1994

The models shown above demonstrate the carcinogenicity of iron compounds in rodents.
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FIGURE 4 | Macroscopic appearance of ferric nitrilotriacetate

(Fe-NTA)-induced renal cell carcinoma (interrupted circle; tumor

diameter is more than 40 mm). K, normal kidney of the opposite side; L,
liver; T, testis.

FIGURE 5 | Molecular mechanism of ferric nitrilotriacetate

(Fe-NTA)-induced oxidative damage of renal proximal tubules after a

single intraperitoneal injection. This depends on two distinct
characteristics of renal proximal tubular lumina: paucity of antioxidattive
proteins such as albumin and reductive environment through the presence
of L-cysteine with GSH cycles.

DNA single- and double-stranded breaks have also been shown
in vitro (Toyokuni and Sagripanti, 1993, 1996).

Recently, we demonstrated an abundance of Fe(II) in the
lumina of renal proximal tubules after Fe-NTA injection

(Mukaide et al., 2014) with a novel fluorescent probe (RhoNox-
1) specific for catalytic ferrous iron (Hirayama et al., 2013).
Furthermore, we showed that the induced RCCs have massive
chromosomal alterations similar to those of human cancers, of
which the amplification of c-Met (receptor for hepatocyte growth
factor) and deletion of Cdkn2a/2b (p16Ink4a/p15Ink4b tumor sup-
pressor genes) are most common (Tanaka et al., 1999; Akatsuka
et al., 2012). The latter occurs early in carcinogenesis (Hiroyasu
et al., 2002). Considering that it is rare thus far to find mas-
sive chromosomal alterations in any other carcinogenesis model
using wild-type animals, we believe that iron overload is one of
the most important risk factors in human carcinogenesis as well.
Of note, asbestos- (Jiang et al., 2012) and multi-walled carbon
nanotube-induced (Nagai et al., 2011) mesothelial carcinogenesis
in wild-type rats are the models that confer massive chromo-
somal alterations including homozygous deletion of Cdkn2a/2b.
We believe that these are through local iron overload (Toyokuni,
2013b).

There are several distinct human diseases that preclude can-
cer via iron overload (Table 2). Endometriosis is defined by the
presence of endometrial tissue outside of the uterine cavity and
occurs in as many as 10% of women in their reproductive years.
An epidemiological study revealed that ovarian endometriosis is
associated with a high risk for clear cell carcinoma (Pearce et al.,
2012). Because monthly menstrual hemorrhage occurs in these
ectopic tissues, local iron overload is generated in situ (Yamaguchi
et al., 2008). We recently studied endometriosis-associated ovar-
ian clear cell carcinoma with an array-based comparative genome
hybridization and found that c-Met (the same target gene as those
of Fe-NTA-induced RCCs) is the most frequently amplified gene
(Yamashita et al., 2013). Recently, it was shown with the use of
knockout mice for Cdkn2a/2b and/or Pten that DNA double-
stranded breaks cooperate with the loss of Ink4 and Arf (pro-
tein products from Cdkn2a/2b after alternative splicing) tumor
suppressors to generate glioblastomas with frequent c-Met ampli-
fication (Camacho et al., 2014). It is remarkable that all of the
necessary genomic alterations occurred in the Fe-NTA-induced
RCC model of wild-type animals.

Together, these results indicate that the Fenton reaction can
induce deletion/amplification mutations in target genes dur-
ing carcinogenesis, presumably through DNA double-stranded
breaks (Figure 6). Currently, next-generation sequencing stud-
ies are in progress for the above-mentioned tumors and
may help determine whether iron overload can induce driver
point mutations and create fusion genes through chromosomal
translocations.

REGULATION OF HYDROGEN PEROXIDE VIA THIOL
COMPOUNDS
Here I discuss the other partner of Fenton reaction, hydro-
gen peroxide. Hydrogen peroxide, a non-radical species, is a
normal metabolite occurring at an approximately 10 nM intra-
cellular concentration. Its increase in concentration may initi-
ate Fenton reaction in the presence of catalytic Fe[II]. In the
liver, which has one of the highest metabolic activities in the
body, hydrogen peroxide is produced at 50 nmol/min/g tissue
(Sies, 2014). In the cells and in tissues with iron overload,
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Table 2 | Human carcinogenesis associated with iron overload.

Target

organ(s)

Pathogenesis Cancer Major genetic

alterations

References

Genetic
hemochromatosis

Liver Hereditary disorder (types
1–5); excessive iron
absorption

Hepatocellular
carcinoma, gastric
cancer, etc.

Fracanzani et al., 2001;
Agudo et al., 2013

Viral hepatitis B
and C

Liver Autoimmunity-induced
hepatocyte damage and iron
accumulation

Hepatocellular carcinoma Bonkovsky et al., 1997;
Kato et al., 2007

Endometriosis Ovary Monthly menstrual
hemorrhage in ectopic
endometrial tissue

Clear cell carcinoma,
endometrioid
adenocarcinoma

Amp of c-MET Pearce et al., 2012;
Yamashita et al., 2013

Asbestos exposure Mesothelium,
lung

Content and adsorption of
asbestos fiber; chronic
inflammation by foreign body

Malignant mesothelioma;
lung cancer

HD of
CDKN2A/2B,
Amp of c-MET

Jiang et al., 2012; Aierken
et al., 2014

Amp, amplification; HD, homozygous deletion.

FIGURE 6 | Consequences of Fenton reaction in the genome DNA

during carcinogenesis. HNE, 4-hydroxy-2-nonenal.

the regulation of the concentration and localization of hydro-
gen peroxide is a critical issue. It is now widely accepted that
hydrogen peroxide is utilized in metabolic regulation in ways sim-
ilar to diffusible gasses such as CO, NO, and H2S (Yang et al.,
2008).

A major source of hydrogen peroxide comes from the dismu-
tation of the superoxide anion radical, which is mainly generated
through NAD(P)H oxidases operated under the control of growth
factors and cytokines, such as interleukin-1 and tumor necro-
sis factor-α (Jiang et al., 2011). This mechanism is actively used
for antibacterial defense in neutrophils and macrophages during
inflammation (Bedard and Krause, 2007). Another major source
of hydrogen peroxide resides in the physiological mitochondrial
processes through Complex I, II, and III (Cadenas and Davies,
2000).

The metabolic elimination of hydrogen peroxide includes the
catalytic reaction, which is performed by catalase in peroxisomes

as well as by numerous peroxidases (Figure 7). In addition, in tis-
sues, hydrogen peroxide diffuses away from its source across the
plasma membrane to the extracellular space, or even to adjoin-
ing cells, occurs (Giorgio et al., 2007). Various peroxidases are
under the control of metabolic signals, and the most potent per-
oxidase is peroxiredoxins (Rhee et al., 2005). The 106-fold higher
rate constant of the reaction of hydrogen peroxide with the cys-
teine thiolate in peroxiredoxins using thioredoxin as a substrate
in comparison to most other deprotonated thiol compounds
gives them a major role in the biological chemistry of hydro-
gen peroxide removal (Winterbourn, 2013). However, cysteine
residues of peroxiredoxins are easily hyperoxidized to cysteine
sulfinic acid, resulting in the inactivation of peroxidase activity.
As a result, if this occurs, there is an accumulation of hydro-
gen peroxide, allowing the oxidation of specific target proteins,
a phenomenon that is comparable to the opening of a gate for
signaling (Wood et al., 2003). This is the molecular basis for
hydrogen peroxide compartmentation in signaling (Antunes and
Cadenas, 2000) (Figure 7). This activation is finally shut down by
sulfiredoxin, which recovers hyperoxidized peroxiredoxins (Jeong
et al., 2012). Glutathione peroxidases in various distinct sub-
cellular compartments and cells play a major function in the
regulation of hydrogen peroxide and lipid peroxides (Brigelius-
Flohe and Maiorino, 2013). Glutathione reductase and the efflux
of oxidized glutathione (GSSG) allow the maintenance of the
fraction of reduced glutathione (Sies, 1999). Thioredoxin per-
oxidase, a selenium-dependent enzyme, also has an important
role in the elimination of hydrogen peroxide (Lu and Holmgren,
2014).

Recently, hydrogen peroxide has been shown to use water
channels, the aquaporins, to cross the lipid membrane more
rapidly than diffusion allows (Bienert et al., 2006). Specific aqua-
porins promote the diffusion of hydrogen peroxide and are thus
referred to as peroxiporins (Bienert et al., 2007). Aquaporin-
8 can modulate the transport of hydrogen peroxide produced
by NAD(P)H oxidase in leukemia cells (Bienert et al., 2007),
suggesting novel targets for cancer therapy in that, in general,
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FIGURE 7 | Antagonizing role of iron and thiol compounds. Numerous
overlapping mechanisms using thiol compounds exist to decompose
hydrogen peroxide to water in order to bypass the generation of hydroxyl
radicals. Hydrogen peroxide is now recognized as a signaling molecule
whose main regulator is the peroxiredoxin/sulfiredoxin systems, which are
at least partially under the control of the Nrf2/Keap1 system. Some cancers
hijack Nrf2/Keap1 system with mutation in these genes, which persistently
activate antioxidant systems in the cancer cells. Refer to text and Figure 8

for details.

cancer cells are under persistent oxidative stress (Toyokuni et al.,
1995b).

THIOL-DEPENDENT ANTIOXIDANT SYSTEMS AND CANCER
The GSH and thioredoxin systems are generally activated in
cancer (Tanaka et al., 1997; Dutta et al., 2005; Nogueira and
Hay, 2013; Penney and Roy, 2013; Traverso et al., 2013). Among
them, there has been much interest in the overexpression of
GSH S-transferase in rodent hepatocarcinogenesis (Hatayama
et al., 1993) and in human cancers (Huang et al., 2013; Tang
et al., 2013). GSH S-transferase pi has now been connected with
peroxiredoxin-6 for its recovery of peroxidase activity (Zhou
et al., 2013). Acute temporary as well as persistent overexpression
of GSH S-transferase pi was observed during renal carcinogen-
esis induced by Fe-NTA (Fukuda et al., 1996a; Tanaka et al.,
1998).

Nrf2 and Keap1 are now recognized as a master regulatory
transcription system for antioxidant enzymes (GSH synthesis,
hydrogen peroxide removal, detoxification, drug excretion, and
NADPH synthesis) (Suzuki et al., 2013). Under normal condi-
tions, Nrf2 is constitutively produced but is inactivated in the
cytoplasm following its interaction with Keap1 by ubiquitination
and proteasomal degradation. Keap1 is indeed a sensor molecule
for oxidative stress. The multiple cysteine residues on Keap1,
which are ultrasensitive to electrophiles, are critically important
for the binding with Nrf2 (Itoh et al., 1997, 1999; Mitsuishi et al.,
2012) (Figure 8).

With the aid of next generation sequencing, it has become
clear that Nrf2 is consistently activated in certain cancers with
various mutations. Mutually exclusive Nrf2 mutations or Keap1
mutations are observed in cancers for Nrf2 to be localized in the

FIGURE 8 | Regulation of Nrf2 transcription machinery through

oxidative stress sensor, Keap1, with numerous redox-reactive cysteine

residues.

nucleus (Mitsuishi et al., 2012). Sulfiredoxin is also under the
transcriptional regulation of Nrf2 (Jeong et al., 2012). Thus, can-
cer cells have hijacked this system, making them consistently more
resistant to oxidative stress (Figure 7). Recently, peroxiredoxin 1,
4, and 6 were shown either to enhance tumor progression or to
promote metastasis (Ishii et al., 2012).

CANCER STEM CELLS AND THIOL METABOLISM
Stem cells are defined as undifferentiated immature cells that,
upon certain stimuli or signaling, differentiate into a planned
type of mature cell(s). Cancer stem cells represent a distinct sub-
set, namely, cells that have acquired all the necessary genetic
and epigenetic alterations but are usually quiescent and divide
only if necessary (Holland et al., 2013). This feature is in con-
trast to the cancer tissue as a whole, which is exposed to per-
sistent oxidative stress (Toyokuni et al., 1995b). In this sense,
cancer stem cells constitute small heavenly territories in cancer
tissue. In transplant experiments, theoretically, even a single can-
cer stem cell can generate a large tumor. Thus, the existence
of cancer stem cells has been used to explain chemotherapy-
resistance in such a dormant state. These cancer stem cells
are more resistant than non-stem cancer cells to cytotoxic
chemicals.

Recently, Hideyuki Saya’s group reported that cancer stem
cells in certain cancers present CD44 variant 8-10 (CD44v)
isoform on the plasma membrane, which stabilizes the cys-
tine/glutamate transporter (antiporter; xCT), leading to increased
GSH (Ishimoto et al., 2011). This may at least partially
explain the robustness of cancer cell defenses against oxida-
tive stress, including those involved in chemotherapy-resistance.
There is already an xCT antagonist, sulfasalazine, and clini-
cal trials are underway in advanced gastric cancer in Japan
(Figure 9A).
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FERROPTOSIS
Recently, a different type of cell death other than necrosis, apop-
tosis, or autophagy was reported in cancer cells. The oncogenic
RAS-selective lethal small molecule erastin triggers a unique iron-
dependent form of non-apoptotic cell death called ferroptosis
(Dixon et al., 2012). Similar to glutamate, erastin inhibits cys-
tine uptake by the cystine/glutamate antiporter, inducing a void

FIGURE 9 | Key role of the cystine/glutamate antiporter in cancer cells.

(A) Overexpression of CD44v(8-11) stabilizes the cystine/glutamate
antiporter to increase cysteine and glutathione (GSH) in cancer stem cells.
(B) Conversely, erastin blocks the cystine/glutamate antiporter, lowers
cysteine and finally induces iron-dependent cancer cell death (ferroptosis),
which can be blocked with deferoxamine (DFO).

of antioxidant defenses, resulting in iron-dependent oxidative
stress. Interestingly, this type of cell death is inhibited by an iron
chelator, deferoxamine, which removes cellular iron (Figure 9B).
Deferoxamine functions in clear contrast to NTA in that it
blocks all 6 ligands of iron (Toyokuni and Sagripanti, 1992).
The authors suggest that one of more yet unidentified iron-
dependent enzymes are functioning as a core lethal mechanism
for ferroptosis (Dixon et al., 2012).

FUTURE CANCER PREVENTION AND CANCER
THERAPEUTICS
It is generally accepted that chronic oxidative stress via excess
iron leads to carcinogenesis, presumably through hydroxyl rad-
icals, and that most of the defense system is associated with thiol
compounds whereas iron and thiol compounds are apparently
essential elements. These two are antagonistic in abundance, and
their characteristics are distinct (Table 3).

For cancer prevention, we recognize that cancers of differ-
ent tissues are completely different diseases. Specific risks are
present for each type of cancer, and we have to decrease spe-
cific risks as early as possible in our lives. For example, asbestos
is a definite carcinogen, causing malignant mesothelioma, and
smoking increases the risk of more than 20 different cancers,
including laryngeal and lung cancers (Toyokuni, 2013a). Today
we demand practical methods for prevention of overall can-
cer. Antioxidant systems, if deficient, have to be supplemented.

Table 3 | Antagonizing roles of iron and thiols.

Iron Thiol compounds

Transition Fe(II), transport across membrane, cytosol/Fe(III),
extracellular)

-SH(reduced)/-SS-(oxidized)

Reaction Catalytic Fe(II): Fenton reaction in the presence of hydrogen
peroxide; oxidative damage by hydroxyl radicals, irreversible
but usually limited with various preventive mechanisms

Common; non-destructive; redox regulation; usually
reversible with reducing enzymes (Figure 7); free form,
H2S, SH− (Nishida et al., 2012)

Biological significance Cofactor of proteins (heme)/enzymes (catalytic site); stored
as ferritin; oxygen transport and storage

Formation of mildly reductive intracellular
environments; mostly present as cysteine residue in
peptides (GSH) or proteins (thioredoxin,
metallothionein, etc.); cystine when oxidized; redox
signal

Metabolism Slow; essential nutrient; nearly closed system (whole 4 g in
adults; 1 mg in and out daily); no excretion pathway except
bleeding (hemoglobin); transported by transferrin and its
receptor system

Fast; cysteine is synthesized from methionine
(essential amino acid)

Regulation Iron transporters; HFE, hepcidin, IRP-1 and -2
(posttranscriptional) (Hentze and Kuhn, 1996), etc.

Transcription factors: Nrf2/Keap1, AP-1, NF-κB (Schenk
et al., 1994; Jeong et al., 2012), etc.

Deficiency/excess/toxicity Deficiency causes anemia; excess leads to oxidative tissue
damage and sometimes carcinogenesis

Toxicity known for certain thiol compounds to initiate
Fenton-like reaction (Munday, 1989); persistent
activation of the associated systems is observed in
cancer and its stem cell (refer to text for details)

Molecular affinity O2, CO, NO; transferrin, siderophore (Devireddy et al.,
2010); mitoferrin (Shaw et al., 2006), frataxin (Schmucker
et al., 2011), Fe-S cluster (Hentze et al., 2010)

Electrophiles (Dennehy et al., 2006), toxic metals (Hg,
Cd, Pb, and As) (Quig, 1998), 8-nitro-cGMP (Nishida
et al., 2012)
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However, thus far, antioxidant supplementation has not offi-
cially been recommended based on the results of epidemiological
studies (Bjelakovic et al., 2004, 2007). Excessive supplementation
with β-carotene even increased the risk of lung cancer in smok-
ers (Albanes et al., 1996). Here appropriate iron reduction via
blood donation or phlebotomy may be a potential method of
cancer prevention. Among the three components of iron, oxy-
gen, and thiol compounds, we can modify only iron status after
all. Humans live much longer than they did 70 years ago, fol-
lowing the conquest of major infectious diseases. After reaching
middle age, iron is found in excess, especially in men of well-
developed countries, because there is no other way to excrete iron
(Toyokuni, 2011a). This theory requires further epidemiological
studies and clinical trials for demonstration. Reportedly, cancer
may hijack cytokine systems (e.g., SMAD4) via mutation to col-
lect iron for proliferation (Wang et al., 2005). Notably, there is
an opposing report that iron deficiency accelerates Helicobacter
pylori-induced carcinogenesis in rodents and humans (Noto
et al., 2013). Iron deficiency appears to enhance the virulence of
Helicobacter pylori, which definitely requires iron to live. This fact
needs to be further discussed. Iron deficiency should be avoided
because it causes anemia (hemoglobin) and muscle weakness
(myoglobin).

Currently, antibody therapies (Scott et al., 2012) and small-
molecular-weight kinase inhibitors (Fabbro et al., 2012) are pop-
ular and work well as individualized therapies for specific cancers.
However, the drawbacks of these therapies include the acquisition
of resistance and high medical costs. As an alternative approach,
some scientists are already thinking of attacking the Achilles’ heel
of cancer. As foreseen from the presence of ferroptosis, cancers
in general accumulate iron for proliferation, which may allow the
abundance of catalytic iron in the cytoplasm. Indeed, hydrogen
peroxide is not the only molecule to induce the Fenton reaction.
Ascorbate (vitamin C) and L-cysteine as reducing agents can also
initiate the Fenton reaction in the presence of catalytic Fe(III)
(Toyokuni and Sagripanti, 1996). In light of this, high-dose ascor-
bate therapy is being tested in a clinical trial with a standard
regimen of chemotherapy because ascorbate has long been proven
to be a safe drug in humans (Welsh et al., 2013).

EPILOG
Iron and sulfur are essential for life despite their presence in small
amounts. Excessive iron cause oxidative damage in the genome,
which can be a basis of somatic mutational evolution in search
of resistance against oxidative stress and cellular proliferation.
Apparently, iron and thiol compounds are antagonistic toward
oxidative stress, but even thiol compounds can be our foes in
cancer. Therefore, it is difficult to conclude the role of iron and
thiol compounds as friends or foes, which depends on the quan-
tity/distribution and induction/flexibility, respectively. Avoiding
further mutation would be the most helpful strategy for cancer
prevention, and myriad of efforts are being made to sort out the
weaknesses of cancer cells.
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