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Abstract: Photothermal materials are attracting more and more attention. In this research, we synthe-
sized a ferrocene-containing polymer with magnetism and photothermal properties. The resulting
polymer was characterized by Fourier-transform infrared (FT-IR), vibrating sample magnetometer
(VSM), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray
photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and thermogravimetric analysis (TGA).
Its photo-thermocatalytic activity was investigated by choosing methylene blue (MB) as a model
compound. The degradation percent of MB under an irradiated 808 nm laser reaches 99.5% within
15 min, and the degradation rate is 0.5517 min~?!, which is 145 times more than that of room tempera-
ture degradation. Under irradiation with simulated sunlight, the degradation rate is 0.0092 min~!,
which is approximately 2.5 times more than that of room temperature degradation. The present study

may open up a feasible route to degrade organic pollutants.

Keywords: ferrocene-containing polymer; photothermal; Fenton reaction; methylene blue

1. Introduction

Organic photothermal conversion materials have attracted intensive attention due to
their prominent property that can transform infrared light into heat, and have displayed
great potential applications in many fields, such as photothermal /photoacoustic imaging,
photothermal therapy, photothermal killing of bacteria, photothermal-electric devices,
and shape-memory devices [1]. In addition, some photothermal materials have been used
for water treatment, which showed a positive effect on repairing the environment. However,
few reports have combined these photothermal properties with the Fenton reaction to
degrade organic pollutants.

Besides adsorption separation [2-5], the Fenton reaction has been extensively explored
in the field of the removal of hazardous organic pollutants in water, which can directly de-
grade the contaminant into harmless inorganic salts, water, or carbon dioxide [6]. Most of
this research about the photo-Fenton reaction for organic pollutants is mainly focused
on UV and visible light; however, 54% of the solar spectrum is near-infrared (NIR) light,
which is rarely utilized [7]. Generally, common materials with photothermal effects include
noble metals, organic compounds, carbon-based materials, aluminum nanoparticles, metal-
lic oxide, and metal sulfide [8]. The photothermal conversion performance of materials can
be improved by covalently linking the electron-donor, extending the molecular conjugation
length and electron-acceptor fragments, and inhibiting the radiative transition process [6].

Ferrocene is regarded as having a sandwich-like molecular configuration and an
organometallic compound that is highly inert owing to the great dissociation energy
iron-cyclopentadienyl (91 cal/mol) [9], which has been employed in a wide range of ar-
eas such as electronic, electrochemical, nanomedicine, and biological sensing, and as a
catalyst. Ferrocene-containing polymers have characteristic features, such as excellent
redox activity, high chemical, and thermal stability, and are becoming an important kind
of material. Different types of ferrocene-containing polymers have been synthesized by
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various polymerization strategies and post-modification methods [10]. Among them,
ferrocene-containing polymers with an alternating conjugated aromatic segment are usu-
ally synthetically challenging [11], and they has been prepared through polycondensa-
tion, intermolecular coupling, and cross-metathesis. In these polymerization methods,
the polycondensation approach is a fast and facile synthesis method involving the interac-
tion of two defunction grounds or same-type molecules [10,12].

Herein, a new ferrocene-containing polymer was synthesized via a polycondensation
approach. 1,1’-Ferrocenedicarboxaldehyde and 4,4’-diamino-p-terphenyl were connected
via a facile imine condensation reaction to afford the desired conjugated polymer. To inves-
tigate the catalytic and photothermal performance of the resulted polymer, the adsorption
and degradation of methylene blue (MB) was studied.

2. Experimental Section
2.1. Reagents and Chemicals

1,1’-Ferrocenedicarboxaldehyde (97.0%), dioxane (99.0%), and mesitylene (98.0%)
were purchased from Aladdin Reagent Co. Ltd. (Shanghai, China). 4,4’-diamino-p-
terphenyl and MB were obtained from J&K Chemical (Beijing, China). Methanol was pur-
chased from Fuchen Chemical Reagent Co. Ltd. (Tianjin, China). N,N-Dimethylformamide
(DMF) and hydrogen peroxide (H,O,, 30.0 wt%) were purchased from Damao Chemical
Reagent Factory (Tianjin, China). Acetic acid (CH3COOH, 36.0%) was purchased from
the Institute of Guangfu Fine Chemical (Tianjin, China). All the available reagents and
chemicals were used without further purification.

2.2. Instruments

Scanning electron microscopy (SEM) images were obtained by a field emission scan-
ning electron microscope (Quanta FEG 250). The corresponding energy-dispersive X-
ray spectroscopy (EDS) was carried out on an Oxford INCA X-MAX50 (Oxford, UK).
X-ray photoelectron spectroscopy (XPS) experiments were carried out on an Escalab 250xi
photoelectron spectrometer (Thermo, Boston, Massachusetts, USA). The magnetization
curve was determined by a commercial magnetic property measurement system (Squid-
VSM, Quantum, San Diego, California, USA). Fourier-transform infrared (FT-IR) spectra
(4000 cm~1-400 cm~!) in KBr were acquired on a Vector 22 FT-IR spectrophotometer
(Bruker, Germany). A thermogravimetric analysis (TGA) was performed using Univer-
sal V4.5A TA Instruments (TA, Newcastle, Delaware, USA) with a ramp of 10 K min—!
in nitrogen atmosphere between 40—800 °C. The crystalline properties of polymer were
determined by X-ray diffraction (XRD, D8 Advance Bruker-AXS, Bruck, Germany) analysis
using Cu-Ko radiation. The concentrations of MB solution were detected by a UV-visible
spectrophotometer (UV-Vis, TM-1901, Puxi, China). Other instruments were used includ-
ing a simulated sunlight xenon lamp light source system (Beijing Bofeilai Technology
Co., Ltd., Beijing, China, PLS-SXE300D) and an optical-fiber-coupled 808 nm diode-laser
(Changchun New Industries photoelectric technology Co. Ltd., Changchun, China).

2.3. Fabrication of Polymer

1,1-Ferrocenedicarboxaldehyde (24.2 mg, 0.10 mmol), 4,4’-diamino-p-triphenyl (31.2 mg,
0.12 mmol), dioxane (0.5 mL) and mesitylene (0.5 mL) were added into a Pyrex tube (10 mL).
After the mixture was sonicated for 5 min, acetic acid (0.2 mL, 1 M) was added. The system
was sonicated for 15 min. The reaction tube was sealed with a triple freezing—thawing
cycle, and the reaction was maintained at 180 °C for 72 h. The product was collected
by filtrating, and washing with DMF and CH3OH until the supernatant became clear.
Then the brownish-black powder was obtained after being drying at 100 °C.

2.4. Adsorption Performance of the Materials to MB

In order to evaluate the adsorption property of polymer, all adsorption experiments
were carried out under dark conditions. For isothermal adsorption and adsorption kinetics
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experiments, 2.0 mg of magnetic polymer was added to 2.0 mL of the known concentration
of MB dye solution. In the adsorption isothermal experiments, the concentrations of MB
ranged from 40.0 to 500.0 mg L~! and the incubation time was 24 h. In adsorption kinetics
experiments, 400.0 mg L~! of MB solution was selected. The absorption of MB solution
was checked at 664 nm. The adsorption capacities of the resulting polymer were obtained
according to the following equation [13,14]:

Qo = (C()*CE)V (1)

¢ m
The adsorption amount (q;) was calculated by

t m
where ge and g; represent the equilibrium adsorption capacity and the adsorption amount
at time t, respectively, Cy, C,, and C; are the MB concentration at initial time, equilibrium
and time t, respectively, V is the volume of the solution, and m is the mass of the adsorbent.

2.5. Photo-Thermocatalytic Degradation Experiment

After adsorption equilibrium, the polymer was added to 1000.0 mg L~! of MB so-
lution. The degradation experiment was performed in the presence of HO, under the
irradiation of an NIR (808 nm, 2 w cm~2) or 300 W Xe lamp. The catalytic activity was
confirmed by measuring the changes in the absorption at different time intervals using
a UV-vis spectroscopy at 635 nm. The experiment was also performed at 25 °C under
dark conditions.

3. Results and Discussion
3.1. Preparation and Characterization

The polymer was synthesized by the condensation reaction between
1,1’-ferrocenedicarboxaldehyde and 4,4’-diamino-p-triphenyl via the formation of imine
linkages (Scheme 1). The morphological structures of the polymer were characterized via
SEM (Figure 1). The SEM image showed flocculent structure. The EDS images showed the
uniform distributions of the C, N, Fe, and O elements without supplementary impurities
in the polymer (Figure 2). The chemical structure of polymer was characterized by FT-IR
(Figure 3a). The FT-IR spectrum of 1,1’-Ferrocenedicarboxaldehyde showed a significant
peak at 1675 cm~! for HC=O stretching vibration. The FT-IR spectrum of 4,4’-diamino-p-
terphenyl showed NH, stretching and bending vibration at 3443 cm~!, and 1606 cm ™!,
respectively. The polymer showed characteristic stretch bands at 460-578, 740-878, 1485,
and 2974 cm~!, which were assigned to Cp-Fe, C-H bending modes, C=C stretch, and C-H
stretching vibration in Cp, respectively. The typical peaks for C=N vibration of polymer
at 1610 cm ! indicated imine bond formation in the polymer. The peaks at 1675 cm ™!
and 3372 cm~! were assigned to the remaining terminal aldehydes and N-H stretch band,
respectively. The magnetic properties of the resulting polymer were measured in the
field range from —20,000 to 20,000 Oe (Figure 3b). The saturation magnetization of the
polymer was approximately 8.7 emu g~ !, which indicated that the magnetic property of
polymer could be used for magnetic separation. The reason may be due to the expected
magnetic coupling between the alternate donor and recipient under strict superposition
conditions. From the TG curve (Figure 3c), we could observe that the solvent in the poly-
mer was evaporated at approximately 100 °C. A gently thermolytic degradation in the
temperature range of 100-660 °C was observed. Subsequently, a rapid thermal degradation
occurred. The mass reduction at 800 °C was about 76.04%. The DSC curve shows the
main steps for the decomposition of polymer and the maximum rate of degradation were
at 660°C, which indicates excellent thermal stability. In Figure 3d, a single low intensity
broad peak appeared at 26 = 18.5°, which is characteristic of the amorphous nature of
the resulting polymer [15]. This is similar to the peak location of semi-crystalline ferro-



Polymers 2021, 13, 558 40f 11

cenyl polymers [16]. The chemical structure components of the sample surfaces were
determined by XPS. The intensive lines of C 1s, N 1s, O 1s, and Fe 2p corresponded to
the photoelectron peaks of each element (Figure 4.). The C 1s peak in the spectra of the
resulting polymer shows the four components at the binding energies of 284.6, 285.1, 286.3,
287.3, and 290.4 eV, which was due to the functional groups of C-C/C-H, C=C, C-N, C=N,
and C=0 [17-21], respectively. In addition, the peaks at 398.6, 399.7, and 402.8 eV were
related to the chemical environments of C=N, C-N, and N-H [22-24], respectively. The peak
of O 1s centered at 532.1 eV corresponded to the C=O group [25]. The Fe 2p XPS signals
located at 707.7, and 720.5 eV belonged to Fe(II) 2ps,, and Fe(Il) 2pq /; in the ferrocene
unit [25-27]. The peaks at 711.6 and 726.7 eV corresponded to Fe(III) 2p3/,, and Fe(III)
2p1 /2 [28], respectively.

L —cro

e

1,4-Dioxane| A
Mesitylene

180°C

Figure 1. SEM of the resulted polymer with different scale bar. (a) 5 pm, (b) 2 um, (c¢) 1 pum,
and (d) 500 nm.
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Figure 2. Element mapping images of the resulting polymer. (a) SEM image for element mapping,
(b) overlayer, (c) N element, (d) C element, (e) O element, and (f) Fe element.
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Figure 3. (a) The Fourier-transform infrared (FI-IR) spectra of the resulting polymer, 1,1'-
Ferrocenedicarboxaldehyde and 4,4-diamino-p-terphenyl. (b) Magnetization curves of the resulting
polymer at room temperature, inset picture: magnetic response of the materials. (c) Thermogravimet-
ric analysis (TGA)-DSC plots of the resulting polymer. (d) XRD patterns of the resulting polymer.
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Figure 4. XPS spectra of the (a) C1s, (b) N1s, (c) Ols, and (d) Fe2p spectra of the resulting polymer.
3.2. Photothermal Property

The photothermal effect of the resulting polymer was measured by dispersing it in
water under irradiation with a near infrared 808 nm laser with a power density of 2W m~2.
The temperature of the resulting polymer increased rapidly, recorded by an IR thermal
camera. As shown in Figure 5a, the temperature of the resulting polymer sharply increased
and reached 51.1 °C within 600 s. On the other hand, the temperature of the water in
the absence of the polymer improved only 3.6 °C. The cooling curve was also monitored
(Figure S1), and the calculated conversion efficiency was 19.25% (details are shown in the
supporting information). The temperature response of the polymer suspension measured
over five repeated irradiation cycles showed a perfect cyclability of maximum temperature
(Figure 5b). These results confirmed the excellent photothermal conversion efficiency.
The reason might be attributed the Fc, which as an excellent electron-donating unit can
inhibit singlet-oxygen (10,) production and quench fluorescence emission by a photo-
induced electron transfer (PET) process, and thus improve the nonradiative transition of
thermal energy release [29]. Furthermore, it has also been proven that iron-containing
polymer is considered as a new class of photothermal agents [30].

(b)

(a) —=—Polymer
[ ——H O

AT(°C)
Temperature(°C)

sk s s s s 20 L L L L L
0 200 400 600 800 1000 0 2000 4000 6000 8000 10000

Time(s) Time(s)

Figure 5. (a) The rising curves of the resulting polymer and water, (b) Five cycles of the photothermal
stability test of the resulting polymer.
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3.3. Adsorption Property

The resulted polymer as an adsorbent for MB was evaluated by measuring adsorption
isotherms and adsorption kinetics. As shown in Figure 6a, the adsorption capacity of
the resulting polymer increased with the variation of MB concentration from 40.0 to
400.0 mg L~!. When the concentration exceeded 400 mg L~!, the adsorption capacity
maintained constant, at 42.28 mg g~ !. The results could be explained by the N atom and
MB coordination to the Fe element and strong 7t-7t interactions. The adsorption isotherms
can be used to describe the types of interactions between the targets and adsorbents. Thus,
the adsorption isotherms mechanism of MB on the resulting polymer were analyzed to fit the
experimental data with the Langmuir, Freundlich, and Temkin isotherms models, respectively.
The corresponding linear equations are presented below (Equations (3)—(5)) [31],

Ce Ce+ 1

=== ©)
e 9m KLqm
1
Inq,= InKf + HlnCe 4)
qe= BrInK71+B1InCe 5)

where ge (mg g~ !) is adsorption capacity and C, (mg L) is concentration at equilibrium.
qm (mg g~1) and K (L g~!) are the maximum adsorption capacity and the Langmuir
constant, respectively. Kg (L mg~!) and n represents Freundlich adsorption empirical
constants. By = RT/br, and bt and R are constants related to the energy of adsorption and
gas constants, respectively. Kt is the Temkin equilibrium constant.

The fitting results arre given in Figure 6b and Table S1. According to the corre-
lation coefficients, the experiment results matched best with the Langmuir model best,
which indicated the monolayer coverage of the MB onto the adsorbent surface.

In addition, the adsorption rate and kinetic mechanism of MB onto the resulting
polymer are also highly important properties (Figure 6¢c). In order to investigate the
adsorption kinetics, several models (pseudo-first order, pseudo-second order, intra-particle
diffusion, and elovich) were adopted. The corresponding simulations were finished by the
following Equations (6)—(9) [32], respectively,

q=qe(1—e M9 ©)
2
B qekgt
qt - 1 + qekt (7)
1 1
q = Bln(ocﬁ) + Eln 8)
q= kat? +C )

where q; and qe (mg g~ ') represent adsorption capacity at time t (min) and equilibrium
time. k; (min—') is the rate constant of the pseudo-first order, k; (g mg’1 min~!) and
k3 (mg g~ ! min~1/2) represent the pseudo-—second order and intra-particle diffusion,
respectively. « (mg g~! min~!) and B (g mg~!) represent the initial absorption rate and a
desorption constant of the Elovich model, respectively. C (mg g~ !) represents a constant
related to the intraparticle diffusion model.
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Figure 6. Adsorption curves of methylene blue (MB) onto materials: (a) adsorption isotherm curve,
(b) adsorption isotherms of three models, (c) adsorption kinetic curve, and (d) kinetics curves of the
four models.

As shown in Figure 6d and Table 52, the pseudo-first order model was best suitable for
the adsorption kinetics process of the polymer to MB in terms of the correlation coefficient,
which suggests that the physical adsorption dominates the adsorption process.

3.4. Catalytic Property

Since HyO; is easily activated to generate hydroxyl radicals in the presence of iron,
the Fe?* /Fe3* redox cycle is carried out on the surface of the catalyst. Thus, the Fenton
reaction has an obviously catalytic degradation effect for organic pollutants, which results
from high oxidation potential due to the formation of hydroxyl [5,33]. The ratio of the MB
concentration (C;) at time t (min) to the initial concentration (Cy) was used to investigate
the catalytic performance upon different degradation time (Figure 7a). The degradation of
MB in the presence of the polymer can reach 98.4% within 21 h under room temperature,
and the k is 0.0038 min~!. Although an efficient catalytic degradation property was
confirmed at room temperature, based on its excellent photothermal effectiveness, an NIR
laser was used to irradiate the system. A series of MB concentrations was selected for
the investigation of degradation within 30 min. The removal efficiencies of MB reached
98.7-99.9% (Figure 7b). In order to further investigate the catalytic property, the MB
concentration at 1000 mg L~! as a target to study the degradation over time. The change of
the MB concentration during the photo-thermo catalytic is nonlinear and the degradation
rate slows gradually. Therefore, the fastest degradation stage was selected to investigate
within 5-10 min, and k reached 0.5517 min~!. The corresponding curves of the degradation
rate and temperature indicated the degradation could finish within 15 min; the temperature
rose to the maximum, and then dropped to a plateau (Figure 7c). In addition, the catalytic
activities of the resulting polymer for the degradation of MB were also evaluated under the
simulated sunlight with a power density of 1 kW m~2. When MB was illuminated with
a simulated solar illumination for 150 min, the degradation of MB (C;/Cy) reached 0.313,
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and k was 0.0092 min~—! (Figure 7d). The temperature of the solution enhanced from 28 °C
to 35 °C, which was attributed to the effective light-to-thermal conversion performance
and excellent solar absorption (Figure S2a). In order to accelerate the degradation of MB,
the sample was illuminated with light of 3 kW m~2 for 25 min, C¢/Cy reached 0.0195,
and k was 0.1887 min~! (Figure 7e). According to the recorded temperature, the surface
temperature improved to 55°C (Figure S2b).

The reusability of polymer was examined by repeating the Fenton reaction for five
cycles under the same operating conditions. The degradation of the MB for the five con-
secutive cycles with degradation percentage values reached approximately 81.64-90.25%
within 10 min; RSD was 4.15% (Figure 7f). These results confirm the good reusability of the
resulting polymer.
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Figure 7. (a) Degradation of MB by the resulting polymer in the Fenton reaction at room temperature. (b) Degradation
percentage of MB with different concentrations for 30 min under an 808 nm laser. (c) The corresponding curves of the
degradation rate and temperature. (d) Degradation of MB by the resulting polymer in the Fenton reaction irradiated in
simulated sunlight (1 kW m~2). (e) Irradiated simulated sunlight (3 kW m~2). (f) Cyclic degradation of MB. The error bars
are based on the results of the triplicate experiments.
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4. Conclusions

In summary, a ferrocene-based organic magnetic polymer with photothermal proper-
ties was synthesized. NIR and simulation sunlight irradiation approaches in promoting
the degradation of MB in the Fenton reaction were investigated. The efficient photo-
thermocatalytic activity in the degradation of MB under 808 nm laser irradiation indicated
that MB could be completely removed within 30 min. The resulting polymer also displayed
excellent photo-degradation efficiency (C;/Cy = 0.313, and k = 0.0092) under the simulated
sunlight as an extra energy source. The results confirmed that a relatively high degradation
effect took place in the presence of the resulting polymer. Finally, we believe that adding
the magnetic organic polymer in the Fenton reaction is a promising strategy for clear
water production.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
360/13/4/558/s1, Figure S1: The cooling period of polymer dispersion irradiated under NIR laser
(808 nm, 2 w cm_z), Figure S2: The temperature change under solar simulation, a power density of
(@) 1 kW m~2 (b) 3 kW m2, Table S1: Adsorption isotherm constants of MB absorption on polymer,
Table S2: Adsorption kinetic constants of MB absorption on polymer.
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