
1. Introduction
Humans have changed natural environments in a number of ways, for uses such as habitation, agriculture, 
transportation, industry, commerce, and recreation. These decisions about, and patterns of, land uses, have had 
dramatic impacts on ecosystems, ecosystem services, biodiversity, climate, pollution, and increasingly, human 
health (Markovchick-Nicholls et al., 2008; Seto & Shepherd, 2009; Su et al., 2009; Tilman & Clark, 2014). In 
the area of urban planning and the built environment, the land use environment (LUE) has been used to describe 
changes in development patterns and transportation networks over time. Previous work has described the evolu-
tion of transportation networks within the theory of three urban fabrics: walking, transit, and auto (Newman & 
Kenworthy, 2015). Cities in early history were connected by the walking urban fabric and were characterized by 
dense settlement, a mix of land uses, investment in public places, human-scaled design, and a clear distinction 
between city and country (Beatly & Manning, 1997; Gillham, 2002). In the United States (U.S.) in particular, the 
past 100 years have seen human development patterns dramatically change, with the advent of the automobile, 
public investment in high-speed road networks, closure of urban electric rail lines, home financing policy, and 
social and economic factors that resulted in white flight from cities (Beatly & Manning, 1997), consistent with 
the auto urban fabric theory. These factors created a landscape with a predominant horizontal form of devel-
opment spreading out from urban cores in a pattern referred to as urban sprawl which is characterized by low 
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density residential housing, single use zoning, low destination accessibility, automobile dependence, and lack of 
economic viability for public transit (Gillham, 2002). These changes made active transport increasingly difficult, 
co-occurred with the obesity epidemic in the U.S., and focused public health attention on ways of measuring these 
health-relevant features of land uses.

The features of settlement patterns now observed in the U.S. exist alongside a continuum of urbanicity which 
has been characterized by the U.S. Department of Agriculture's (USDA) Rural Urban Commuting Area (RUCA) 
codes (“Economic Research Service & USDA,  2020 Rural-Urban Commuting Area (RUCA) Codes,”2010). 
Additionally, the Diabetes Location, Environmental Attributes, and Disparities (LEAD) Network has developed 
a modification of the RUCA codes that is nationally applicable, of a geographic scale relevant to obesity and type 
2 diabetes development, and that minimizes within-category distributional differences of key community features 
relevant to obesity and type 2 diabetes development (Hirsch, Moore, et al., 2020; McAlexander et al., 2022). The 
LEAD modification is referred to as LEAD community type.

Along the urbanicity continuum, communities which are often defined by census tract boundaries range from 
being primarily automobile-dependent to easily facilitating ways of active transport, including walking and 
cycling (Cervero & Kockelman, 1997; Dannenberg et al., 2003; Ewing & Cervero, 2001; Stowe et al., 2019). 
This is a result of unique combinations of the overlapping urban fabrics (Newman & Kenworthy, 2015). Stud-
ies have reported associations between both individual aspects and composite measures of a community's built 
environment with lower rates of vehicular travel (Cervero & Kockelman, 1997; Ihlanfeldt, 2020; Le et al., 2018; 
Mccann & Ewing, 2003), including increased population and household density, diversity of land use, compact 
design of neighborhoods and street networks, access to desirable destinations, and low distance to transit (Cervero 
& Kockelman, 1997; Ewing & Cervero, 2001), some components of which have been incorporated into propri-
etary measures such as Walk Score® (“Walk Score Methodology,” 2021). Many measurement dimensions that 
promote active transport, such as land use mix and intersection density, have been associated with favorable 
health outcomes, including lower risks of obesity and hypertension (Chiu et al., 2015; Ewing et al., 2003; Frank 
et al., 2006; Mccann & Ewing, 2003; Stowe et al., 2019).

The Diabetes LEAD network sought to derive a LUE construct that could be used for the entire U.S., was more 
inclusive of rural areas, and was at a geographic scale relevant to the development of type 2 diabetes. In this paper, 
we first developed a measurement model for the contiguous U.S. at the census tract level using factor analysis to 
measure the LUE using measures of the road network, density of developed land, and desirable walking destina-
tions. We next assessed whether the measure derived by the factor analysis incorporated the road network, density 
of developed land, and desirable walking destinations similarly across the four LEAD community types: higher 
density urban, lower density urban, suburban/small town, and rural (McAlexander et al., 2022). We hypothesized 
that measurement of the LUE varies in these four community types, requiring different measurement approaches 
by community category.

2. Materials and Methods
2.1. Unit of Measurement

We performed this analysis at the census tract level for the contiguous U.S. (n = 72,538) as represented in the 
2016 Topologically Integrated Geographic Encoding and Referencing (TIGER)/Line Geodatabase. Census tract 
is a geographic scale that has been commonly used in prior studies of the built environment and human health that 
were community-focused (Auchincloss et al., 2009; Sharp & Kimbro, 2021). While convenient in terms of neces-
sary data, census tracts may not be experientially and behaviorally relevant (Moudon & Lee, 2003). While other 
studies have relied on egocentric buffers when evaluating community features relevant to utilitarian physical 
activity (Christine et al., 2015; Gebreab et al., 2017), the Diabetes LEAD network did not have the ability to share 
individual-level home addresses, necessitating an approach that relied on common geographic boundaries. By 
implementing the analysis at the census tract level, the resulting measures cover the entire range of the urban-rural 
continuum and are sharable by the Diabetes LEAD network with other research teams.
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2.2. Data

A team of experts from the Diabetes LEAD network informed the choice of indicators included in the LUE 
construct a priori through extensive review of the literature and examination of available data. Twelve indica-
tors that measured community design, land use, and street networks were investigated. Of those 12, five were 
excluded due to limited national data accessibility. The seven indicators examined, described in Table 1, included 
measures describing the road network (average block length, average block size, intersection density, and street 
connectivity) and land development (percent developed land, commercial establishment density, and household 
density). We excluded census tracts from analyses that had intersection count or land area equaling zero. Data 
sources for this study included ESRI 2009 Vintage Street data, 2016 Census TIGER/Line Geodatabase, and 
the Retail Environment and Cardiovascular Disease (RECVD) project (Hirsch, Moore, et al., 2020; Kaufman 
et al., 2015). Intersection density, average block length, and street connectivity utilized ESRI 2009 Vintage Street 
data and were computed in ArcGIS Pro. We removed freeways, ramps, and ferry connections from the street data 
set. Commercial establishment density excluded food and physical activity venues to avoiding double counting 
when examining the LUE measure in models with the food and physical fitness environment domains included in 
the LEAD network analyses (Hirsch, Moore, et al., 2020). After deriving each LUE variable, we log transformed 
average block size, average block length, intersection density, household density, and commercial establishment 
density, as well as standardized all seven indicators using z-score standardization to achieve normality. Variables 
were also standardized for direction so that an increase in any variable indicates more compact development.

We computed descriptive statistics for all LUE indicators, overall and stratified by LEAD community type, as 
mean and standard deviations. We computed Pearson correlations of the seven LUE indicators, stratified by 
LEAD community type. We then used factor analysis to elucidate how the LUE indicators differentially reflect 
the LUE construct across LEAD community type groups.

2.3. Identifying the Baseline Model

To assess measurement invariance by LEAD community type, we first needed to identify a baseline model 
with good fit among all community types. We thus used confirmatory factor analysis (CFA) to fit a one-factor 
model for the seven LUE indicators in which residual correlation was allowed among related or highly corre-
lated indicators. Examples of these pairs of highly correlated indicators include block length with intersection 
density, household density with establishment density, and street connectivity with block size. Next, we used 
CFA to fit a two-factor model in which the road network indicators (average block length, average block size, 
intersection density, and street connectivity) were loaded onto the first factor and land development indicators 
(percent developed land, commercial establishment density, and household density) were loaded onto the second 

Variable name Derivation Data source

Average block length Sum of street miles a divided by intersection count b Computed in ArcGIS Pro using 2016 TIGER/Line 
Geodatabase and 2009 Vintage Esri Data

Average block size Represented by average census block area in squared kilometers d 2010 RECVD c, which draws from U.S. census data

Intersection density Intersection count divided by land area in square miles Computed in ArcGIS Pro using 2016 TIGER/Line 
Geodatabase and 2009 Vintage Esri Data

Street connectivity Intersection count divided by the sum of intersection count and dead 
end count

Computed in ArcGIS Pro using 2016 TIGER/Line 
Geodatabase and 2009 Vintage Esri Data

Percent developed land Sum of low, medium, and high intensity percent developed land 2011 National Land Cover Data set via RECVD data

Commercial establishment density Count of walkable commercial establishments in 2010 excluding food 
and physical activity venues divided by land area in square miles

2010 RECVD

Household density The count of households divided by land area in square miles RECVD data based on 2008–2012 ACS data

 aSum of street miles is the total length of streets within the tract boundary measured in miles.  bIntersection count is defined as the count of three or more legged 
intersections within a census tract boundary.  cData from the Retail Environment and Cardiovascular Disease (RECVD) project which evaluated how access to healthy 
food sources, physical fitness, and medical facilities affect disparities in cardiovascular disease.  dBecause indicators were z-transformed (and thus unitless) we used the 
units of the native variables rather than converting to the same units across indicators (e.g., miles vs. kilometers).

Table 1 
Variables Used in Land Use Environment Composite Measure
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factor, allowing for covariance between the two factors and for residual correlation among related indicators. In 
all models, maximum likelihood estimation with robust standard errors was utilized. We assessed and compared 
model fit using the root mean square error of approximation (RMSEA) and Bayesian information criterion (BIC). 
RMSEA was chosen due to its lack of sensitivity to sample size; models were considered to have an acceptable 
fit when RMSEA was below 0.08 (Van de Schoot et al., 2012). To assess measurement invariance by LEAD 
community type, we chose the model with the lowest RMSEA and the lowest BIC.

2.4. Assessing Measurement Invariance of Land Use Environment by LEAD Community Type

Measurement invariance can be characterized as configural invariance, metric invariance, scalar invariance, and 
strict invariance, described in detail in Table 2 (Steinmetz et al., 2009). For the purposes of this analysis, achiev-
ing scalar invariance would be sufficient because it would allow for mean comparisons. To test for measurement 
invariance of LUE across community types, we utilized multigroup confirmatory factor analysis (MGCFA) to fit 
nested models that allowed us to assess configural, metric, and scalar invariance. Significant differences across 
the models were tested using a chi-square statistic with the Sattora-Bentler scaling correction factor (Satorra & 
Bentler, 2001). To conclude that scalar invariance existed across community types, it was necessary that both the 
chi-square test comparing the metric and configural models, as well as the test comparing the scalar and metric 
models were not statistically significant. However, if any of the sequence of nested models were statistically 
significantly different, we concluded that the LUE construct was different across groups, and could determine the 
degree to which the measure varies across community types.

3. Results
Of the 72,538 census tracts in the contiguous U.S., 323 (0.4%) census tracts were excluded due to their intersec-
tion count or land area equaling 0; thus 72,215 tracts were included in the analysis. Of the excluded tracts, 42% 
were rural and 53% had no LEAD community type designation due to not having a RUCA classification (which 
primarily coincides with tracts having no residential population). Average block length and average block size 
were smaller for more urban areas compared to more rural areas (Table 3). Intersection density, street connectiv-
ity, household density, percent developed land, and commercial establishment density were higher for more urban 

Model Level Constraint Result

Configural invariance 1 Same model structure Indicates the construct is measured with 
the same model structure in each group

Metric invariance 2 Equal factor loadings Allows for quantitative comparisons across 
groups

Scalar invariance 3 Equal item intercepts Allows for latent mean comparisons

Strict invariance 4 Equal factor variances and covariances Indicates equal factor covariances, 
correlations, and error variances

Table 2 
Levels of Measurement Invariance

Higher density urban (n = 17,137) Lower density urban (n = 25,714) Suburban/Small town (n = 11,777) Rural (n = 17,585)

Average Block Length (mi) 0.14 (0.06) 0.17 (0.04) 0.25 (0.12) 0.57 (0.32)

Average block size (km 2) 0.03 (0.03) 0.07 (0.07) 0.22 (0.27) 0.91 (1.38)

Intersection density (per mi 2) 205 (98) 105 (50) 45 (49) 9 (12)

Street connectivity 0.89 (0.09) 0.80 (0.09) 0.75 (0.09) 0.72 (0.09)

Household density (per mi 2) 6,140 (8,329) 1,247 (684) 394 (445) 54 (80)

Percent developed land 0.87 (0.16) 0.60 (0.22) 0.24 (0.20) 0.04 (0.06)

Establishment density (per mi 2) 223 (457) 48 (44) 16 (30) 2 (4)

Table 3 
Summary Statistics, Mean (SD), of Land Use Environment Variables by Location, Environmental Attributes, and Disparities Community Type
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areas compared to more rural areas (Table 3). Correlations of the LUE indicators varied by LEAD community 
type (Table  4), with correlations generally strengthening for selected measures from higher density urban to 
rural. For example, in rural census tracts, correlations among household density, intersection density, commercial 
establishment density, and percent developed land all exceeded 0.75, while correlations in higher density urban 
areas did not exceed 0.53.

To find a baseline model, we fit several one and two factor models allowing for residual correlations between 
various related indicators and determined that the best fitting model was a one factor model allowing for residual 
correlation between average block length & intersection density, commercial establishment density & household 
density, and street connectivity & average block size, RMSEA = 0.063 (Table 5). This model structure was subse-
quently used to test for measurement invariance.

MGCFA was used to fit configural, metric, and scalar models. The configural model fit significantly better 
(χ 2(df) = 10,676(18), p < 0.0001) than the metric model, which constrains factor loadings to be equal across 
community type groups; thus, we conclude that measurement invariance does not exist across LEAD community 
type groups and while the model structure is the same, the factor loadings differ.

The variation in measurement of the LUE construct across LEAD community types was demonstrated by the 
variation in magnitude of the factor loadings of the seven LUE indicators across community types (Table 6). 
For example, factor loadings for average block length and intersection density increased as community type 
went from high density urban to rural (average block length loading increased from 0.179 to 0.769; intersection 
density loading increased from 0.236 to 0.618) (Table 6). Additionally, the factor loadings for average block size, 
household density, and commercial establishment density in suburban/small town and rural community types 
were higher compared to higher and lower density urban community types.

4. Conclusions
We used a measurement model approach to evaluate how to measure the LUE across a range of community types 
from rural to higher density urban. We found that a measurement model of the LUE at the census tract level across 
the U.S. must be stratified by community type because of the absence of measurement invariance but that the 
same single factor model structure was appropriate regardless of the community type. Specifically, we found that 
the LUE construct gradually becomes more strongly reflected by average block length and intersection density 
as community type shifts from higher density urban to rural. Additionally, average block size, household density, 
and commercial establishment density were more reflective of the LUE construct in suburban/small town and 
rural community types, compared to higher density and lower density urban community types.

The set of seven LUE indicators utilized in this paper were chosen based on the five D's of the built environment 
thought to influence utilitarian physical activity and automobile dependence (density, diversity, design, desti-
nation accessibility, and distance to transit) as well as data availability across the U.S., while minimizing high 
inter-correlations between variables (Cervero & Kockelman, 1997; Ewing & Cervero, 2001). Other variables 
considered but not included due to data availability at the national scale were land use mix, retail floor area ratio, 
vehicle miles traveled, and proximity to leisure amenities. Using these indicators, the LUE construct is able to 
measure a community's combination of walking, transit, and auto urban fabrics as described in the theory of 
urban fabric. After a long period of gravitating toward automobile dependence, cities are now using research 
based on these data to inform city planning to implement new policies that encourages the walking and transit 
urban fabrics (Newman et al., 2016). The concept of the five D's has been utilized in forming walkability indices 
in studies aimed to determine associations between the built environment and physical activity, walking, and 
health related outcomes, but primarily in urban areas. For example, aspects of the built environment including 
retail density, intersection density, and household density have been shown to have significant associations with 
walking time among adolescents (Carlson et al., 2015). Lower walkability scores, based on population density, 
household density, intersection density, and retail establishments, were associated with higher rates of hyperten-
sion and diabetes in a study of the CANHEART cohort in Ontario, Canada (Howell et al., 2019). The other end 
of the distribution of measures of the five D's in less developed areas would predict automobile dependence, not 
walkability, which is also supported by our research as intersection density, street connectivity, household density, 
percent developed land, and commercial establishment density were higher for more urban areas compared to 
those for more rural areas (Table 3). Interestingly, associations between walkability and health outcomes in youth 
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Street Connectivity 1.00 0.24 0.31 0.22

Household Density 1.00 0.20 0.53

Percent Developed Land 1.00 0.17

Establishment Density 1.00

b) In lower density urban census tracts
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Street Connectivity 1.00 0.23 0.40 0.30

Household Density 1.00 0.57 0.46

Percent Developed Land 1.00 0.46

Establishment Density 1.00

c) In suburban/small town census tracts
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Average Block Length 1.00 0.64 -0.53 -0.37 -0.47 -0.50 -0.35

Average Block Size 1.00 -0.41 -0.35 -0.39 -0.47 -0.29

Intersection Density 1.00 0.55 0.83 0.79 0.75

Street Connectivity 1.00 0.47 0.58 0.44

Household Density 1.00 0.78 0.72

Percent Developed Land 1.00 0.67

Establishment Density 1.00

d) In rural census tracts
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Average Block Length 1.00 0.60 -0.58 -0.05 -0.52 -0.47 -0.43

Average Block Size 1.00 -0.29 -0.11 -0.28 -0.27 -0.23

Intersection Density 1.00 0.24 0.82 0.76 0.77

Street Connectivity 1.00 0.25 0.34 0.28

Household Density 1.00 0.83 0.82

Percent Developed Land 1.00 0.76

Establishment Density 1.00

Table 4 
Pearson's Correlation Matrices of Land Use Environment Variables by Location, Environmental Attributes, and Disparities  
Community Types
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populations have been found to vary across community types (Molina-García et al., 2020; Stowe et al., 2019). 
However, it is unknown if these differences were due to the application of the same approach to LUE measure-
ment across a range of community types.

Neighborhood composition of land use, commercial establishments, and road networks differ across community 
types. This motivated the hypothesis among members of the LEAD Network that there may not be measure-
ment invariance of LUE by community type (McAlexander et al., 2022). By examining the LUE construct with 

BIC c RMSEA c

One factor

Model  a  a

With residual correlation between average block size and average block length 454,376 0.115

With residual correlation between average block length and intersection density 433,473 0.098

With residual correlations between average block length and intersection density; intersection 
density and household density

432,863 0.103

With residual correlations between average block length and intersection density; commercial 
establishment density and household density

414,186 0.075

With residual correlations between average block length and intersection density; commercial 
establishment density and household density; street connectivity and average block size

408,864 0.063

Two factors (road network and land development) d

With residual correlation between average block length and intersection density 424,258 0.099

With residual correlations between average block length and intersection density; commercial 
establishment density and household density

 b  b

With residual correlations between average block length and intersection density; commercial 
establishment density and household density; street connectivity and average block size

 b  b

 aWarning due to negative estimated residual variance of intersection density.  bWarning due to factor correlation greater 
than one in suburban/small town and rural community types.  cBayesian Information Criterion (BIC) and Root Mean Square 
Error Approximation (RMSEA).  dIn this model, the road network factor includes average block length, average block size, 
intersection density, and street connectivity. The land development factor includes percent developed land, commercial 
establishment density, and household density.

Table 5 
Model Fit Statistics for One and Two Factor Multiple Group Confirmatory Factor Analysis (MGCFA) Models Representing 
the Land Use Environment (LUE)

 
Higher density 

urban
Lower density 

urban
Suburban/Small 

town Rural

Factor Loadings

Average Block Length 0.179 0.236 0.530 0.769

Average block size 0.329 0.367 0.637 0.611

Intersection density 0.236 0.319 0.592 0.618

Street connectivity 0.393 0.391 0.470 0.161

Household density 0.284 0.269 0.407 0.556

Percent developed land 0.221 0.436 0.459 0.128

Establishment Density 0.287 0.276 0.504 0.623

Residual Correlation Loadings

Average Block Length with Intersection Density 0.060 0.028 0.043 0.086

Average Block Size with Street Connectivity 0.033 0.059 0.056 0.063

Establishment Density with Household Density 0.126 0.042 0.047 0.110

Table 6 
Factor Loadings by Community Type Group



GeoHealth

MEEKER ET AL.

10.1029/2022GH000667

8 of 10

MGCFA, we found statistical evidence suggesting that while the factor structure of the LUE measure is the 
same across community types, the factor loadings differ across LEAD community type groups (higher density 
urban, lower density urban, suburban/small town, and rural). Others have examined measurement invariance 
of perceived walkability within neighborhoods of senior women from the Nurses' Health Study cohort using 
the Abbreviated Neighborhood Environment Walkability Scale (NEWS-A) across levels of population density 
(low, medium, and high) (Starnes et al., 2019). NEWS-A incorporated 20 indicators measuring factors including 
infrastructure for walking, access to destinations, street connectivity, traffic safety, personal safety, and aesthetics. 
Starnes et al. (2019) found that the NEWS-A measure was not scalar invariant across population density groups 
and that researchers should use caution when using the score across different communities. While our study likely 
included more rural communities with lower population density, our findings were consistent with the NEWS-A 
study.

Our results highlight the importance of accounting for community type when constructing and analyzing LUE 
measures at the tract level within the U.S. In higher density urban areas, higher levels of the factors represent 
increasing walkability whereas, in rural areas, lower levels represent increasingly stronger automobile depend-
ence. These findings also suggest that other epidemiological studies should test and account for measurement 
invariance by community type when constructing LUE measures to represent the construct more accurately in 
each community. In turn, these analyses can help develop more targeted public health interventions and policies, 
developed with the understanding of the unique attributes of different community types.

A primary strength of this analysis was that it examined a consistent set of land use indicators at the community 
level across the contiguous U.S., which, to our knowledge, has not yet been done. This approach facilitated the 
development of LUE measures that can be replicated in other studies of U.S. based cohorts. This study also used 
LEAD community types which have been previously shown to have better distributional separation between 
community types on key community measures relevant to obesity and type 2 diabetes as compared to other meth-
ods of community type classification.

Since the LUE construct was developed at the census tract level, applying this measure in analyses at the individ-
ual level may present issues related to the modifiable areal unit problem (MAUP). MAUP is a common issue in 
many health outcome studies and is often addressed by considering multiple spatial contexts (James et al., 2014; 
Parenteau & Sawada,  2011). Further, the LUE construct would likely benefit from the addition of measures 
quantifying walking infrastructure, pedestrian safety, and access to public transportation. These measures may be 
particularly insightful in suburban/small town and rural community types where walking may be more likely to 
occur on off-road walking paths connecting neighborhoods to other amenities. However, such measures are not 
currently available on a national level across the U.S. Similarly, a limitation of this analysis is that measures of 
land use mix was not available to be included. Future work may include combining the LEAD network's objective 
measure with survey data aimed at quantifying sidewalk access and safety.

In conclusion, the measurement of the LUE construct varied across community types; factor loadings of the 
indicators were not consistent in different community types with average block length, average block size, and 
percent developed land driving most shared variability in rural tracts and with intersection density, street connec-
tivity, household density, and commercial establishment density driving most shared variability in higher density 
urban tracts. Future studies should carefully consider how to incorporate the LUE in studies evaluating a range 
of community types.

Disclaimer
The findings and conclusions are those of the authors and do not necessarily represent the official position of the 
Centers for Disease Control and Prevention.
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Data Availability Statement
The data for the land use environment components were (a) computed in ArcGIS Pro (a licensed software availa-
ble through esri.com) using 2016 Topologically Integrated Geographic Encoding and Referencing (TIGER)/Line 
Geodatabase and 2009 Vintage Esri Data or (b) were developed by the Retail Environment and Cardiovascular 
Disease (RECVD) project with support from the National Institute of Aging (Grants R01AG049970, 
R01AG049970-04S1, R01AG072634), National Heart, Blood, and Lung Institute (Grant R01HL14843), 
National Institute on Alcohol Abuse and Alcoholism (R01AA028552), Commonwealth Universal Research 
Enhancement (C.U.R.E) program funded by the Pennsylvania Department of Health—2015 Formula award—
SAP #4100072543, the Urban Health Collaborative at  +  University, and the Built Environment and Health 
Research Group at Columbia University. The land use components that were computed in ArcGIS Pro, the final 
LUE construct, and the Diabetes LEAD Network's community type variable is available through the Diabetes 
LEAD Network's data page: https://sites.google.com/view/diabetes-lead-network/data. The land use components 
that were developed by the RECVD project contain proprietary information and cannot be shared.
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