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Abstract

Introduction: The Advancing Research and Treatment in Frontotemporal Lobar Degeneration 

and Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects longitudinal studies 

were designed to describe the natural history of familial-frontotemporal lobar degeneration due to 

autosomal dominant mutations.

Methods: We examined cognitive performance, behavioral ratings, and brain volumes from the 

first time point in 320 MAPT, GRN, and C9orf72 family members, including 102 non–mutation 

carriers, 103 asymptomatic carriers, 43 mildly/questionably symptomatic carriers, and 72 carriers 

with dementia.

Results: Asymptomatic carriers showed similar scores on all clinical measures compared with 

noncarriers but reduced frontal and temporal volumes. Those with mild/questionable impairment 

showed decreased verbal recall, fluency, and Trail Making Test performance and impaired mood 

and self-monitoring. Dementia was associated with impairment in all measures. All MAPT 
carriers with dementia showed temporal atrophy, but otherwise, there was no single cognitive test 

or brain region that was abnormal in all subjects.

Discussion: Imaging changes appear to precede clinical changes in familial-frontotemporal 

lobar degeneration, but specific early clinical and imaging changes vary across individuals.
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1. Introduction

Frontotemporal lobar degeneration (FTLD) is a progressive, currently incurable, 

neurodegenerative disease that is most commonly associated with central nervous system 

accumulation of one of two proteins: tau or transactive response DNA-binding protein 43 

[1]. Most efforts to develop treatments for FTLD are focusing on clearing and/or decreasing 

formation of these proteins [2]. Studies of such treatments will be more challenging because 

of the clinical heterogeneity of FTLD, which can present with a variety of syndromes [3]. 

Increasing evidence indicates that prediction of the specific FTLD protein based on the 
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clinical syndrome can be unreliable [3]. This problem has fueled interest in cohorts of 

patients with FTLD in whom the protein pathology is predictable.

Up to 40% of FTLD cases present as a dominantly inherited familial disorder (f-FTLD). 

Mutations in three genes account for over 50% of f-FTLD: microtubule-associated tau 

(MAPT), progranulin (GRN), and chromosome 9 open reading frame 72 (C9orf72). 

Treatment studies in f-FTLD are particularly important because each mutation is highly 

predictive of a specific proteinopathy [4]. In addition, because f-FTLD participants can be 

identified before symptoms begin, studies can evaluate the effect of a treatment in the 

earliest phases of illness and also test whether a treatment delays or prevents onset of 

symptoms.

These considerations led to the creation of the Longitudinal Evaluation of Familial 

Frontotemporal Dementia Subjects (LEFFTDS) and Advancing Research and Treatment in 

Frontotemporal Lobar Degeneration (ARTFL) studies, which were designed to understand 

the natural history of f-FTLD by longitudinally following up both symptomatic and 

asymptomatic mutation carriers. To maximize generalizability of the findings, the studies are 

mostly focusing on families with mutations in the genes most commonly associated with f-

FTLD: MAPT, GRN, and C9orf72.

The current analysis presents data collected at the first time point from this cohort. We 

compared cognitive performance, behavioral ratings, and brain volumes across groups of 

asymptomatic and symptomatic carriers to identify the measures that might mark the early 

development of symptoms. One of the problems with group analysis, however, is that the 

findings may not apply to all individuals. This is a critical issue in f-FTLD, where each 

mutation affects the brain differently, and a person with a given mutation can present with a 

variety of symptoms [1]. Relying on a single test for all carriers may delay recognition of 

oncoming symptoms. To examine this issue, we quantified the frequency in which 

participants in each group showed abnormal performance in each cognitive measure and 

brain region.

2. Methods

Participants were recruited at one of 18 centers that are part of the ARTFL (https://

www.rarediseasesnetwork.org/cms/artfl) and/or LEFFTDS (https://clinicaltrials.gov/show/

NCT02372773) networks and included in this analysis if there was a confirmed mutation in 

the MAPT, GRN, or C9orf72 genes in at least one family member. Clinicians were blinded 

to each participant’s mutation status unless the participant had learned their mutation status.

2.1. Clinical assessment

Participants had a uniform multidisciplinary assessment that includes neurological history 

and examination, collateral source interview, and neuropsychological testing. Most of the 

clinical measures come from the third version of the NIH National Alzheimer’s 

Coordinating Center’s (NACC) Uniform Data Set neuropsychological battery ([5]; 

www.alz.washington.edu), which includes a module for assessment of FTLD. The Uniform 

Data Set neuropsychological battery neuropsychological tasks included the Montreal 
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Cognitive Assessment (MoCA), measures of verbal episodic memory (the Craft story recall 

task, which is similar to the Wechsler Memory Scale logical memory task), visual episodic 

memory (ten-minute recall for the Benson complex figure), visuospatial function (copy of 

the Benson figure), naming (the Multilingual Naming Test [MINT]), lexical fluency 

(generation of words beginning with the letters “F” and “L”, each in one minute), category 

fluency (generation of animal and vegetable names, each in one minute), attention (forward 

digit span, Trail Making Test part A), working memory (backward digit span), and set 

shifting (Trail Making Test part B). Additional tasks included the short form of the 

California Verbal Learning Test [6]. Measures to characterize socioemotional behavior 

included the short version of the Neuropsychiatric Inventory (NPI-Q [7]), the Revised Self-

Monitoring Scale (RSMS [8]), and the Behavioral Inhibition Scale [9]. Mood was quantified 

with the Geriatric Depression Scale (GDS [10]). Motor function was quantified with the 

Unified Parkinson’s Disease Rating Scale [11] motor examination. General functional state 

was characterized using an expanded version of the Clinical Dementia Rating Scale (which 

is now known as the CDR® Staging Instrument and will be abbreviated as CDR® hereafter 

[12]). The CDR® provides a categorical rating of severity in six domains, with scores 

ranging from 0 (clinically normal) to 0.5 (mild/questionable symptoms not affecting daily 

function) and to levels 1, 2, or 3 (all indicating significant impairment consistent with 

dementia) for each domain. To broaden the utility of the CDR® into FTLD spectrum 

disorders, behavior/comportment/personality, and language domains have been added to the 

CDR® to form the 8-domain “FTLD-CDR” [13], and these additional behavior and language 

domain ratings are implemented by the NACC. This 8-domain rating is now abbreviated as 

the “CDR® plus NACC FTLD”. The Progressive Supranuclear Palsy Rating Scale [14] 

quantifies a combination of motor, behavior, and cognitive features relevant to progressive 

supranuclear palsy.

2.2. Genetic testing

Each participant had genetic testing to identify the presence or absence of specific mutations 

associated with FTLD. Details of the procedures and results of genetic testing are described 

in a separate publication (Ramos et al., this issue). Although all participants are offered the 

opportunity to undergo clinical genetic testing, most of the asymptomatic persons have 

chosen to refrain from clinical testing thus far. However, each participant undergoes research 

genetic testing (to which the clinicians remain blind and the results are not shared with 

participants), and therefore, the mutation status is determined for each participant.

2.3. Image acquisition

Participants were scanned on 3 Tesla MRI scanners from one of three vendors: Philips 

Medical Systems, Siemens, or General Electric Medical Systems. A standard imaging 

protocol was used, managed, and reviewed for quality by a core group at the Mayo Clinic, 

Rochester. The current analysis used the T1 weighted images, which were acquired as 

magnetization prepared rapid gradient echo images using the following parameters: 

240×256×256 matrix; about 170 slices; voxel size = 1.05×1.05×1.25 mm3; flip angle, echo 

time and repetition time varied by vendor.
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2.4. Image processing

Image processing was accomplished using SPM12 (http://www.fil.ion.ucl.ac.uk/spm) and 

previously published procedures [15]. Magnetic resonance imaging (MRI) scans were 

processed to create individualized voxel-wise maps quantifying the degree of atrophy for 

each individual. Volume loss at each voxel was quantified as a w-score, which represents the 

gray matter content at that voxel as the number of standard deviations away from the 

expected mean for a cognitively normal reference group after accounting for age, total 

intracranial volume, and scanner platform [16]. Reference images for creation of atrophy 

maps were obtained from 270 control subjects, including 115 noncarrier family members 

from ARTFL/LEFFTDS, 63 who enrolled in prior studies of neuroimaging in FTLD at 

University of California San Francisco (AG032306 [17]), 34 from non–mutation carriers 

from the Dominantly Inherited Alzheimer’s Network (; dian.wustl.edu), and 72 who 

participated in the Parkinson’s Progression Markers Initiative (; www.ppmi-info.org).

Cortical volumes for the frontal and temporal lobes for each individual were also calculated 

by transforming a brain parcellation atlas [18] into the study-specific brain space and 

summing all modulated gray matter within the frontal and temporal lobes. Peak coordinates 

for imaging findings are provided in the coordinates of the International Consortium for 

Brain Mapping brain template [19].

Additional details on the acquisition, quality control, and image-processing procedures are 

provided in the Supplementary Materials.

2.5. Creation of groups for analysis

The group was divided into four categories based on mutation status and clinical severity, as 

measured by the CDR® plus NACC FTLD. The groups were asymptomatic non–mutation 

carriers (−mFTLD-CDR = 0), asymptomatic mutation carriers (+mFTLD-CDR = 0), mildly/

questionably symptomatic mutation carriers (+mFTLD-CDR = 0.5), and symptomatic 

mutation carriers (+mFTLD-CDR ≥ 1). Consistent with the established approach for 

assigning these ratings, clinicians used a combination of direct patient observation and 

informant report to categorize each patient, and there was no formal incorporation of 

neuropsychological data. Because the CDR® does not include categories for language and 

behavior, there is no established algorithm for creating an overall rating that includes the 

outcomes of these additional ratings. Consequently, patients may have subtle impairment 

due to language or behavioral problems and still be rated as 0 on the CDR®. Therefore, we 

created an algorithm to integrate ratings for all eight categories into a global rating for each 

individual. The rules were as follows:

1. If all domains are 0, the global CDR® plus NACC FTLD score is 0.

2. If the maximum domain score is 0.5, the global CDR® plus NACC FTLD score 

is 0.5.

3. If the maximum domain score is above 0.5 in any domain, then the following 

applies:
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A. If the maximum domain score is 1 and all other domains are 0, the 

global CDR® plus NACC FTLD score is 0.5.

B. If the maximum domain score is 2 or 3 and all other domains are 0, the 

global CDR® plus NACC FTLD score is 1.

C. If the maximum domain score occurs only once and there is another 

rating besides zero, the global CDR® plus NACC FTLD score is one 

level lower than the level corresponding to maximum impairment (e.g., 

if maximum = 2 and there is another rating besides zero, the global 

CDR® plus NACC FTLD score is 1; if maximum = 1 and there is 

another rating besides zero, the global CDR® plus NACC FTLD score 

is 0.5).

D. If the maximum domain score occurs more than once (e.g., 1 in 2 

domains, 2 in 2 domains), then the global CDR® plus NACC FTLD 

score is that maximum domain score.

2.6. Group comparisons

Changes occurring with disease stage were examined by comparing the mean value across 

groups for all clinical variables and for the frontal and temporal lobes using linear 

regression, treating each variable as an outcome and disease stage as a categorical predictor, 

and including age, sex, and education as covariates. For models where the effect of group 

was statistically significant (P < .05), we conducted targeted post-hoc analyses by comparing 

each mutation carrier group with the −mFTLD-CDR = 0 group as well as with the lower 

stages of disease (e.g., +mFTLD-CDR ≥ 1 was compared with −mFTLD-CDR = 0 and 

+mFTLD-CDR = 0.5). To maximize statistical power, these analyses were performed with 

all three types of mutations together. Statistical analysis was performed using R (www.R-

project.org).

2.7. Consistency of abnormalities across individuals

One of the intended uses of these measures would be to indicate that a previously healthy 

mutation carrier is entering a new phase of illness where function is beginning to be 

affected. While changes in mean values with disease stage are informative for understanding 

which measures might mark these transitions, it is also important to understand how well 

these group observations apply to each individual. One way to examine this is to quantify the 

proportion of individuals that show abnormalities in each variable at each stage. The 

ARTFL/LEFFTDS team recently implemented a procedure for transforming each 

individual’s neuropsychological scores into age- and education-corrected standardized 

scores based on the normative data provided by the NACC. The details of the procedure are 

published elsewhere [20], and the procedure has not been implemented for all variables, but 

for those that have these transformations available, we examined the percent of individuals 

at each stage that were abnormal using a cutoff of z = −1.5. We took a similar approach with 

the imaging data by creating maps showing the proportion of individuals that had w-scores 

lower than −1.5 at every voxel. For these analyses, the data are presented separately for each 

Olney et al. Page 5

Alzheimers Dement. Author manuscript; available in PMC 2021 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.R-project.org
http://www.R-project.org


mutation type to provide information about variability in specific symptoms across mutation 

types.

3. Results

Data were available for 320 individuals whose genotyping had been completed. They fell 

into the planned groups as follows: asymptomatic non–mutation carriers (−mFTLD-CDR = 

0, n = 102), asymptomatic mutation carriers (+mFTLD-CDR = 0, n = 103), mildly/

questionably symptomatic mutation carriers (+mFTLD-CDR = 0.5, n = 43), and overtly 

symptomatic mutation carriers (+mFTLD-CDR ≥ 1: n = 72). Demographics for each group 

are shown in Table 1.

3.1. Mean values across levels of severity

Linear models grouped by levels of severity combined across mutation carriers revealed 

statistically significant effects of group for nearly every variable examined (Table 1). Post-

hoc testing revealed that this was largely driven by the +mFTLD-CDR ≥ 1 group, which 

showed significant impairments in all clinical variables and decreased frontal and temporal 

brain volumes compared with the −mFTLD-CDR = 0, +mFTLD-CDR = 0, and +mFTLD-

CDR = 0.5 groups. The +mFTLD-CDR = 0.5 group showed significant differences on the 

MoCA, Craft Delayed Recall, California Verbal Learning Test-Delay, Benson-Delay, 

vegetable fluency, trails A and B, NPI-Q, GDS, and RSMS, on frontal and temporal volumes 

compared with the −mFTLD-CDR = 0 group, and decreases in vegetable fluency, “F” word 

fluency, NPI-Q, GDS, and RSMS compared with the +mFTLD-CDR = 0 group. In the 

+mFTLD-CDR = 0 group, there were no clinical variables that were significantly different 

compared with the −mFTLD-CDR = 0 group, but frontal and temporal volumes were 

statistically significantly decreased in the +mFTLD-CDR = 0 group. T-scores and more 

precise P values for these comparisons are provided in Supplementary Table 1 in the 

Supplementary Materials.

3.2. Frequency of impairment on cognitive testing

Data on the percentage of participants showing impairment in each cognitive test are shown 

in Fig. 1, with data for each mutation type and level of severity plotted in colored bars 

relative to the proportion of −mFTLD-CDR = 0 showing abnormality in that measure, 

plotted in gray bars. Additional details are shown in Supplementary Tables 2-5 in the 

Supplementary Materials including how many in each group had any abnormal test, how 

many had abnormal performance for each test, and, for each test, how many had abnormal 

performance on only that test. Seventy percent of individuals in the −mFTLD-CDR = 0 

group showed abnormal performance for at least one score, with the most commonly 

abnormal test being the MoCA (22%; Fig. 1, gray bars; Supplementary Table 2), and the 

second most common being the MINT (20%).

For each mutation, abnormalities were sometimes more common in carriers compared with 

noncarriers in the FTLD-CDR = 0 stage, but the frequency of abnormalities increased along 

with overall disease severity (Fig. 1). For instance, the MoCA was abnormal in 22% of the 

−mFTLD-CDR = 0 group, and abnormal MoCA scores were more frequent in +mFTLD-
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CDR = 0 MAPT carriers, at 29% but less common in +mFTLD-CDR = 0 carriers of GRN 
(18%) and C9orf72 (15%). Overall, about 70% to 80% of +mFTLD-CDR = 0 and +mFTLD-

CDR = 0.5 carriers had at least one abnormal test, whereas nearly 100% had at least one 

abnormal test in the +mFTLD-CDR ≥ 1 group (Supplementary Tables 3-5). The MoCA was 

a commonly abnormal test (most common or second most common in nearly all groups), 

and the MINT was frequently abnormal. In particular, the MINT was the most common or 

second most commonly abnormal test at each level of severity in MAPT carriers, who had 

the most consistent pattern of abnormalities across levels of severity (Fig. 1; Supplementary 

Table 3). Among GRN carriers, abnormal performance on the Craft story recall task was 

relatively common, along with Trail Making Test and “F” word fluency (Fig. 1, 

Supplementary Table 4). In C9orf72 carriers, there appeared to be the least consistency 

across levels of severity beyond the MoCA (Fig. 1, Supplementary Table 5). There was no 

group in whom the same test was abnormal in 100% of participants, and in all mutation 

types, there was a substantial number of individuals who had only one abnormal test that 

was not the most common test. For instance, in the +mFTLD-CDR = 0 C9orf72 group 

(Supplementary Table 5), the most common abnormal task was the MINT (9 people, 23% of 

participants), but 20 (50% of people) performed normally on the MINT but abnormally on 

another task and 12 people (30%) were abnormal on only one test that was not the MINT.

3.3. Regional volume loss across individuals

In every group, there was at least one voxel that was more than 1.5 w-score units below 

normal (Fig. 2). In the −mFTLD-CDR = 0 group, the maximum proportion of individuals 

with abnormal gray matter at any voxel reached about 0.3. In the MAPT and GRN 
+mFTLD-CDR = 0 groups, there were a number of regions that reached a proportion of 

about 0.5, including the insula and medial temporal regions in MAPT carriers and the 

posterior temporal and parietal regions in GRN carriers. In the C9orf72 +mFTLD-CDR = 0 

group, the maximum proportion reached about 0.7, and this occurred in the thalamus on the 

right and the periinsular region on the left. Regions with proportions of about 0.6–0.8 were 

seen in the +mFTLD-CDR = 0.5 groups in all mutation types, located in the temporal region 

in MAPT carriers, the frontal region in GRN carriers, and in the thalamus and patchy 

regions in the frontal and temporal lobes in C9orf72 carriers. The +mFTLD-CDR ≥ 1 MAPT 
group was the only one where the proportion reached 1, and this was in the temporal regions 

bilaterally. The +mFTLD-CDR ≥ 1 GRN and C9orf72 groups both showed fairly diffuse 

regions of overlap including thalamus, bilateral insula, and medial parietal regions, with a 

few regions affecting nearly all participants in each group. Coordinates in the International 

Consortium for Brain Mapping space and anatomical labels for peak regions in each 

hemisphere in each group are provided in Supplementary Table 6 in the Supplementary 

Materials.

4. Discussion

The goal of this analysis was to characterize cognitive performance, behavioral ratings, and 

brain volumes in a large group of f-FTLD family members. In group comparisons, 

asymptomatic mutation carriers showed nearly identical scores on all clinical measures 

compared with noncarriers but reduced frontal and temporal lobe volumes. The group with 
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mild/questionable impairment showed decreased story recall, word list recall, verbal fluency, 

processing speed, and set-shifting performance and impaired mood and self-monitoring. 

With development of dementia, all scores were abnormal compared with scores in less 

symptomatic groups. Looking at performance across individuals, the MoCA was frequently 

abnormal in all mutations, but this was also true in many noncarriers. The effects of MAPT 
mutations on brain volume and cognition were most consistent across individuals and stages, 

with naming impairment and temporal volume loss being present in a high proportion of 

carriers. Memory disorders were prominent in GRN, but C9orf72 did not show a consistent 

pattern of impairment in the early stages, and both GRN and C9orf72 showed lower levels of 

overlap in regional volume loss than MAPT.

These findings have important implications for research and therapy in f-FTLD, which is a 

critical context for testing treatments in the earliest phases of disease and also for testing 

whether treatments can prevent onset of symptoms. With regard to prevention, our finding 

that neuroimaging changes appear to precede clinical changes is consistent with multiple 

studies demonstrating brain volume loss and other brain imaging abnormalities in 

asymptomatic mutation carriers [21] and findings from a comprehensive study in a similar 

large cohort called the Genetic FTD Initiative (GENFI), which suggested that imaging 

findings precede symptom onset by more than 10 years [22]. These observations support the 

idea that imaging can serve as a leading indicator of clinical changes and that mutation 

carriers with imaging abnormalities will be important candidates for prevention studies. 

Additional work will be required to quantify the degree of abnormality that serves as an 

early marker, to quantify the timing until symptoms develop, and to assess the value of 

additional imaging techniques such as diffusion MRI and functional MRI [23].

Ideally, sensitivity for early detection of disease should improve if monitoring could be 

targeted at brain regions and clinical features that are most likely to be affected first in each 

mutation. In MAPT, we found very frequent involvement of the temporal lobe, which is also 

the region most associated with MAPT mutations in prior studies [24]. The consistency of 

this finding supports a strategy of monitoring early temporal lobe changes in MAPT carriers. 

However, the findings in our GRN and C9orf72 cohorts suggest that focusing on a specific 

brain region in these groups would not capture early changes well in all individuals, 

although thalamic changes seemed to be fairly consistent in C9orf72 carriers. Similarly, our 

clinical data do not point to one particular cognitive score that reliably marks early 

symptoms, even in MAPT. Although our finding that naming impairment is frequent in early 

MAPT carriers is similar to observations from GENFI [22], there were many asymptomatic 

and mildly/questionably symptomatic MAPT mutation carriers who showed impairment in 

other tasks but not in naming. Consistency across GRN and C9orf72 mutation carriers 

appeared to be even lower, although abnormal trail making and fluency scores were 

relatively frequent in both groups, consistent with the frontoparietal involvement in both 

mutation types. This is in-line with prior observations that patients with FTLD mutations can 

present with a variety of clinical syndromes, even with the same mutation in the same family 

[1].

One approach for dealing with the heterogeneity in mutation carriers would be to track 

larger portions of the brain such as the frontal and temporal lobes. Similarly, one could use 

Olney et al. Page 8

Alzheimers Dement. Author manuscript; available in PMC 2021 January 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



composite measures of cognition that represent function across multiple domains. The fact 

that the MoCA was one of the most frequently abnormal tests in carriers, even in the 

asymptomatic and mildly/questionably symptomatic groups, suggests that this might be a 

fruitful strategy. However, many noncarriers also showed abnormal performance on the 

MoCA, which suggests that relying on an arbitrary threshold to identify oncoming 

symptoms would limit the accuracy of the approach. Thus, additional longitudinal work will 

have to be done to empirically define performance thresholds that reliably predict 

development of functional changes. Another approach would be to use a multiple-predictor 

strategy to identify combinations of cognitive tests and behavioral measures from a battery 

such as the one used in this project to predict onset of symptoms. Such an approach could 

identify multiple patterns of impairment with predictive value and thus apply to a variety of 

clinical presentations. A similar approach can be used for brain imaging (see the article by 

Staffaroni et al. [25] in this issue for example).

These data illustrate the importance and promise of large longitudinal studies of f-FTLD 

such as LEFFTDS, GENFI, and similar efforts. While our findings reinforce the complexity 

and heterogeneity of FTLD, even in the context of disease-causing mutations, they suggest 

that early changes in imaging, cognitive performance, and behavioral ratings may be able to 

serve as early predictors of functional impairment and help to identify suitable candidates 

for prevention and early-stage treatment trials. As longitudinal data from these cohorts 

emerge, they will provide invaluable information about the earliest signs of FTLD and 

neurodegenerative disease in general.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the literature using traditional 

sources (e.g., PubMed) and meeting abstracts and presentations.

2. Interpretation: Our results indicate that imaging abnormalities can serve as 

early indicators of oncoming functional deterioration in frontotemporal lobar 

degeneration. However, the specific brain regions and clinical abnormalities 

that herald the onset of functional change likely vary across individuals.

3. Future directions: The study lays the groundwork for future longitudinal 

studies to determine the timing between imaging and clinical changes and to 

define the best combination of imaging abnormalities and clinical measures 

for predicting functional changes.
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Fig. 1. 
Proportion of individuals in each group with abnormal performance (z < −1.5) on each 

cognitive test with available norms (colored bars) superimposed on proportion of noncarriers 

with abnormal performance on that test. Bars extend to indicate largest observed proportion, 

so that bars where colors extend beyond gray indicate that mutation carrier group showed 

higher proportion (denoted by rightward extent of colored bar from the y-axis line) than 

noncarriers (whose proportion is denoted by rightward extent of gray bars from y-axis line). 

Abbreviations: MoCA, Montreal Cognitive Assessment; MINT, Multilingual Naming Test; 

MAPT, microtubule associated tau; GRN, progranulin; C9orf72, chromosome 9 open 

reading frame 72.
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Fig. 2. 
Proportion of individuals in each group with reduced gray matter volume (w-score < −1.5) at 

each gray matter voxel. Increasing color from blue to yellow in “heat map” indicates higher 

proportion of individuals in that group showed reduced volume at that location. Left 

hemisphere is displayed on the left in coronal images. Abbreviations: MAPT, microtubule 

associated tau; GRN, progranulin; C9orf72, chromosome 9 open reading frame 72.
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