

Images in Infectious Diseases

Detection of meningovascular neurotuberculosis through intracranial vessel wall imaging

Paulo Márcio Borges Daniel^[1], Flávia Sprenger^[1] and Bernardo Corrêa de Almeida Teixeira^[1]

[1]. Universidade Federal do Paraná, Hospital de Clínicas, Departamento de Radiologia, Curitiba, PR, Brasil.

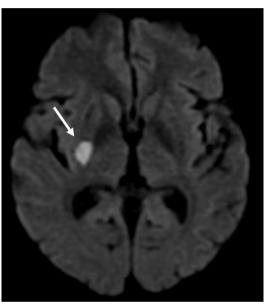
A 35-year-old homeless man presented with a sudden loss of left limb strength with brachial predominance and a recent history of weight loss and cough. Brain magnetic resonance imaging (MRI) revealed patchy foci of leptomeningeal nodular enhancement and acute ischemia in the right lentiform nucleus (**Figure 1**). Vessel wall imaging revealed circumferential smooth enhancement in the right M1 and left M2 segments, suggestive of vasculitis secondary to an inflammatory/infectious process (**Figure 2 and 3**).

The patient was HIV positive, with immunosuppression stigmas, such as oropharyngeal candidiasis, and off antiretroviral therapy (CD4: 9 cells/mm³ and viral load: 364.891/mL). Chest computed tomography revealed diffuse miliary lung nodules; a cerebrospinal fluid polymerase chain reaction test was positive for neurotuberculosis.

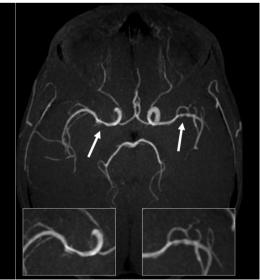
Cerebral vasculitis, which corresponds to the inflammation of blood vessel walls, may occur as a complication of neurotuberculosis and lead to secondary strokes^{1,2,3}.

Magnetic resonance vessel wall imaging is a non-invasive method capable of detecting vascular inflammation, and arterial abnormalities may persist after treatment. Moreover, residual vascular lesions may be a source of disease recurrence. Therefore, follow-up studies may be helpful^{1,2}.

Vessel wall enhancement with the absence of vascular complications, such as infarction, may significantly improve prognosis, with early treatment initiated to prevent complications^{1,2}.


ACKNOWLEDGMENTS

The authors have no acknowledgements.


AUTHORS' CONTRIBUTION

PMBD: Conception and design of the study, acquisition of data, drafting the article, image selection, approval of the final version

Corresponding author: Paulo Márcio Borges Daniel. e-mail: paulomarcio1984@gmail.com bhttps://orcid.org/0000-0002-6198-3851 Received 22 July 2021 Accepted 19 August 2021



FIGURE 1: Axial diffusion-weighted image showing acute infarction in the right lentiform nucleus (white arrow).

FIGURE 2: Time-of-flight angio-MRI sequence demonstrating irregular stenosis (white arrows) along medium cerebral arteries.

FIGURE 3: Vessel wall imaging sequence demonstrating circumferential parietal contrast enhancement (white arrows) in the right M1 and left M2 segments.

to be submitted. FS: Data collection, manuscript draft, manuscript preparation. BCAT: Data collection, conception and design of the study, acquisition of data, drafting the article, image selection, approval of the final version to be submitted.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

FINANCIAL SUPPORT

This study did not receive any kind of funding.

ORCID

Paulo Márcio Borges Daniel: 0000-0002-6198-3851

Flávia Sprenger: 0000-0002-1631-3517

Bernardo Corrêa de Almeida Teixeira: 0000-0003-4769-6562

REFERENCES

- Javaud N, Certal RS, Stirnemann J, Morin AS, Chamouard JM, Augier A, et al. Tuberculous cerebral vasculitis: retrospective study of 10 cases. Eur J Intern Med 2011; 22(6):99-104.
- 2. Choudhary N, Vyas S, Modi M, Raj S, Kumar A, Sankhyan N, Suthar R, et al. MR vessel wall imaging in tubercular meningitis. Neuroradiology 2021 (online ahead of print).
- 3. Burrill J, Williams CJ, Bain G, Conder G, Hine AL, Misra RR. Tuberculosis: a radiologic review. RadioGraphics 2007; 27(5):1255-73.