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Chromatinprovidesbothameans toaccommodatea largeamountofgeneticmaterial inasmall space
and ameans to package the samegeneticmaterial in different chromatin states. Transitions between
chromatin states are enabled by chromatin-remodeling ATPases, which catalyze a diverse range of
structural transformations. Biochemical evidence over the last two decades suggests that chro-
matin-remodelingactivitiesmayhaveemergedbyadaptationofancientDNA translocases to respond
tospecific featuresof chromatin.Here,wediscuss suchevidenceandalso relatemechanistic insights
to our understanding of how chromatin-remodeling enzymes enable different in vivo processes.
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Introduction
The packaging of eukaryotic DNA into chromatin provides a

means to partition the genome into transcriptionally active and

transcriptionally repressed regions. Different patterns of parti-

tioning allow diverse transcriptional programs to arise from a sin-

gle genetic blueprint. The establishment of specific chromatin

states during the course of development as well as their main-

tenance through the disruptive events of transcription, DNA

replication, and DNA repair require rapid rearrangements of

chromatin structure. ATP-dependent chromatin-remodeling

enzymes provide a means of generating such changes in chro-

matin structure.

These enzymes are often referred to as Snf2- or SWI/SNF-

related enzymes. This stems from the characterization of the

yeast SWI/SNF complex as the first ATP-dependent chromatin-

remodeling enzyme (Côté et al., 1994). The Snf2 protein contains

a Walker box, which is one element of a series of seven amino

acid sequence motifs that are conserved between the Snf2

protein and the superfamily 2 (SF2) grouping of helicase-related

proteins (Gorbalenya and Koonin, 1993). Proteins related to

Snf2 have since been identified within the genomes of all eukary-

otes. Based upon sequence homology within the ATPase core,

these can be assigned into some 24 distinct subfamilies (Flaus

et al., 2006). Many of these subfamilies are broadly conserved

through evolution (Table 1).

Together, the different subfamilies of chromatin-remodeling

enzymes catalyze a broad range of chromatin transformations

that includes sliding the histone octamer across the DNA, chang-

ing the conformation of nucleosomal DNA, and changing the

composition of the histone octamer. These biochemical activities

are remarkable given the underlyingmechanistic challenges. The

substrate, a nucleosome, is structurally complex and contains

DNA tightly bound to the histone octamer. Somehow, chro-

matin-remodeling enzymes have to disrupt DNA-histone inter-
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actions while contending with and leveraging the structural

constraints placedby the histoneoctamer.Here,we largely focus

on recent observations relating to the ISWI and Chd1 proteins

and the implications for the mechanisms via which these en-

zymes act. We then relate their different biochemical outputs to

their emerging biological roles.

A Core DNA Translocase Function
Interesting insights into mechanism have been derived from

observations that many members of the SF2 family share the

ability to translocate along nucleic acids in an ATP-dependent

manner (Singleton et al., 2007), raising the possibility that the

remodeling complexes also have DNA translocase activity.

This is indeed the case, and single-molecule approaches

have been used to detect translocation by SWI/SNF and RSC

complexes directly as a result of the ability of these complexes

to generate ATP-dependent loops in DNA molecules (Lia et al.,

2006; Saha et al., 2002; Zhang et al., 2006). For RSC, the direc-

tionality of translocation appears to be 30/50 (Saha et al., 2002).

However, several studies have detected that a proportion of

translocation events result in an ATP-dependent reversal of

loop formation (Lia et al., 2006; Sirinakis et al., 2011). This may

reflect a capacity of the ATPase lobes to switch from engage-

ment with one strand to the other at low frequency.

The processivity of translocation events on naked DNA has

been most sensitively measured using a tethered subcomplex

of RSC components. These translocation events occur at a

speed of 25 bp per second with a mean processivity of 35 bp

and are likely to be made up of small steps of the order of

2 bp, which can result in the generation of forces of up to 30

pN (Sirinakis et al., 2011). More recently, repositioning of nucle-

osomes by ISWI complexes has been shown to occur in steps of

1 bp (Blosser et al., 2009; Deindl et al., 2013). This makes it likely

that Snf2-related enzymes like other SF2 translocases share an
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Table 1. Subfamilies of Snf2-Related Proteins

Human Drosophila Arabidopsis Cervisiae

1 SMARCA4 (BRG1) and SMARCA2

(BRM)

Brahma CHR2 (ATBRM), CHR3 (SYD), CHR23,

and CHR12

Snf2/Swi2 and Sth1

2 hSNF2H(SMARCA5) and hSNF2L

(SMARCA1)

ISWI CHR11 and CH17, Isw2 and Isw1

3 CHD1 and CHD2 CHD1 CHR5 Chd1

4 CHD3, CHD3, CHD4, and CHD5 Mi-2 and Chd3 CHR6 (CKH2, EPP1, PICKLE, and SSL2),

CHR4 (PKR1), and CHR7 (PKR2)

5 CHD6, CHD7, CHD8, and CHD9 KISMET

6 HELLS (LSH, PASG, and SMARCA6) DDM1 (CHR1, SOM1, and CHA1) IRC5

7 ALC1 (CHD1L) ASG3 (CHR10)

8 SRCAP (DOMO1 and SWR1) Domino CHR13 (PIE1 and SRCAP) Swr1

9 EP400

10 INO80 Ino80 INO80 Ino80

11 ETL1 (SMARCAD1) Etl1 CHR19 (ETL1) Fun30

12 RAD54L and RAD54B okra (rad54) CHR25 (RAD54) Rad54 and Rdh54

13 ATRX XNP (dATRX) CHR20 (ATRX)

14 RAD54L2 CG4049

15 CHR38 (CLSY), CHR42, CHR34, CHR35

(DRD1 and DMS1), and CHR40.

16 HLTF (SMARCA3 and SNF2L3) RAD5, AT5G43530, ATG05120, ATG5130,

and AT1G02670

Rad5 and Rad16

17 AT1G50410, AT3G20010, AT1G61140

(EDA16), AT1G11100, and AT3G16600

Ris1

18 TTF2 Lodestar (horka)

and CG10445

19 SHPRH CG7376 AT2G40770 and AT3G54460 IRC20

20 BTAF1 (TAF172) Hel89B (BTAF1) BTAF1 (CHR16 and RGD3) Mot1

21 ERCC6 (CSB and RAD26), ERCC6L

(PICH and RAD26L), and ERCC6L2

CHR8, CHR9, and CHR24 Rad26

22 SMARCAL1 (HARP) and ZRANB3 Marcal1 CHR18 and AT5G07810

Names of Snf2-related proteins in different species, with synonyms in brackets. Related subfamilies are grouped based upon sequence homology

within the translocase domains (Flaus et al., 2006). The proteins in rows 1 to 7 are most closely related to Snf2 and often participate in reactions

that involve nucleosome repositioning. The Swr1-related proteins grouped in rows 8–11 share an activity in exchange of histone dimers. The distin-

guishing mechanistic characteristics of other subfamilies are not yet known.
elementary step size of 1 bp per ATP molecule hydrolyzed

(Singleton et al., 2007).

An enzyme that translocates along the helical axis of DNA with

a step size of 1–3 bp is expected to generate torsion in DNA, and

the accumulation of such superhelical torsion has been detected

(Lia et al., 2006). However, the rate at which torsion is generated

is less than that anticipated to result from tracking the DNA

backbone, suggesting that some torsion is lost via a slippage

mechanism. The combined effect of translocation and torsion

could generate incremental distortions in DNA-histone contacts

that are presumably harnessed by different enzymes to achieve

different outcomes. To understand how these changes can be

used to reconfigure nucleosomes, it is important to consider

where the tranlocase lobes engage with nucleosomal DNA.

Experiments involving site-directed crosslinking and DNA

gaps and nicks have together suggested that the translocase

lobes of ISWI and SWI/SNF enzymes engage nucleosomal

DNA at an internal location, �20 bp away from the dyad (super
helical location [SHL] �2/+2). A crosslinker attached to bases

17 and 18 bp from the dyad axis interacts with a 128 amino

acid peptide comprised of the N-terminal translocase lobe of

the Isw2 protein within the context of an ISW2-nucleosome

complex (Dang and Bartholomew, 2007). The length of the

crosslinker (�10 Å) and the approximation of the position of

the crosslinked amino acid within each peptide do not allow

for identifying the precise location of the ATPase lobes (Figure 1).

Yet the data provide important mechanistic constraints by

locating the ATPase lobes in the approximate vicinity of SHL–

2/+2. Gaps and nicks that cover 1–5 bp over the SHL–2/+2

region of nucleosomal DNA inhibit nucleosome movement by

ISWI complexes as well as SWI/SNF and RSC complexes,

whereas similar gaps and nicks at other locations do not have

large inhibitory effects (Saha et al., 2005; Schwanbeck et al.,

2004; Zofall et al., 2006). These results suggest that the translo-

case domains of remodeling enzymes act on DNA located at an

internal region of the nucleosome. However, the 30-50 preference
Cell 154, August 1, 2013 ª2013 The Authors 491



Figure 1. Model of Isw2 Nucleosome

Interactions
The Isw2 complex represents a paradigm for
nucleosome remodeler interactions, as the sites at
which peptides derived from translocase lobe 1
and the HAND/SANT and SLIDE domains interact
with nucleosomal DNA (black) have been deter-
mined by directed crosslinking (Dang and Bar-
tholomew, 2007). The HAND/SANT SLIDE domain
of Isw2 (gray) is modeled using the equivalent
region of the Isw1 (Yamada et al., 2011). Two
peptides from this region of the ISW2 complex
(green and purple) crosslink to the bases shown in
the space-fill of the same color. The RecA lobes
(light-blue) are modeled using the structure of
zebrafish Rad54 (Thomä et al., 2005) and the
peptide shown in red crosslinked to the bases
shown in red space-fill. The precise details of how
each domain is docked are not known, as the
specific amino acids that form crosslinks within
each peptide are not known. Black dots indicate
the positions of single-nucleotide gaps that inter-
fere with nucleosome sliding (Zofall et al., 2006).
Core histones are shown as yellow.
observed on naked DNA has not been consistently observed on

nucleosomal DNA. This raises the possibility that the gaps affect

the generation of an altered DNA structure instead of only

affecting DNA translocation.

Using an elegant single-molecule approach, Deindl et al.

have directly tracked the motion of DNA across the surface of

the histone octamer during the course of repositioning directed

by the ISW2 complex (Deindl et al., 2013). This study showed

that, although the translocase tracks along DNA, pushing

DNA out of the nucleosome in 1 bp increments, DNA is drawn

into the nucleosome from the other side units of 3 bp. Counter-

intuitively, DNA exits the nucleosome core before it enters in

from the other end. Remarkably, in the initial repositioning

reaction, 7 bp of DNA are removed from a nucleosome in

1 bp increments before any DNA is drawn into the nucleosome

from the other side. The removal of 7 bp is speculated to be a

prerequisite for generating strain required to draw DNA in from

the opposite side of the nucleosome. Once this strain has been

generated, DNA is pulled into the nucleosome in successive

increments of 3 bp. As a result, there is a deficit of between

4 and 7 bp during the course of repositioning. This is, in effect,

opposite to previously proposed models involving extra

DNA being drawn into the nucleosome in the form of loops

before it could exit from the other side (Figure 2) (Clapier and

Cairns, 2009).

How could such deficits in DNA content be accommodated

within the nucleosome? A clue may come in the form of nucleo-

somes crystallized on different DNA sequences. These show

that a deficit can be accommodated through underwinding of

DNA and that this is favored at specific locations on the octamer,

SHL2 and SHL5 (Tan and Davey, 2011). The transit of DNA

through these locations may represent an important step during

ATP-dependent remodeling, perhaps reflected by the sensitivity

to introduction of nicks and gaps at these locations. Although

crystal structures illustrate a means to reduce the DNA content

of a nucleosome by 1 bp, it is not immediately obvious how it

can be reduced by 4 or 7 bp. An intriguing possibility is that

each superhelical location can accommodate a 1 bp reduction
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in DNA content, and once this occurs at each of the seven super-

helical locations present in one half of the nucleosome, then

additional DNA is dragged into the nucleosome. However, it is

not clear that a nucleosome could withstand such extreme

unwinding, in which case a more substantial change in the

conformation of the histone octamer will be required.

To date, there is no direct evidence for conformational

changes within the histone octamer during ATP-dependent

remodeling. However, recent data on nucleosome dynamics

suggest that nucleosomes are capable of adopting alternative

conformations in which the interface between H2A-H2B dimers

and the H3-H4 tetramer is altered (Böhm et al., 2011). If analo-

gous conformational changes can occur during remodeling,

this would significantly increase the types of DNA distortions

that are possible within a nucleosome. In light of this possibility,

it makes sense to consider that the histone octamer is not simply

a monolithic roadblock for a translocating remodeling enzyme

but, rather, plays a more active role in the remodeling process.

Indeed, it has long been known that specific histone modifica-

tions, such as acetylation, act as recruitment devices and that

specific histone tails, such as the H4 tail, act as catalytic regula-

tors (reviewed in Clapier and Cairns, 2009).

The observations described above are consistent with the

possibility that chromatin-remodeling activities evolved from

a primitive DNA-translocating core (Fairman-Williams et al.,

2010). The biophysical properties of this core—that it moves

in 1 bp steps and can generate high forces yet is not highly

processive—make it well suited for manipulation of DNA-protein

contacts. This has utility in regulating nonnucleosomal as well

as chromatin-related complexes, as described further in the

sections below. Furthermore, activities such as those of ISWI

complexes, which position a nucleosome at the midpoint

between its neighbors, require the chromatin remodelers to be

more than just a snowplow that tracks along DNA, displacing

any histones that are encountered. How might chromatin re-

modelers achieve the sophisticated gymnastics and regulation

that seem necessary to achieve such well-defined outcomes?

Part of the answer may lie in how the accessory domains



Figure 2. Mechanisms for Nucleosome Repositioning
(1) Single-molecule measurements indicate that DNA is first removed from nucleosomes on the exit side (red) (Deindl et al., 2013). As a result, the intermediates in
repositioning contain a deficit of DNA that has been measured as between 4 and 7 bp. This could be accommodated as a change in the conformation of the
octamer (2), a reduction in DNA twist (3), or a combination of these. DNA is subsequently drawn into the nucleosome on the destination side (blue) (4), allowing the
nucleosome to return to amore normal conformation 3 bp further along the DNA (5). This contrasts with previousmodels in which DNAwas proposed to be drawn
into the nucleosome prior to being removed (6). Note that, although DNA appears to enter and leave the nucleosome in 3 bp steps, these are likely to arise from
three successive 1 bp movements of the remodeling enzyme.
regulate the activity of the translocase core, which we discuss in

the next section.

Regulating the Translocase
The translocating core of SF2 proteins consists of 2 RecA-like

domains or lobes (Singleton et al., 2007). Conserved sequences

from each domain are brought together in a closed conformation

to form surfaces capable of interacting with and hydrolyzing ATP

and for binding nucleic acids (reviewed in Hauk and Bowman,

2011). Coupled with ATP binding and hydrolysis, reconfiguration

of the interface between the RecA-like domains is thought to

drive translocation along DNA or RNA. As a result, the confor-

mation of the RecA-like domains with respect to each other is

anticipated to be somewhat dynamic. Consistent with this, the
structures of the RecA-like domains from Snf2-related enzymes

have been observed in different conformations. For example, the

lobes of the Sulpholobus Snf2 homolog SSO1653 are flipped

180� with respect to the closed conformation (Dürr et al.,

2005). In the case of the yeast Chd1 protein, the motifs that

are critical for ATP hydrolysis are held apart in an open confor-

mation that is unlikely to be active (Hauk et al., 2010) (Figure 3).

In contrast, in the case of Zebrafish Rad54, the helical lobes are

close to the closed and active conformation (Thomä et al., 2005).

This raises the question of the functional significance of the

different conformations adopted by the RecA domains.

An attractive concept is that the adoption of an inactive

conformation provides a means of regulation. There are several

reasons why it may be important that the activity of Snf2-related
Cell 154, August 1, 2013 ª2013 The Authors 493



Figure 3. Structural Models for Chd1 and Isw2
The chromodomains, translocase lobes (Hauk et al., 2010), and SANT/SLIDE DNA-binding domain (Sharma et al., 2011) of Chd1 are colored yellow, blue, and
purple, as indicated in the schematic. The structure of linker sequences was crudely modeled based upon secondary structure prediction to indicate their scale
rather than conformation. To the right, the helicase lobes are shown as space-fill, with the conserved DNA-binding motifs I, II, and III of lobe I and motifs V and VII
of lobe II indicated in red. These conserved motifs are observed to be held in an open conformation that is likely to be inefficient for ATP-dependent DNA
translocation. A similar model is shown for Isw2. In this, the HAND-SANT-SLIDE domain is modeled on Isw1 (Yamada et al., 2011), and the ATPase lobes are
modeled using the structure of Zebrafish Rad54 in a configuration close to the closed conformation likely to be active for DNA translocation (Thomä et al., 2005).
For both Chd1 and Isw2, accessory sequences contribute to the regulation of catalytic activity, and this may well involve changes in the alignment of the ATPase
lobes. For example, the chromodomains of Chd1 andR93 of the ISWI protein (in red space-fill) confer negative autoregulation (Clapier andCairns, 2012; Hauk and
Bowman, 2011). This region also undergoes a conformational change upon DNA binding (Mueller-Planitz et al., 2013). In contrast the SANT-SLIDE domains of
both proteins confer positive regulation (Hota et al., 2013; McKnight et al., 2011). DNA fragments bound to the SANT/SLIDE domains and modeled into the
translocase domain are shown in red space-fill. However, it should be noted that, as the conformation of linker sequences (green) is not known, it is not possible to
infer the orientation of the two bound DNA fragments.
enzymes is regulated. First, as even simple eukaryotes such as

budding yeast encode some 17 Snf2-related proteins, their

combined abundance could represent a significant burden on

cellular ATP levels if constitutively active. Second, though

Snf2-related enzymes share related translocase domains, these

have specificity for different substrates such as TBP in the case

of Mot1 and different types of nucleosomes in the case of other

remodeling enzymes. Third, as we mentioned in the previous

section, few if any Snf2-related proteins are likely to act as

molecular snowplows simply tracking along DNA indefinitely

and are likely to require sophisticated regulation by the local

context.

Regulation in many cases is likely to be specific for enzymes

performing related tasks. This specificity is likely to be in part

conferred by the translocating core, as sequence alignments

of this region alone are sufficient to distinguish different sub-
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families. However, as accessory domains are also conserved

between subfamilies, it is likely that these also contribute to

both regulation and specificity. Recent observations with ISWI

and Chd1 remodelers provide evidence that indicates mecha-

nistic roles for the different conformations of the RecA domains

and for the accessory domains in regulating these different con-

formations. These examples are reviewed below.

Positive Regulation of Binding and Catalysis

One of the best-characterized accessory domains are the

HAND-SANT-SLIDE domains located C terminal to the ATPase

domains within the Drosophila ISWI protein (Grüne et al.,

2003). Crosslinking approaches have localized the binding of

the SANT and SLIDE domains of ISWI complexes to linker

DNA (Dang and Bartholomew, 2007) (Figure 1). Subsequently,

a structurally related SANT-SLIDE domain has been identified

in an equivalent position within the yeast Chd1 protein (Ryan



et al., 2011). The SANT domain is related to the myb DNA-bind-

ing domain, and the isolated domains bind DNA independently

(Sharma et al., 2011; Yamada et al., 2011) (Figure 3).

Chd1 proteins from which the SANT-SLIDE domains have

been ablated by mutation or deletion have considerably lower

affinity for DNA or nucleosomes (Grüne et al., 2003; Ryan

et al., 2011). Orders of magnitude of higher concentrations of

ISWI and Chd1 proteins deleted for their SANT-SLIDE domains

are required to observe nucleosome sliding at levels equivalent

to full-length proteins. This is consistent with a role for the

SANT-SLIDE domain in targeting the remodeling enzyme to

nucleosomal DNA.

In the context of the isolated ISWI protein, deleting the

HAND-SANT-SLIDE domain modestly reduces the maximal

rates of nucleosome remodeling (Mueller-Planitz et al., 2013).

However, within a native ISW2, complex mutation of just the

SLIDE domain results in only small defects in the affinities for

DNA or nucleosomes (Hota et al., 2013). Much larger defects

in the rates of ATP hydrolysis and nucleosome remodeling

are observed (Hota et al., 2013). In the case of Chd1 as well,

the directionality of nucleosome movement changes upon

deleting the SANT-SLIDE domain (McKnight et al., 2011). The

intact Chd1 protein has a tendency to reposition nucleosomes

to locations close to the center of short DNA fragments (Stock-

dale et al., 2006), consistent with its native function spacing

arrays of nucleosomes (Lusser et al., 2005). Deletion of the

SANT-SLIDE domains results in an enzyme with residual sliding

activity that now tends to reposition nucleosomes toward the

ends of short DNA fragments (McKnight et al., 2011). This

may be the default outcome when a nonregulated translocase

encounters a nucleosome (Finkelstein et al., 2010). Remark-

ably, fusion of an exogenous DNA-binding domain restores

robust sliding activity in the absence of the endogenous

SANT-SLIDE domain (McKnight et al., 2011; Patel et al.,

2012). The directionality of sliding in these chimeric Chd1 pro-

teins is such that nucleosomes are repositioned toward the

DNA-binding site for the heterologous DNA-binding domain.

These results imply that the linker DNA-binding domains also

play important mechanistic roles subsequent to nucleosome

binding.

Howmight the SANT-SLIDE domain regulate the directionality

and rate of nucleosome mobilization? As mentioned above, the

SANT-SLIDE domain of the ISW2 protein crosslinks with linker

DNA, and this extends up to 30 bp from the edge of a nucleo-

some (Dang and Bartholomew, 2007) (Figure 1). It is possible

that a similar region is bound by the SANT-SLIDE domain of

the Chd1 protein. In both cases, the SANT-SLIDE domain may

help to bind and guide the movement of the linker DNA into the

nucleosome in a manner that is coordinated with the actions

of the translocase domain. Consistent with this, both ISWI-

and Chd1-remodeling enzymes have been observed to show

increased activity for nucleosomal substrates with extended

linker DNA (Kagalwala et al., 2004; Stockdale et al., 2006; White-

house et al., 2003; Yang et al., 2006). This increase in activity

appears to be attributable to both more efficient DNA binding

and a faster rate of translocation when these spacing enzymes

are able to engage linker DNA. Recent data further show that

mutating the SLIDE domain within the ISW2 complex reduces
the ability of the complex to move the longer linker DNA into

the nucleosome (Hota et al., 2013).

A consequence of moving linker DNA into a nucleosome is

that the length of the linker will decrease progressively. A nega-

tive-feedback loop is formed in which the shortening of the linker

DNA slows down further movement of the nucleosome. At some

point, the linker on the other side of the nucleosome is likely to be

a better substrate for repositioning, resulting in the movement of

the nucleosome in the opposite direction. This process provides

a means by which a chromatin-remodeling enzyme can relocate

a nucleosome to a position close to the midpoint between its

neighbors via a process of continuous sampling. Although this

process has been proposed for some time (Kagalwala et al.,

2004; Yang et al., 2006), a major step toward confirming such

a mechanism results from the direct observation of single nucle-

osomes under the action of a remodeling enzyme. Blosser et al.

observed that, at steady state, nucleosomes continuously bound

by the ISWI-containing ACF complex move back and forth

(Blosser et al., 2009). In principle, such back and forth motion

could result from the dissociation of an ACF complex from one

side of a nucleosome and its association with the linker DNA

on the other side. However, Blosser et al. performed three color

experiments that enabled bidirectional motion to be observed

within a single binding event (Blosser et al., 2009). At the same

time, Racki et al. showed that nucleosomes are repositioned

more efficiently when two ACF complexes engage with a single

nucleosome (Racki et al., 2009). These results suggested a

model for ACF in which each of the two ACF protomers takes

a turn moving the nucleosome in one direction, and the complex

with access to the longest linker DNA more often moves the

nucleosome.

Negative Regulation of Binding and Catalysis

In addition to the SANT-SLIDE domains, there are additional

conserved sequences present in both the N- and C-terminal

regions of ISWI andChd1proteins. Abreakthrough in this respect

arose from the crystallization of the combined chromodomain

and translocase-related domains of Chd1 (Hauk et al., 2010).

The most striking feature of the structure is that the

chromodomains are located in the cleft between the two

ATPase lobes in a location that interferes with their alignment

in the closed configuration required for ATP hydrolysis and

occludes the residues that are likely to interact with DNA

(Figure 2). This led the authors to propose that Chd1 is subject

to negative regulation via the chromodomains. Supporting this,

a Chd1 protein in which the chromodomains have been deleted

hydrolyzes ATP faster than the intact protein. Point mutations

disrupting the interface between the chromodomains and

translocase domains as well as deletion of the chromodomains

increase DNA binding and DNA-stimulated ATP hydrolysis,

consistent with the chromodomains competing with DNA for

access to the translocase lobes. In addition, deleting the chromo-

domains partially relieves the dependence on the histone H4 tail,

which is an important nucleosomal epitope required for maximal

remodeling by Chd1 proteins. Interestingly, however, mutating

the chromodomains has a negative effect on the rate of nucleo-

some sliding. Thus, in addition to playing a role in regulating

ATP hydrolysis, chromodomains appear to help couple energy

derived from ATP hydrolysis to nucleosome repositioning.
Cell 154, August 1, 2013 ª2013 The Authors 495



This form of negative allosteric regulation is unlikely to be

unique to chromodomains. The ISWI protein does not contain

chromodomains, but point mutations of two arginine residues

adjacent to an acidic patch N terminal to the translocase

domains have been found to increase ATPase activity (Clapier

and Cairns, 2012). Upon binding to DNA, a change in proteolytic

cleavage has recently been reported to occur at precisely this

site (Mueller-Planitz et al., 2013). ISWI proteins also use the

histone H4 tail for mobilizing nucleosomes but to a greater extent

than Chd1. Clapier and Cairns therefore propose that recogni-

tion of the H4 tail by the active site relieves the autoinhibition

caused by the region containing the two arginines. Interestingly,

although mutating the two arginines increases overall remodel-

ing rates, the rates remain sensitive to the presence of the H4

tail basic patch. This result is analogous to the results with

Chd1 described above and suggests that, in both cases, the

H4 tail plays a catalytic role in addition to helping to displace

an autoinhibitory module.

Together, the data imply that the basic residues in ISWI and

the chromodomains of Chd1 negatively regulate ATPase activ-

ity, and upon recognition of specific nucleosomal features, this

negative regulation is removed and translocation can proceed

unimpeded. That this loss of negative regulation involves a

realignment of the translocase lobes into the closed conforma-

tion has yet to be directly shown. However, it is notable that

the ATPase domains of the Sulfolobus Snf2-related protein

SSO1653 have been observed to move closer together upon

binding to DNA (Lewis et al., 2008).

Integrating Information from Different Substrate Cues

These observations illustrate how the non-ATPase domains can

influence the activity of the translocating core either positively or

negatively and suggest models for how specific features of a

nucleosome, such as linker DNA, and the H4 tail can be used

to gate the effects of these domains. The information provided

by these substrate cues appears to have three types of effects:

increasing recruitment, increasing rates of ATP hydrolysis and

remodeling, and increasing the efficiency with which ATP hydro-

lysis is coupled to remodeling.

Remodeling enzymes thus may have gradually evolved from

primitive nucleic acid translocases by co-opting different fea-

tures of a nucleosome for the purpose of regulating the basic

movements of the RecA lobes. This process of combinatorial

recognition provides an opportunity for kinetic proofreading

mechanisms to discriminate between the correct and the incor-

rect substrates (Blossey and Schiessel, 2008; Narlikar, 2010).

For example, flanking DNA could be ‘‘read’’ twice—once by its

ability to stimulate ATP hydrolysis and then by its ability to stabi-

lize an activated intermediate that is generated upon ATP hydro-

lysis. Such additional mechanisms of specificity beyond effects

on binding and catalysis may be important in vivo to minimize

the remodeling of chromatin templates that do not, for example,

have the correct modification status.

Although the discussion above mainly focuses on linker DNA

and the histone H4 tail, there is a large range of nucleosomal

and nonnucleosomal epitopes that can be recognized by acces-

sory domains and additional subunits present in remodeling

complexes (Table S1 available online). The additional nucleo-

somal epitopes that have been characterized to date include
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specific histone marks (described in Clapier and Cairns, 2009)

and the nonnucleosomal epitopes include transcription factors

and branched DNA structures (Table S1). These provide ameans

of adapting the action of the motor domains to a diverse range of

functions. This occurs, in part, as a result of accessory domains

providing a means of targeting recruitment of enzymes to spe-

cific genomic features. However, there is no reasonwhy a subset

of these epitopes should not have effects on catalysis in addition

to or instead of recruitment, as observed with the H4 tail and

flanking DNA.

Accessory domains and subunits are often arranged in large

complexes and have the potential to substantially affect the

outcome of remodeling by regulating the location and activity

of the ATPase domain. For example, in the case of the ISWI

protein, accessory subunits such as Acf1 can alter the direction-

ality of repositioning and increase the efficiency of generating

evenly spaced chromatin (Eberharter et al., 2001; Fyodorov

et al., 2004; He et al., 2006). What is much needed to provide

further insight into the mechanistic roles of the different acces-

sory domains is a better understanding of how the domains are

organized with respect to each other. The cases that have been

studied to date indicate compact organization with close prox-

imity between accessory and ATPase domains (Hauk et al.,

2010; Morra et al., 2012; Watson et al., 2012; Bétous et al.,

2012), meaning that they are well placed to influence the

ATP hydrolysis cycle in response to specific nucleosomal and

nonnucleosomal epitopes. As a result, the diversity range of

accessory domains and subunits provides a means of adapting

the action of the ATPase core to diverse biological functions

such as DNA repair, recombination, and replication in addition

to transcription.

Emerging Roles for ATP-Dependent Remodeling
Enzymes in Chromatin Organization In Vivo
Chromatin-remodeling enzymes appear to use the ability to

translocate on DNA and the ability to respond to nucleosomal

features to achieve a diverse range of biochemical outputs.

These diverse outputs, in turn, appear to be linked to speciali-

zation of biological function. The rapid development of high-

resolution genomic approaches provides new opportunities to

relate the specific biological functions of chromatin-remodeling

enzymes with their biochemical behaviors. In model organisms

such as budding yeast, it is relatively simple to align large

groups of genes by their transcriptional start site. When this is

done, a striking organization of nucleosomes is observed in

which the region just upstream of the promoter is depleted for

nucleosomes and an array of ordered nucleosomes extends

into the coding region (Figure 4; Rando and Chang, 2009; Zhang

et al., 2011). Superposed on the organization of nucleosomes,

the distribution of many histone modifications, histone variants,

and transcription-related factors show characteristic distribu-

tions across the averaged coding gene (Rando and Chang,

2009). Recently, it has emerged that a subset of chromatin-

remodeling enzymes also exhibit distinct distributions with

respect to transcribed genes (Figure 4; Yen et al., 2012). Below,

we discuss how the reactions directed by different enzymes are

incorporated into the broader context of transcription-coupled

chromatin organization.



Figure 4. Organization of Chromatin-Remodeling Enzymes with Respect to Transcribed Genes
A schematic representation organization of chromatin-related factors with reference to the transcriptional start site (TSS). The genome-wide distributions of
nucleosomes and posttranslational modifications to histones and RNA polymerase subunits reveal that many of these factors are organized with respect to
transcribed genes (reviewed by Rando and Chang, 2009). More recently, it has become apparent that ATP-dependent remodeling enzymes also show distinct
distributions with respect to transcribed genes where they influence nucleosome organization (Gkikopoulos et al., 2011; Yen et al., 2012). Furthermore, in some
cases, the action of remodeling enzymes can influence the distribution of histone modifications and variants, whereas in other cases, modifications instruct the
action of remodelers. This interplay between histone modifications and ATP-dependent chromatin modifications acts to sculpt the chromatin landscape on a
genome scale and is likely to involve further integration with transcriptional elongation factors and additional factors acting to regulate chromatin organization,
such as histone chaperones.
Chromatin Organization
In budding yeast, the Chd1 and Isw1 proteins are found to be

enriched in the coding regions of transcribed genes. Deletion

of Chd1 alone results in a loss of regular spacing between nucle-

osomes within coding regions (Gkikopoulos et al., 2011). This is

consistent both with previous studies linking Chd1 to the elonga-

tion of transcription (Simic et al., 2003) and with the biochemical

properties of Chd1 that enable it to space arrays of nucleosomes

on plasmid DNA (Lusser et al., 2005). The combined deletion of

Chd1 and Isw1 results in a more profound loss of positioning

(Gkikopoulos et al., 2011). A similar situation is observed in

S. pombe, in which deletion of the two Chd1 homologs is

required to disrupt nucleosome spacing (Hennig et al., 2012;

Pointner et al., 2012; Shim et al., 2012). In both organisms,

Chd1 proteins are functioning with partial redundancy. A conse-
quence of this is that the defects in gene expression occurring

upon deletion of Chd1 are restricted to the few genes in which

Chd1 action is not redundant with another process.

It is attractive to speculate that the Chd1 and Isw1 proteins act

to space nucleosomes as they are reassembled following tran-

sient dissociation during transcription. This reassembly reaction

is likely to be rapid and assisted by histone chaperones such as

FACT and Spt6. Remodeling enzymes such as ACF and Chd1

may assist this process, facilitating the conversion of chromatin

assembly intermediates into nucleosomes (Torigoe et al., 2011).

In Drosophila, Chd1 has been observed to interact with the

histone chaperone HIRA and to participate in nonreplicative

chromatin assembly (Konev et al., 2007).

In yeast, deletion of ISW1 and CHD1 correlates with increased

histone exchange (Smolle et al., 2012). It is possible that the
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irregular spacing of nucleosomes in the absence of these

enzymes renders them prone to dissociation as a result of colli-

sions between adjacent nucleosomes (Engeholm et al., 2009).

Transient dissociation of histones in the absence of Chd1 and

Isw1 provides an opportunity for exchange with the soluble

pool of nascent histones. Indeed, increased histone exchange

is observed in the absence of Isw1 and Chd1, and this results

in increased incorporation of acetylated histones over coding

regions (Radman-Livaja et al., 2012; Smolle et al., 2012). As a

result, in the absence of Chd1 and Isw1, nucleosomes over cod-

ing regions become hyperacetylated in addition to substantially

losing positioning. Although changes in transcription of coding

regions in this state are small, significant increases in noncoding

transcription have been observed (Smolle et al., 2012). These

observations illustrate how the action of ATP-dependent re-

modeling enzymes can be integrated with processes such as

transcription and histone modification to sculpt the chromatin

landscape.

Although deletion of Isw1 and Chd1 results in a loss of posi-

tioning of coding region nucleosomes, the nucleosome-free

region and +1 nucleosome are largely unaffected (Gkikopoulos

et al., 2011). This raises the possibility that another process is

required to direct the positioning of the +1 nucleosome and

that downstream nucleosomes are subsequently positioned

with reference to this nucleosome. The Isw2 protein is known

to influence the positioning of the +1 nucleosome (Whitehouse

et al., 2007) and is localized to the +1 nucleosome by ChIP

(Yen et al., 2012). Fine analysis of formaldehyde crosslinks using

exonuclease digestion reveals extended contacts of Isw2

bound to +1 nucleosomes on the 50 side of the gene (Yen

et al., 2012). This provides evidence that linker DNA is bound

by Isw2 on the 50 side of nucleosomes that are repositioned in

this direction in vivo. These results illustrate the power of

genomic approaches to provide mechanistic insight. This study

also found that binding of Reb1 was often observed adjacent to

the region crosslinked to Isw2. Thus, Isw2 may bind +1 nucleo-

somes and reposition them adjacent to tightly bound transcrip-

tion factors such as Reb1. The +1 nucleosome could then act as

a reference point for the spacing of arrays of coding region

nucleosomes directed by the Isw1 and Chd1 proteins (Zhang

et al., 2011). Key questions that remain include how nucleo-

somes are organized immediately following DNA replication

before they are transcribed and how nucleosomes are orga-

nized across the large regions of heterochromatin found in the

genomes of higher eukaryotes.

Chromatin Disruption
Depletion of RSC results in a partial filling in of the nucleosome-

depleted region upstream of promoters (Hartley and Madhani,

2009), consistent with a role in nucleosome removal. RSC may

be targeted to these regions through interactions with abundant

transcription factors or its own DNA-binding specificity (Badis

et al., 2008; Hartley and Madhani, 2009), and its action could

provide one mechanism to reduce nucleosome occupancy at

key regulatory elements. Similarly, in mammalian cells, human

SWI/SNF complexes play roles in regulating chromatin organi-

zation at regulatory elements both pre- and postrecruitment of

regulators (Burd and Archer, 2013).
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The nature of the alteration to chromatin occurring at sites of

SWI/SNF recruitment has not been characterized in all cases.

However, examples exist to support nucleosome repositioning,

disruption, and histone removal in different contexts. Recent

studies provide evidence that these different activities of RSC

may be functionally linked. RSC and SWI/SNF can move two

nucleosomes into such close proximity that DNA is unwound

from the histone octamer at the interface of the two nucleosomes

(Dechassa et al., 2010; Engeholm et al., 2009; Ulyanova and

Schnitzler, 2005). The loss of histone DNA contacts has been

observed to result in dissociation of both histone dimers and,

subsequently, histones H3 and H4. EM structures of RSC and

SWI/SNF reveal a large binding cavity that can accommodate

a nucleosome (Tang et al., 2010). The bound nucleosome

appears to be used as a ram, destabilizing nucleosomes that

it collides with (Dechassa et al., 2010). As a result, it would be

expected that a single nucleosome would not be removed

from DNA as effectively as one surrounded by neighbors.

Consistent with this expectation, RSC removes nucleosomes

more effectively from multinucleosome templates (Dechassa

et al., 2010). During remodeling of the PHO5 regulatory region

in vivo, a single nucleosome is retained (Boeger et al., 2008),

and in addition, RSC bound to partially unwrapped nucleosomes

has been detected at regulatory elements (Floer et al., 2010).

Interestingly, when native repressed PHO5 chromatin is incu-

bated with RSC, the promoter nucleosomes are removed selec-

tively, and this effect is sensitive to treatment of the template with

a histone deacetylase (Lorch et al., 2011). This implicates histone

acetylation as playing an important role in histone removal

by RSC. This could occur via a simple tethering effect, as the

RSC complex contains bromodomains that interact specifically

with histones acetylated at H3 K14 (Kasten et al., 2004) and

with the acetylated Rsc4 subunit (VanDemark et al., 2007). How-

ever, the acetylation of histones not only increases the binding of

remodeling complexes, but also increases repositioning (Chat-

terjee et al., 2011) and dissociation of histones by RSC (Ferreira

et al., 2007). At a structural level, the binding of RSC to histone

tail peptides has been observed to result in a change in the

conformation of the RSC complex (Skiniotis et al., 2007). Acety-

lation of histone H3 has been shown to increase the binding of

specific regions of the H3 tail to the Snf2, Arp7, and Arp8 sub-

units of SWI/SNF (Chatterjee et al., 2011). This re-emphasizes

the possibility raised in the earlier section that a change in the

type of interaction between a remodeling enzyme and nucleo-

somes can alter the outcome of remodeling. Additional support

for this stems from the finding that artificially tethering the chro-

motranslocase region of Chd1 to histones causes the enzyme to

reposition nucleosomes in a fashion more similar to RSC or SWI/

SNF than intact Chd1 (Patel et al., 2012). This illustrates the

potential for histone contacts to influence the specificity of

remodeling by both targeting and altering the outcome of

remodeling reactions.

The genome-wide distributions of both RSC and SWI/SNF

subunits indicate the presence of a tail of occupancy extending

from promoters into the nucleosomes of the ORF (Yen et al.,

2012). It’s possible that this reflects a function relating to the

elongation of transcription, as both RSC (Soutourina et al.,

2006) and SWI/SNF have been shown to have roles in elongation



(Schwabish and Struhl, 2007). It is tempting to speculate that this

role involves assisting the removal of histones from DNA during

transcription by RNA polymerase.

ATP-Dependent Histone Exchange
The prototypical remodeling enzyme linked to histone exchange

is the Swr1 complex, which directs the replacement of nucleo-

somal histone H2A/H2B dimers with H2AZ/H2B variant dimers

with high specificity (Mizuguchi et al., 2004). The yeastSwr1com-

plex is a 14 subunit complex, and both the Swc2 and Swr1 sub-

units directly interact with H2AZ (Wu et al., 2009). The ATPase

activity of the Swr1 complex is activated by H2A-containing

nucleosomes, but not H2AZ-containing nucleosomes (Luk

et al., 2010). ATP hydrolysis is then further stimulated in

the presence of free H2AZ/H2B dimers (Luk et al., 2010). The

complex is capable of replacing the H2A/H2B dimers in a nucle-

osome in a stepwise reaction. This results in a nucleosome con-

taining two H2AZ/H2B dimers, which is a nonoptimal substrate

for the enzyme and thereby helps to provide directionality to

the exchange process. It is likely that the conserved ATPase

domains with Swr1 enzymes are tuned for the purpose of histone

exchange. The spacingbetweenconserved helicase-relatedmo-

tifs III and IV is larger in Swr1-related proteins compared to other

Snf2-relatedproteins (Flaus et al., 2006).Within theRad54 crystal

structure (Thomä et al., 2005), the insertion site forms helical pro-

trusions and a linker that are well placed to contact the substrate

as it engageswith the catalytic site.Within Swr1-related proteins,

the insertions may serve to adapt DNA translocation at the cata-

lytic site for the purpose of histone dimer exchange.

In Saccharomyces cerevisiae, the Ino80 and Fun30 proteins

also have large insertions between motifs III and IV and share

additional sequence homology with Swr1 proteins. Homologs

of all three proteins have been identified in many of the

sequenced genomes of eukaryae, indicating specialization for

distinct functions. Both Ino80 and Fun30 have been shown to

be capable of directing histone dimer exchange, but neither

direct specific incorporation of H2AZ (Awad et al., 2010; Papami-

chos-Chronakis et al., 2011). Ino80 is most efficient in removing

H2AZ/H2B and replacing it with H2A/H2B (Papamichos-Chron-

akis et al., 2011), whereas Fun30 exchanges H2AZ and H2A

equally (Awad et al., 2010). Together, all three enzymes act to

influence the distribution of H2AZ in vivo (Durand-Dubief et al.,

2012; Mizuguchi et al., 2004; Papamichos-Chronakis et al.,

2011). This illustrates there are at least three ways to influence

the presence of a histone variant: targeted incorporation illus-

trated by Swr1, targeted removal as illustrated by Ino80, and

increased exchange as illustrated by Fun30. It is possible that

similar principles will apply to the distribution of other histone

variants or modifications. Indeed, it has been proposed that

posttranslational modification of H2AZ may act to regulate its

distribution (Papamichos-Chronakis et al., 2011). The human

ortholog of the Swr1 complex, TIP60, has combined chromatin

remodeling and histone acetyltransferase activities (Doyon

et al., 2004), and the human ortholog of Fun30 has profound

effects on the re-establishment of histone modifications

following DNA replication (Rowbotham et al., 2011).

The function of the histone variant H2AZ is most clearly

defined at promoters where it flanks the nucleosome-free region
and has been found to prevent the spread of heterochromatin

(Raisner et al., 2005). However, the Swr1, Ino80, and Fun30

proteins are all also found in other regions of the genome and

thus are likely to have additional functions (Durand-Dubief

et al., 2012; Mizuguchi et al., 2004; Yen et al., 2012). A striking

example is the finding that Fun30 influences the rate and extent

of strand resection occurring during the repair of double-

stranded DNA breaks (Chen et al., 2012; Costelloe et al., 2012;

Eapen et al., 2012). Previous biochemical studies suggest that

Fun30 is more likely to cause this effect by altering histone

composition prior to resection. Consistent with this possibility,

the action of Fun30 in strand resection is partially redundant

with Ino80 and RSC (Chen et al., 2012).

Another mechanism for histone exchange is suggested by the

case of ATRX. The human ATRX protein associates with the his-

tone H3.3-specific chaperone DAXX to couple chromatin disso-

ciation with the reassembly of nucleosomes enriched for this

specific histone variant (Law et al., 2010; Lewis et al., 2010).

The translocase domains of ATRX proteins have diverged from

those of ISWI, Chd1, and Swr1 proteins. As a consequence, it

is possible that they have not been adapted to engage with

DNA on the surface of nucleosomes. This does not necessarily

mean that ATRX proteins do not alter chromatin structure

because this could still occur as a secondary consequence of

DNA translocation initiating on linker DNA. In such a situation,

one default outcome could be that of a snowplow, in which nu-

cleosomes are nudged along DNA until they dissociate (Finkel-

stein et al., 2010). In the case of ATRX, coupling with DAXX could

confer specificity for incorporation of H3.3. There are other

examples illustrating the potential of the action of Snf2 proteins

and histone chaperones to be combined (Lusser et al., 2005).

Roles in Disease
Many chromatin-remodeling enzymes are conserved from yeast

through to humans (Table 1), and to date, many of the functional

paradigms established in yeast have relevance to a broad range

of model organisms. In some cases, the composition of com-

plexes has been found to be more complex in mammalian cells.

For example, the subunit composition of the human SWI/SNF

complexes purified from different cell lines varies (Kadoch

et al., 2013). Whereas three distinct ISWI complexes have

been identified in yeast, seven have been identified in humans

(Erdel and Rippe, 2011). The functions of these complexes

seem to have expanded to incorporate the increased complexity

of mammalian cells. These include interactions with proteins

only found in higher eukaryotes, such as steroid hormone recep-

tors (Burd and Archer, 2013) and heterochromatin proteins

(Ho et al., 2011), and involvement in processes such as differen-

tiation and reprogramming (Singhal et al., 2010).

Mutations in components of human remodeling complexes

have now been identified at high frequencies in human cancers

(Table 2). Mutations in components of human SWI/SNF com-

plexes are especially common and have been found to occur

at a frequency of 19% across a spectrum of human cancers

(Kadoch et al., 2013). This compares to a figure of 26% for

p53, the most frequently mutated tumor suppressor. Mutations

to other ATP-dependent remodeling enzymes including Chd1,

Chd4, and ATRX and other chromatin-related factors are also
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Table 2. Links between Remodeling Enzymes and Cancer

Tumor

Frequency Mutation

Observed Genes Mutateda

Renal clear cell carcinoma 41% PBRM subunit of human SWI/SNF BAF complex

Ovarian clear cell carcinoma 75% ARID1A (BAF250a), ARID1B (BAF250b), SMARCA4 (BRG1), and BCL11A

subunits of human SWI/SNF BAF complex

Colorectal cancer 55% Many subunits of human SWI/SNF complexes

Pancreatic cancer 10% Predominantly BRG1 and ARID1A subunits of human SWI/SNF complexes

Melanoma 39% Many subunits of human SWI/SNF complexes

Synovial sarcoma 95% SS18 subunit of human SWI/SNF BAF complex fused to SSX proteins

Malignant Rhabdoid tumors �100% BAF47 (hSNF5)

Hepatocellular carcinoma 33% Predominantly ARID1A, ARID1B, and ARID2 subunits of human SWI/SNF

complexes

Lung cancer 35% All subunits of human SWI/SNF complexes mutated

Breast cancer 11% Many subunits of human SWI/SNF complexes mutated

Pancreatic neuroendocrine

tumours, glioblastoma

45% ATRX, DAAX, and histone H3.3

Prostate cancer �20% Chd1

Endometrial cancer 17% Chd4
aSee Garraway and Lander (2013) and Kadoch et al. (2013).
detected in a range of cancers and in a range of albeit reduced

frequency in comparison to SWI/SNF components (Garraway

and Lander, 2013). One possible explanation underlying the

association of SWI-SNF mutations with cancer is that the

complex contributes to genome stability. Consistent with this,

anaphase bridges are observed at high frequency following inac-

tivation of BRG1 (Dykhuizen et al., 2013). However, the speci-

ficity with which inactivation of different subunits affects different

types of cancer (Table 2) suggests more complex tissue specific

modes of action (Kadoch et al., 2013).

Conclusions
The function of only a limited subset of the 24 subfamilies of

Snf2-related proteins has been discussed above. Nonetheless,

these cases illustrate some of the principles via which an ancient

DNA-translocating core is subject to fine regulation that adapts it

for a diverse range of functions. These functions often fit within

pathways that intersect with genetic processes such as tran-

scription, DNA replication, and DNA repair and with other forms

of chromatin alteration such as posttranslational modification of

histones that act to shape the chromatin landscape on a genome

scale. In some cases, it is emerging that remodeling enzymes

have roles in human disease that are more widespread than

the links to relatively rare syndromes characterized previously.

In many cases, alterations to the function of Snf2-related pro-

teins appear to be selected for at high frequency in tumor devel-

opment. This provides renewed motivation to take advantage of

the battery of new experimental approaches suited to providing

new insight into the structure, mechanism, and functions of this

diverse family of proteins.
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