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ABSTRACT: Determination of the three-dimensional atomic-level
structure of powdered solids is one of the key goals in current
chemistry. Solid-state NMR chemical shifts can be used to solve
this problem, but they are limited by the high computational cost
associated with crystal structure prediction methods and density
functional theory chemical shift calculations. Here, we successfully
determine the crystal structures of ampicillin, piroxicam, cocaine,
and two polymorphs of the drug molecule AZD8329 using on-the-
fly generated machine-learned isotropic chemical shifts to directly
guide a Monte Carlo-based structure determination process starting
from a random gas-phase conformation.

■ INTRODUCTION
Determination of the atomic-level three-dimensional structure
of organic solids is a key step in many areas of chemistry. Many
compounds in their final forms are powdered solids, which
make structure determination particularly challenging. In the
case of powders, one can no longer depend on single-crystal X-
ray diffraction, which is the gold standard in the structure
determination of periodic solids, and other techniques must be
used. These techniques include a combination of powder X-ray
diffraction, nuclear magnetic resonance (NMR) spectroscopy,
and computational methods.1 In this respect, methods
centered on the use of chemical shifts to determine the
structure (often referred to as NMR crystallography) have
emerged as being particularly powerful.2−8 Since the first de
novo chemical shift-based structure of a molecular solid solved
in 2013,9 the technique has been developed and applied to a
range of structures from pharmaceuticals7 to capping groups
on nanoparticle surfaces10 to the spacer layers in two-
dimensional hybrid perovskite materials.11 Striking recent
examples include the determination of the structure of a
drug molecule in a pharmaceutical formulation,12 the detailed
determination of the structure of active sites in enzyme
reaction pathways,13 and the precise determination of the
disordered structure of an amorphous drug.14

Established approaches to de novo structure determination,
for example, by single-crystal X-ray diffraction of large
molecules or by solution NMR, usually involve an iterative
process where a (often random) starting structure is optimized
under the combined effect of an (usually empirical) energetic
potential and a penalty term that compares the computed
observables with the measured values at every step of the
optimization.15 This is a very powerful approach to find the
correct structure and is enabled by the fact that the calculation

of observables from any trial structure is very rapid. So far, this
has not been possible in chemical shift-based NMR
crystallography, with a few notable exceptions where chemical
shifts were incorporated and derived from parametrized force-
fields.16,17 To make this approach general, the calculation of
chemical shifts so far would have required highly accurate but
very time-consuming electronic structure calculations.18−22

This results in de novo structure determination currently
requiring first the generation of a large ensemble of credible
candidate structures, usually done with some form of
computational crystal structure prediction (CSP) proto-
col,23−27 followed by density functional theory (DFT)
chemical shift calculations for the set of candidates, and only
at the end of this process is there a comparison with the
experimental shifts to determine which is the correct structure.
While powerful, this is a time-consuming and laborious
approach whose efficiency could be greatly improved by
making use of chemical shift data at an earlier stage of the
process. Additionally, if the set of candidates does not contain
the correct structure, then the whole process fails.
Here, we show how by using a recently introduced machine

learning model to predict chemical shifts, the structure of
powdered organic solids can be determined in a manner fully
analogous to the methods used in solution NMR or X-ray
diffraction by integrating on-the-fly solid-state NMR shift
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calculations into a Monte Carlo-simulated annealing opti-
mization protocol. The approach does not require any
structural hypothesis or knowledge of candidate structures
(such as those from CSP). The approach is demonstrated to
successfully determine five crystal structures for two different
polymorphs of the drug molecule AZD8329 (1), ampicillin
(2), piroxicam (3), and cocaine (4) (Figure 1).

Among these molecules, the structures of AZD8329 forms I
and IV,9 ampicillin,28 and cocaine3 have been previously found
by NMR crystallography. AZD8329 form IV is notable because
the structure was not found by X-ray diffraction methods prior
to the original NMR crystallography study.9 Having a rich
polymorphic landscape, it is also an interesting example to test
the ability to distinguish between different polymorphs.
Ampicillin is notable because CSP methods failed to predict
the correct structure until NMR constraints were included to
bias the starting conformers.28 Cocaine is one of the first
examples in which it was shown that NMR chemical shifts can
reliably determine the correct structure among a set of
candidate structures.3 The structure of piroxicam so far has not
been determined by NMR crystallography, although compar-
ison of calculated and measured chemical shifts was used to
validate a structure proposed from powder X-ray diffraction.29

■ EXPERIMENTAL METHODS
Crystal Structure Determination. Crystal structure generation

and optimization were performed using a home-written Python script.
The structure determination process follows the scheme shown in
Figure 2 and is a version of constrained geometry optimization that is
completely analogous to the methods currently used to determine, for
example, protein structures from liquid- or solid-state NMR data,
adapted to the case of molecular crystals. First, an initial conformation
is generated with random torsional angles. The generated conformer
is then placed in a randomly generated unit cell with a randomly
chosen position and orientation. Details of the structure generation
are given in the Supporting Information. After the initial generation of
a random crystal structure, 4000 Monte Carlo steps are performed
with a linear temperature profile between 2500 and 50 K. The
structures are generated in a given space group, and the space group
symmetry is conserved during the optimization. In each step, one of
the parameters defining the crystal structure (cell length or angle,
conformer position or orientation, or conformer dihedral angle) is
randomly selected and updated within a given maximum step size. If
the change leads to better agreement (as determined by the pseudo-

energies discussed below), it is accepted. Otherwise, the step is
accepted with a probability Pacc = e−ΔE/RT, where ΔE is the change of
pseudo-energy induced by the step, R is the gas constant, and T is the
temperature. The step size of the updated parameter is doubled if the
step is accepted, and halved otherwise (see the Supporting
Information for detailed parameters including the step sizes). Every
500 steps, the hydrogen positions were optimized using tight binding
DFT (DFTB).

Energy calculations were performed at the semiempirical DFTB3-
D3H5 level of theory using the 3ob-3-1 parameter set and the DFTB+
software version 20.1.30−35

The chemical shieldings were predicted using ShiftML version 1.2
(publicly available at https://shiftml.epfl.ch).36 Shieldings were
converted to chemical shifts via the relation

a bδ σ= + (1)

where δ is the chemical shift, a and b are the experimentally
determined calibration constants (see the Supporting Information for
details), and σ is the calculated chemical shielding. Here, we set a to
30.36 and b to −1. To account for ambiguity when comparing
chemical shifts of protons for CH2 groups, the shifts were compared
using the best matching criteria. Shifts which are hard or impossible to
distinguish experimentally such as aromatic protons or CH3 groups
were averaged when making the comparison.

Crystal Structure Comparison. The optimized crystal structures
were compared using the COMPACK algorithm,37 included in the
commercial Cambridge Structural Database (CSD) package,38 which
compares interatomic distances and angles within a cluster of
molecules taken from the reference and comparison crystal structures.

Figure 1. Molecular structures of AZD8329 (1), ampicillin (2),
piroxicam (3), and cocaine (4).

Figure 2. Scheme for crystal structure determination used in this
study where Pacc = exp(−ΔE/RT).
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A cluster of 20 molecules were used for comparison in this work.
Before the comparison, physically unrealistic structures were removed,
for example, structures where neighboring molecules are too close in

space or where the density is unrealistically low. Most of the physically
unrealistic structures are easily spotted due to their high energy or
shift root-mean-square deviation (rmsd). The known reference

Figure 3. Plots of DFTB energy versus 1H chemical shift rmsd for the results of 10 000 simulated annealing runs on AZD8329 form IV, 10 000 runs
on AZD8329 form I, 2500 runs for ampicillin, 1000 runs for piroxicam, and 2500 runs on cocaine. The left column shows the optimizations done
using both chemical shift and energy, while the right column shows the optimizations done using only energy. For ampicillin, the results are shown
for both where 1H shifts calculated from the known reference structure were used and where the experimental 1H shifts were used as targets for the
optimization. Each point represents a structure optimized as described in the methods section. The vertical axis shows DFTB energies and the
horizontal axis 1H shift rmsd values with respect to the shifts calculated for the known experimental structure which is set to 0 and is colored black.
The color of each point reflects the similarity between each of the calculated structures and the reference structure, according to the scale on the
right and as described in the methods section. The red vertical dashed line shows the cutoff value of 0.5 ppm for the 1H rmsd. For piroxicam,
unconstrained optimization of the experimental structure leads to a large deviation in the structure, so the reference energy is the energy of the
experimental structure with only hydrogen atom positions optimized.
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Figure 4. Plots of DFTB energy versus 1H chemical shift rmsd, as shown in Figure 3, expanded to include a range of 100 kJ/mol and up to 0.5 ppm
1H rmsd. The gray areas represent the area within 20 kJ/mol of the lowest energy structure found in the optimization. Labels refer to the structures
as defined in Table S1. For piroxicam, unconstrained optimization of the experimental structure leads to a large deviation in the structure, so the
reference energy is the energy of the experimental structure with only hydrogen atom positions optimized.
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structures used are given in the Supporting Information, together with
the CSD codes where available.

■ RESULTS AND DISCUSSION
The optimization scheme introduced here is summarized in
Figure 2.
In the first step, a viable conformation of the single molecule

is generated, and bond angles and lengths are optimized using,
here, DFTB3-D3H5 which provides a good compromise
between accuracy and computational cost (on the same
timescale as ShiftML chemical shift calculations) (see the
Supporting Information for details). Then, for each run, a
random conformation is generated by randomizing the flexible
torsion angles, and a starting crystal structure is generated by
randomly selecting cell parameters in a given space group (cell
lengths, cell angles, and position and orientation of the
molecule). Between 1000 and 10 000 trial structures were
generated for each system. Each structure was then optimized
by a Monte Carlo-simulated annealing process described in the
Methods section, where in each step, one of the parameters
defining the crystal structure (i.e., a single torsion angle or cell
parameter) was randomly changed, and chemical shifts and the
DFTB system energy were calculated following the change.
Here, to enable the possibility to calculate shifts at each step,

the ShiftML prediction algorithm was used.36 ShiftML is a fast
and accurate method to compute chemical shifts in a matter of
seconds even for the largest of molecular crystals. It was
recently developed using DFT optimized structures derived
from CSD as a training set for a machine learning framework.
The current version can predict chemical shifts for molecules
containing H, C, N, O, or S atoms.
The cost function used in the Monte Carlo process is

E E cEtot DFTB cs= + (2)

where

E
n

( )i
n

i i
cs

1 ,trg ,shiftML
2δ δ

=
∑ −=

(3)

where δi,trg is the target chemical shift of the ith nucleus in the
molecule containing n nuclei and δi,shiftML is the corresponding
shift computed using the ShiftML model. c is an empirically
adjusted constant (in kJ/mol) that weights the relative
contribution of the internal energy and the agreement with
the experiment in the cost function. (Note that the values of
Ecs are independent of the size of the molecule but will change
from one type of nucleus to another, and EDFTB will depend on
the size of the molecule. In the examples here, satisfactory
results were found with vales of c such that ΔEDFTB ∼ ΔEcs,
where ΔE is the difference observed between two Monte Carlo
steps at the end of the optimization process.) In the following,
for the proof of principle demonstration here, we use shifts
calculated with ShiftML from the known structure as the δi,trg
target set in Ecs. This reduces any bias due to experimental
variability between compounds in the comparisons below and
makes the process fully self-consistent. We note that the
estimated errors on ShiftML shifts are in any case similar to or
larger than the error ranges in the experimental shifts.
The other parameters in the simulated annealing process are

given in the methods section and Supporting Information.
Optimization Using Computed Target Shifts. Figure 3

shows the results for AZD8329 form I, AZD8329 form IV,
ampicillin, piroxicam, and cocaine. In order to demonstrate

that the chemical shifts are indeed the driving force for
structure determination, for each case, optimization was
performed with the penalty function that includes both the
DFTB energy and chemical shift differences and, for
comparison, using only the DFTB energy. Figure 4 shows
expansions of the regions below 100 kJ/mol and 0.5 ppm.
We expect correct structures to occur in the region of low

chemical shift rmsd and low calculated energy. For 1H shift
rmsd, we use a cutoff of 0.5 ppm, taken from Engel et al. where
they determined the expected error of the ShiftML model for
1H to be 0.48 ppm.39 Nyman and Day showed that with
accurate calculations, most polymorphs are separated by less
than 7.2 kJ/mol,40 which can be treated as the most relevant
energy range on CSP landscapes. In this study we use DFTB,
whose energies are less accurate and have been shown to place
observed crystal structures over a much wider energy range in
CSP studies.41 To account for this larger spread, we use a
cutoff for the accepted structures of up to 20 kJ/mol from the
lowest energy structure. Indeed, the spread of predicted
energies decreases significantly when the structures that are
within 20 kJ/mol and 0.5 ppm rmsd are further optimized
using DFT, as illustrated in Figure S5 (and Table S2).
Typically, after optimization, the predicted DFT energy
difference between the structures is less than ∼2 kJ/mol.
For all compounds, we note that the majority of Monte

Carlo runs do not yield any results with either low DFTB
energy or with a low chemical shift rmsd to experiment.
Indeed, if we define a region of acceptable structures to have
simultaneously a DFTB energy within 20 kJ/mol of the lowest
energy structure in the Monte Carlo set and a chemical shift
rmsd to experiment below 0.5 ppm, then the pure Monte Carlo
approach using only DFTB energy as the driving force does
not find any structures that match the rmsd20 criteria for either
form of AZD8329. This is completely in line with expectations
since this simple semiempirical type approach is not expected
to easily find crystalline polymorphs.
Including chemical shifts in the penalty function yields three

structures for form IV (001-003) within the acceptable ranges
and one structure for form I (005).
These structures for both forms are shown in Figure 5,

superimposed on the known structures, and we see that they
are in excellent agreement with the correct structures as
previously determined by X-ray diffraction or NMR.
Ampicillin is another interesting example as noted in the

introduction because it is a case where current CSP methods
fail since the conformer present in the crystal structure has a
relatively high energy in the gas phase.28 As a result, chemical
shift-driven structure determination based on prior generation
of candidates fails. In contrast, Monte Carlo runs for ampicillin
including DFTB energy and chemical shifts produced two
structures that perfectly match with the known crystal
structure, with one of them (016) being selected by our
criteria. The structure determined by our criteria is super-
imposed on the known crystal structure in Figure 6. Runs using
only DFTB energy did not produce any matching structures
either in the acceptable region or outside it.
Similar to ampicillin, runs for piroxicam produced structures

(014 and 015) matching with the known crystal structure, both
of which are in the acceptable region. Again, no matching
structures were found for the runs using only energy in the
penalty function. Overlay of the structures determined here
with the know crystal structure is shown in Figure 5. From
Figure 5, it is seen that both of the structures found are
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significantly lower in DFTB energy than the known structure.
We note that to compare our determined structures and the
known reference structures, we systematically relaxed the atom
positions and the cell parameters for the experimental
reference structures using DFTB. While the result of the
relaxation was fairly similar to the starting structures for most
of the reference structures, this was not the case for the
structure of piroxicam. Full DFTB relaxation of piroxicam
changed the structure to a point where its space group
changed. To avoid this, we relaxed only 1H positions with
DFTB, and we suspect that this is why the energy of the

reference structure appears higher than expected. When both
the determined structures and the known structure were
optimized with DFT, the (DFT) energy difference between
them was reduced to 0.4 kJ/mol for the best matching
structure.
Cocaine is an interesting example since it is significantly less

flexible than AZD8329. In this case, the Monte Carlo approach
with energy alone does already produce four structures in the
acceptable region (010-013). Adding chemical shifts did not
improve the result, and the same number of structures were
found in the acceptable region (006-009). The four structures
optimized using shifts are shown in Figure 5 superimposed on
the known structure for cocaine, and we again see that they are
in good agreement with the correct structure. We explain this
as cocaine having a relatively simple energy landscape with few
competing structures: the results of the Monte Carlo search
using only energy direct the search efficiently toward the
known crystal structure of the only known polymorph,
suggesting that there are few competing, “false” structures. It
is in cases where there are many energetically competing
structures, which is the norm, that adding the chemical shift to
the fitness function is expected to increase the effectiveness of
the search at locating the correct structure. The other
compounds studied here, on the other hand, have much richer
energy landscapes with at least four anhydrous polymorphs
known for AZD8329 for example,9 and by using the chemical
shifts of two different forms as targets, we were able to
successfully determine both structures here. Figures 5 and 6
show the overlay of the asymmetric unit of the crystal
structures determined here for each compound (green) with
the known reference structures (red).
When comparing against the known reference crystal

structures all atom rmsd20 values are given in Table 1. The
highest rmsd20 value is 0.51 Å for ampicillin, meaning that all
of the optimized structures correspond very well to the
experimental reference crystal structure. In comparison, in the
current latest CSP blind test (sixth) the highest rmsd20 value

Figure 5. Overlay of the asymmetric unit for the structures
determined here for AZD8329 form IV, AZD8329 form I, piroxicam,
and cocaine. For AZD8329 form IV, there are three structures (Figure
4), one for form I, 2 for piroxicam, and 4 for cocaine. The red
structures are the known structures, and the green structures are the
structures determined here that are less than 20 kJ/mol from the
lowest energy determined structure and 0.5 ppm 1H rmsd compared
to the target shifts.

Figure 6. Overlay of the asymmetric unit for the structures
determined here for ampicillin with calculated (top, structure 016)
or with experimental (bottom, structure 017) chemical shifts. The red
structures are the known structures, and the green structures are the
structures determined here.
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was 0.81 Å, which, while considered high, was still considered
acceptable.42 In the examples here, after the DFT optimization,
the highest value decreased to 0.49 Å and the lowest to 0.05 Å.
Table 1 also gives the distribution of the unit cell dimensions
for the optimized structures which are very close to the
experimental values. Individual rmsd20 values and the cell
parameters for all best matching structures are given in
Supporting Information, Table S1.
Optimization Using Experimental Target Shifts. As

noted above, we use 1H chemical shifts calculated for the
known crystal structures as the target for optimization here.
This allows us to explore the method without any biases
introduced by any possible errors in chemical assignments and
to make the analysis self-consistent. Of course, it is most
important that the method also works using experimental
shifts. This is demonstrated in Figures 3 and 4 where we also
show the results of optimization against experimental 1H shifts
for ampicillin. The experimental shifts were taken from
Hofstetter et al.28 In this case, two structures (017 and 018)
matched the selection criteria. One structure (017) yielded a
very good rmsd20 of 0.41 Å with respect to the known
structure, as illustrated in Figure 6. It is interesting to note that
the other structure (018) at first glance matches less well, but
on further examination, we see that the cell parameters match
very well (see Table S1), and the main difference is a slight
change in the orientation of the aromatic ring position. An
overlay of the unit cell of the known structure and structure
018 is shown in Figure S4. After optimization with DFT, the
relative (DFT) energy for the structures converged to −0.4
and 9.4 kJ/mol for (017) and (018), respectively, with respect
to the known structure (see Table S2), and the 1H rmsd to
DFT calculated shifts was 0.13 and 0.41 ppm, suggesting that
the optimized structure 017 is in better agreement with the
experiment.
This is the first example of a molecular crystal structure

determined directly from experimentally measured chemical
shifts in contrast to earlier approaches where chemical shifts
were used to select from a predetermined set of predicted
crystal structures.

■ CONCLUSIONS

We have shown that crystal structures can be directly
determined from chemical shifts, without any prior structural
hypothesis and without any knowledge from candidate
structures (such as from CSP), through the use of machine
learned chemical shifts which enable on-the-fly calculation of
shifts at each step of a simulated annealing structure
determination protocol. We have illustrated this for the

structures of ampicillin, piroxicam, and cocaine, as well as for
AZD8329 where the inclusion of machine learned chemical
shifts allows the determination of the correct structures for two
different polymorphic forms. We note that the AZD8329 case
is a particularly important illustration since it clearly shows
how the chemical shifts can drive the optimization toward two
very different structures for the same molecule.
Here, we chose to use a Monte Carlo-simulated annealing

algorithm due to its relatively straightforward nature, but in
principle, machine learned chemical shifts can be incorporated
into other optimization methods as they are easy to add as an
additional pseudo-energy term, and we believe there is
significant room for further development and increased
efficiency of this approach to chemical shift-based structure
determination in molecular solids. Finally, we note that the
method presented here no longer relies on a purely energy-
driven computational candidate crystal structure generation
step. By driving the structure determination directly from
chemical shifts, integrated through the entire optimization
procedure, the method is applicable even in cases where CSP is
extremely challenging, such as the example of ampicillin here.
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(34) Řezác ̌, J. Empirical Self-Consistent Correction for the
Description of Hydrogen Bonds in DFTB3. J. Chem. Theory Comput.
2017, 13, 4804−4817.
(35) Hourahine, B.; Aradi, B.; Blum, V.; Bonafé, F.; Buccheri, A.;
Camacho, C.; Cevallos, C.; Deshaye, M. Y.; Dumitrica ̆, T.;
Dominguez, A.; Ehlert, S.; Elstner, M.; van der Heide, T.;
Hermann, J.; Irle, S.; Kranz, J. J.; Köhler, C.; Kowalczyk, T.; Kubar,̌
T.; Lee, I. S.; Lutsker, V.; Maurer, R. J.; Min, S. K.; Mitchell, I.; Negre,
C.; Niehaus, T. A.; Niklasson, A. M. N.; Page, A. J.; Pecchia, A.;
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