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Abstract

The electrocardiogram (ECG) signal is the most widely used non-invasive tool for the 

investigation of cardiovascular diseases. Automatic delineation of ECG fiducial points, in 

particular the R-peak, serves as the basis for ECG processing and analysis. This study proposes a 

new method of ECG signal analysis by introducing a new class of graphical models based on 

optimal changepoint detection models, named the graph-constrained changepoint detection 

(GCCD) model. The GCCD model treats fiducial points delineation in the non-stationary ECG 

signal as a changepoint detection problem. The proposed model exploits the sparsity of 

changepoints to detect abrupt changes within the ECG signal; thereby, the R-peak detection task 

can be relaxed from any preprocessing step. In this novel approach, prior biological knowledge 

about the expected sequence of changes is incorporated into the model using the constraint graph, 

which can be defined manually or automatically. First, we define the constraint graph manually; 

then, we present a graph learning algorithm that can search for an optimal graph in a greedy 

scheme. Finally, we compare the manually defined graphs and learned graphs in terms of graph 

structure and detection accuracy. We evaluate the performance of the algorithm using the MIT-BIH 

Arrhythmia Database. The proposed model achieves an overall sensitivity of 99.64%, positive 

predictivity of 99.71%, and detection error rate of 0.19 for the manually defined constraint graph 

and overall sensitivity of 99.76%, positive predictivity of 99.68%, and detection error rate of 0.55 

for the automatic learning constraint graph.
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1. Introduction

The electrocardiogram (ECG) is a quasi-periodic biomedical signal that provides 

information about cardiac muscle electrical activities. One cardiac cycle in a typical ECG 

signal is delineated by arrangements of P, the QRS complex, T waves, and PQ and ST 
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segments. Correct R-peak detection is the first and most critical step in almost all ECG 

analysis methods. The R-peak is the highest and only positive peak within the QRS 

complex, reflecting the ventricular depolarization of the heart’s electrical activity. Precise 

detection of the R-peak location plays a critical role in obtaining the morphology of the QRS 

complex and revealing the location of other ECG fiducial points. Furthermore, R-peak 

localization serves as the basis for automated determination of the heart rate, which is a 

significant criterion for heart arrhythmia diagnoses such as premature atrial contraction, 

tachycardia, and bradycardia. Many other diseases can also be diagnosed in a non-invasive 

way using R-peak detection due to the relationship between heart rate variability and several 

physiological systems (e.g., vasomotor, respiratory, central nervous, and thermoregulatory).

Various approaches have been proposed in the literature for detecting R-peaks in an ECG 

signal [1]. Typically, these methods consist of two main steps: pre-processing and detection. 

In the pre-processing step, the algorithm attempts to eliminate the noise and artifacts and to 

highlight the relevant sections of the ECG [2,3]. In the second step, various methods are 

used to locate R-peaks based on the result of the pre-processing step, and then other waves 

are detected by defining a set of heuristic rules [4]. However, these approaches suffer from 

some critical drawbacks that limit their performance in practical applications. First, in real-

time data processing and ambulatory care settings, where the collected data are highly noisy, 

preprocessing-based algorithms are less effective. Second, these algorithms can fail to detect 

R-peaks in some determinant morphological patterns resulting from certain life-threatening 

heart arrhythmias due to the time-varying morphology of the QRS complex. Incorrect 

detection of R-peaks can affect the correct identification of subsequent waves.

The R-peak detection step can be generally accomplished either by implementing a 

threshold-based technique or by employing an independent threshold technique. The 

amplitude of the peak and time duration between two consecutive R peaks (i.e., the RR 

interval) are typically used to determine a suitable threshold [5]. A constant threshold is only 

efficient for detecting R-peaks within records with normal morphological patterns. 

Therefore, recent studies have employed adaptive thresholds, for which there is no need to 

determine the threshold experimentally. In Refs. [6,7], the Hilbert transform with an 

adaptive thresholding technique was utilized to detect R-peaks. Some threshold-based 

techniques with other criteria have also been used to specify the threshold. In Ref. [4], an 

adaptive threshold concerning the geometric angle between two consecutive samples of the 

ECG signal was defined. The performance of the threshold-based technique is highly 

dependent on the selection of initial parameters; hence, it can lead to a significantly higher 

number of false beats. Therefore, independent threshold techniques are more desirable than 

the threshold-based technique.

Most of the state-of-the-art methods for R-peak detection are based on wavelet transform [8–

10], simple mathematical operations [6,11,12], hidden Markov models, and machine 

learning. Wavelet transform is a suitable approach for considering the non-stationary 

behavior of the ECG signal. However, considering the various shapes of the QRS complex, it 

is difficult to select the optimal mother wavelet or find the required threshold in the detection 

step of the wavelet transform. Additionally, discrete wavelet transform fails to provide 

reliable results in a short-recording duration. Mathematical operation-based algorithms have 
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a low computational cost, which is more appropriate for real-time applications and large 

dataset analysis. However, achieving high performance when the signal-to-noise ratio is high 

remains challenging for these algorithms. Hidden Markov models are also widely used in 

ECG segmentation because they are powerful tools for considering the temporal dependency 

among the waveforms [13–15]. The majority of the studies on machine learning-based 

methods have utilized sparse signal processing to represent an approximation of the 

nonlinear ECG signal using sparsity constraints [16–21]. Some studies have also applied 

deep learning techniques to detect the ECG waveforms considering its high performance in 

various classification tasks [22,23]. However, the caveat with deep learning-based 

approaches is that they need large-scale datasets for the training phase and often suffer from 

the imbalanced class problem [24,25].

In this paper, we propose a new class of graphical models based on optimal changepoint 

detection models, named the graph-constrained changepoint detection (GCCD) model, to 

locate R-peaks in the ECG signal. A changepoint detection model identifies abrupt changes 

in data when a property of the time series changes. In the non-stationary ECG signal, ECG 

waves can also be considered as abrupt up or down changes over time during the heart cycle. 

We exploit the model introduced by Hocking et al. [26,27], in which a graph-based optimal 

changepoint detection model was used for detecting abrupt changes in the genomics data. In 

their work, they propose a new class of functional pruning algorithms with log-linear time 

complexity in the amount of data, which is capable of handling the large datasets that are 

common to ECG analysis.

Only a few studies in the literature have applied changepoint detection models for cardiac 

analysis. Gold et al. [28] adopted a changepoint detection method based on Bayesian 

inference to extract the onset of the QRS complex over a small time window containing just 

one QRS complex. In Ref. [29], a changepoint detection approach based on the Haar wavelet 

and Kolmogorov-Smirnov statistic was applied to find normal and abnormal ECG segments 

within the assembled ECG samples from different ECG datasets. Sinn et al. [30] analyzed 

heart rate changes in ECG recordings by detecting abrupt changes in the ordinal pattern 

distributions, which are used to represent the order structure of a time series. Some studies 

have also applied changepoint detection models to investigate sleep problems by analyzing 

heart rate variability in the ECG signal during sleep [31,32].

To the best of our knowledge, this is the first study in which changepoint detection models 

have been proposed to detect ECG fiducial points in long records of ECG signals. In this 

novel framework, prior biological knowledge about the expected sequence of changes can be 

specified in a constraint graph. Then, functional pruning dynamic programming algorithms 

can compute the globally optimal model (mean, changes, and hidden states) in fast log-linear 

time. We furthermore propose a new algorithm for learning the graph structure using labeled 

ECG data. Therefore, the main contributions of this study are:

• A new class of graphical models based on optimal changepoint detection models 

to detect R-peak positions in the ECG signal. The proposed method does not 

require any noise removal preprocessing step as it uses the sparsity of 

changepoints to detect abrupt changes.
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• A new algorithm to learn the graph structure and parameters using labeled ECG 

data. Thus, the model’s performance is no longer dependent on an expert to 

encode prior knowledge into the constraint graph.

• Comparison of the learned graphs with the manually constructed graphs in terms 

of graph structure and detection accuracy. Results demonstrate that there can 

exist different optimum graph structures for one subject, and the proposed graph 

learning algorithm can find global optima depending on the initial graph 

structure.

The rest of the paper is organized as follows. In the next section, we describe the proposed 

model for R-peak detection in the ECG signal. We explain the GCCD model in Section II-A 

and the constraint graph in Section II-B. Section II-B also defines the manual graph and the 

proposed graph learning algorithm. Section III provides a description of the dataset used in 

this study and a discussion of the results as well as a comparison between the performance 

of the manually defined graphs and learned graphs. Finally, Section IV summarizes this 

research work and its contributions.

2. Methodology

The proposed method treats ECG wave detection as a changepoint detection problem for a 

non-stationary ECG signal. It extracts the R-peaks in the raw ECG signal by representing the 

periodic non-stationary ECG signal as a piecewise locally stationary time series with 

constant mean values (i.e., each piece is the mean of one segment of datapoints). The model 

takes a raw ECG signal and a constraint graph as inputs and computes the onset/offset and 

the mean of desired segments (i.e., hidden states). Then, the center of each state is associated 

with the location of a peak. The constraint graph allows the incorporation of prior 

knowledge into the model and regularizes the model. Fig. 1 illustrates an overview of the 

proposed algorithm in the detection of R-peak positions in the ECG signal. It is worth re-

emphasizing that the model takes the raw ECG signal as the input, without applying any 

preprocessing step, as it leverages the sparsity of changepoints to denoise the signal and to 

detect abrupt changes.

The constraint graph, which encodes the expected sequence of changes in the ECG signal, 

can be defined manually by an expert or automatically from the data. In the following 

sections, we describe the details of various parts of the proposed model.

2.1. Graph-constrained changepoint detection model

ECG fiducial points detection can be defined as the problem of finding abrupt changes over 

one cardiac cycle caused by changes in statistical characteristics. From this point of view, a 

proper changepoint detection algorithm can be employed to detect ECG waves in a fast and 

effective way. We applied the optimal changepoint detection model introduced in Ref. [26] 

to localize R-peak positions in the ECG signal. In this model, prior biological knowledge 

about the expected sequence of changes is incorporated into the model as a graph constraint. 

Then, a dynamic programming algorithm using functional pruning computes the globally 

optimal model (mean, changes, and hidden states) in fast log-linear O(N log N) time.
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We assumed a directed graph G = (V, E) as the constraint graph, where the vertex set V ∈ 
{1, …, |V|} represents the hidden states/segments (not necessarily a waveform), and the edge 

set E ∈ {1, …, |E|} represents the expected changes between the states/segments. Each edge 

e ∈ E incorporates the following associated prior knowledge about the expected sequences 

of changes:

• The source ve ∈ V  and target ve ∈ V  are vertices/states for a changepoint e from 

ve to ve.

• A non-negative penalty constant λe ∈ ℝ+ is the cost of changepoint e.

• A constraint function ge:ℝ × ℝ ℝ defines the possible mean values before and 

after each changepoint e. If mi is the mean before the changepoint and mi+1 is the 

mean after the changepoint, then the constraint is ge(mi, mi+1)≤0. These 

functions can be used to constrain the direction (up or down) and/or the 

magnitude of the change (greater/less than a certain amount).

Mathematically, given the input signal Y = {y1, …, yn} and the directed graph G = (V, E), 

the problem of finding changepoints c, segment means m, and hidden states s can be solved 

using the following optimization problem:

minimize
m ∈ ℝN, s ∈ V N

c ∈ 0, 1, …, E N − 1

∑
i = 1

N
l mi, zi + ∑

i = 1

N − 1
λci

(1)

subject to no change: ci = 0 mi = mi + 1 &
si = si + 1

(2)

change: ci ≠ 0 gci mi, mi + 1 ≤ 0&
si, si + 1 = (vci, vci) . (3)

The changepoints ci can be assigned to any of the pre-defined edges (ci ∈ {1, …, |E|}). 

Consequently, ci = 0 indicates no change with zero cost, λ0 = 0. Function (1) consists of a 

data-fitting term ℓ and a model complexity term λci [33,34]. ℓ represents the negative log-

likelihood of each datapoint, and λci is a non-negative penalty on each changepoint. In other 

words, λ regularizes the number of predicted changepoints/segments by the model so that a 

larger λ reduces the number of change-points by estimating a more sparse changepoint 

vector. The constraint function ge also encodes the expected up/down change and the least 

amplitude gap between the mean of two states. When there is no change ci = 0, Constraint 

(2) forces the model to stay in the current state si = si+1 with no change in mean mi = mi+1. 

However, when there is a change ci ≠ 0, Constraint (3) imposes a change in the mean 

implied by the constraint function gci mi, mi + 1 ≤ 0 as well as a change in the state 

si, si + 1 = vci, vci . An open-source implementation of the Generalized Functional 
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Prunining Optimal Partitioning (GFPOP) algorithm is available in C++ code inside an R 

package named GFPOP on GitHub [35].

2.2. Constraint graph

The constraint graph G = (V, E) in the optimization problem of Equation (1) encodes prior 

biological knowledge about the expected sequences of changes within one cardiac cycle. It 

can be designed manually by an expert or be learned from the data by the model. The two 

following subsections detail both the manual and learning-based designs.

1. Manual Graph Definition:To manually define the constraint graph G, we took 

into account the possible morphological categories for the ECG waves (i.e., P, 

QRS, and T waves) and the overall morphological properties of the signal in each 

record. An expected hidden state/segment in the signal is characterized as a node 

in the constraint graph, and the required conditions for transition between states 

are encoded in the edges. The required conditions are determined based on the 

expected minimum amplitude difference of two successive states and the polarity 

of each transition (i.e., up/down).

The caveat with the manual definition of the constraint graph is that it can be inefficient for 

ECG signal analysis considering the various morphological patterns for each waveform. 

Furthermore, the model’s performance depends on the expert knowledge encoded into the 

constraint graph. In the next subsection, we explain the proposed graph learning algorithm 

for learning the constraint graph using the R-peak labels provided by the gold standard.

2. Constraint Graph Learning: To automate the R-peak detection task, we modified 

the previous model by learning the constraint graph from the data (see the dashed 

part in Fig. 1). In this new framework, the proposed model takes the raw signal 

and an initial graph structure as inputs and yields the desired outputs, including 

the onset/offset and the mean of segments specified in the nodes of the learned 

constraint graph. Here, the model architecture is comprised of two stages: 

training and detection. The training step tries to heuristically find an optimum 

graph structure by which the label errors in the training set are minimized (the 

block named “Graph Learning Algorithm” in Fig. 1). The detection step then 

extracts the R-peaks in the raw ECG record constrained to the graph learned in 

the previous step (the block named “Changepoint Detection Model” in Fig. 1).

The novelty of this new structure lies in the training step, which is comparable to the 

previous model in Section II-B.1. The main idea of the training step is to automatically 

discover the desired topology of the constraint graph G and the information about the edges 

from the data. As described in Section II-A, each edge contains the following information: 

(1) the expected up/down change in the segment means, (2) the least amplitude gap between 

the means of two states, and (3) a non-negative penalty imposed by the edge transition. 

Suppose that the initial graph for each record is denoted as G0 = (V0,E0), where V0 and E0 

are the corresponding graph node and edge sets, respectively. Each node in the V0 set 

represents initial hidden states in the model. Each edge in the E0 set represents a transition 

between two consecutive hidden states (i.e., a changepoint e from the source ve to the target 

ve in section II-A) and also contains initial values for parameters of t0, g0, and λ0, which are 
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the initial type, the initial gap between two states, and the initial penalty, respectively. Fig. 

2a shows the simple initial graph used for the optimization process. It should be noted that 

the initial edge information was chosen based on the overall results obtained from the 

manual definition of the constraint graph.

A sketch of the proposed graph learning algorithm is summarised as Algorithm 1. The 

greedy graph search algorithm starts with the initial graph G0 and iteratively optimizes the 

graph structure and edge parameters to find a graph that maximizes the accuracy regarding 

the provided labels. At the t-th iteration, the function Find_Graph_Candidates() finds the 

graph candidate set Gt
c using the editing candidates for each edge of the output graph from 

the previous iteration Gt−1. In this study, the algorithm considers 11 editing candidates per 

edge to optimize the graph topology and the three edge parameters. For example, in the 

iteration t, if the parent graph (i.e., Gt−1) has two edges, the graph candidate set Gt
c will have 

no more than 22 members Gt
c ≤ 22. These editing candidates include three types of adding a 

node, two types of deleting a node, one type of adding two nodes, changing the type of the 

abrupt change, and increasing or decreasing the penalty and gap corresponding to an edge. 

We believe all morphological patterns of the ECG waves can be constructed using these 

editing candidates. Fig. 2 illustrates the graph editing candidates related to the edge (Vi, Vj) 

with an up change.

2.3. Computational complexity

As can be seen in Algorithm 1, the time complexity of the GCCD algorithm is theoretically 

proportional to the number of graph candidates at each iteration (Line 9) and the number of 

required iterations to achieve an optimum graph with minimum label errors (Line 4). There 

are three main aspects that characterize the time complexity of the algorithm:

• Given a record with n data samples and a graph candidate G with V vertices and 

E edges, the time complexity to detect R-peaks (Lines 10–14) is S = O(En2) in 

the worst case (pathological simulated data) and S = O (Enlogn) in the average 

case (typical in real data). Also note that since we consider only graphs with a 

single circular path, E = O(V), and the time complexity is further reduced to O 
(Vnlogn) (for average case/non-pathological data).

• Considering C graph edit candidates in the iteration t, the time complexity to 

compute all the models G ∈ 0, 1, …, Gt
c = C  is O(SC) (where S is the time 

complexity of solving for optimal model parameters given a single graph). It 

should be noted that the number of graph candidates in the iteration t depends on 

Gt−1, which is the graph from the previous iteration (Line 9). The time 

complexity to compute the label error given L labels is O(CL), which can be 

effectively ignored from the overall time complexity as this task is fast.

• Finally, iterating over T iterations to obtain the graph with the minimum label 

error (Line 4) causes the overall time complexity of the algorithm to be O(SCT), 

where S is the time to solve for a single graph, and C is the number of edit 

candidates considered in each iteration.

Fotoohinasab et al. Page 7

Comput Biol Med. Author manuscript; available in PMC 2021 April 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 1 Greedy Graph Learning
Input: data, labels, initial graph structure G0
1: t 0
2:Best_Cost inf
3:Et label_error Gt
4:while Et < Best_Cost do

5: Best_Cost Et
6: t t + 1

7: Gtc Find_Grapℎ_Candidates Gt + 1 ,
Based on Figure 2

8: Et Best_Cost

9: for each G in Gtc do

10: E label_error G

11: if E < Et then

12: Gt G

13: Et E
14: end if
15: end for
16: end while
Output: constraint graph Gt

3. Experimental studies

3.1. Dataset

We applied the well-known MIT-BIH Arrhythmia (MIT-BIH-AR) database to evaluate the 

GCCD model. This database contains 48 ECG recordings taken from 47 subjects. Each 

record’s duration is 30 min, and each recording is sampled at 360 Hz with a resolution of 

200 samples over a 10 mV range [36,37]. Each recording consists of two ambulatory ECG 

channels from the modified lead II (MLII) and one of the leads V1, V2, V4, or V5. In this 

study, all 48 records with one MLII or V5 lead were used to evaluate the algorithm. The 

database has been annotated with both RR intervals and heartbeat class information by two 

or more expert cardiologists independently.

3.2. Results and discussion

This section presents a comprehensive discussion of the results obtained by the proposed 

model and a detailed comparison between the manually defined graphs and the learned 

graphs. We also provide some suggestions for the future development of the GCCD model.

Fig. 3 illustrates an example of the model’s performance with a manually defined constraint 

graph in the R-peak detection task for a window of Record 230 of the MIT-BIH-AR dataset. 

However, as mentioned in Section II-B.1, the performance of the model using manually 

defined graphs depends on an expert with prior knowledge. Furthermore, manual annotation 

by an expert is time consuming and expensive. To address this issue, we proposed a new 
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graph learning algorithm that searches for a locally optimal constraint graph using a greedy 

scheme on the labeled ECG data. Regarding the various morphological patterns for the ECG 

signal, the proposed graph learning algorithm can relax the model from the manual 

definition of the constraint graph for each record.

We adopted the intra-patient paradigm to train the constraint graph to address the intra-

patient variation in ECG morphologies. Thus, the training and testing sets were generated by 

randomly splitting the intra-samples for each record with an approximate ratio of 3 : 1. We 

used a k-fold cross-validation approach to evaluate the model performance with a k size of 5. 

More specifically, we divided the intra-sample data into k = 5 folds so that each trial used 

four folds to train the model and one fold for validation.

Figs. 4 and 5 show representative examples of the R-peak detection task performed by the 

model integrated with the graph learning algorithm for two records from the MIT-BIH-AR 

database. These figures illustrate how the proposed graph learning algorithm iteratively edits 

the graph structure to yield a model with maximum accuracy in detecting R-peaks. We 

initialized the constraint graphs using the graph structure in Fig. 2a with the initial values of 

g0 = 100 and λ0 = 5 × 105 for Record 107 and g0 = 100 and λ0 = 105 for Record 219. It 

should be noted that the initial edge information was assigned based on the overall results 

derived from the manually defined graphs in all experiments. However, graph candidates 2f 

and 2g can adjust the parameters g and λ for the optimum values. For these two examples, 

we chose the initial edge information so that all the training steps could be completely 

displayed. Label errors are omitted from Fig. 5a–c to reduce clutter in the figures. The red 

part of the graph structure in each iteration presents the chosen editing candidate in the 

current iteration over the graph in the previous iteration. More interestingly, Fig. 5 

demonstrates the model’s capability to detect R-peaks in the presence of a baseline 

wandering artifact, which is a typical artifact in the ECG signal. Baseline wandering can 

change the shape of the QRS complex and thereby causes incorrect detection of the R-peak. 

The performance of the Pan and Tompkins [11] algorithm, algorithms derived from the ECG 

signal slope [38], and methods based on wavelet transform are highly dependent on the 

removal of this artifact. Fig. 6 shows the test result for this record over two different time 

windows of data. Fig. 7 illustrates the training progress for these two records, where the Y-

axis shows the sum of false negative and false positive error rates. Indeed, the training 

progress curve reflects the number of label errors produced by the model in each iteration 

given the provided labels for the training and validation sets. It is worth mentioning that the 

proposed graph learning algorithm avoids possible overfitting issues as it tries to extract the 

morphology of the ECG signal that contains multiple various morphological patterns.

The proposed graph learning algorithm employs a greedy search scheme to select the best 

performing graph in terms of detection accuracy (see Section II-B.2). Therefore, the 

performance of the algorithm depends heavily on the initial graph structure and will likely 

lead to local optima. Fig. 8 compares the training progress for Record 106 of the MIT-BIH-

AR database initialized with the two simple (see Fig. 2a) and complex graph structures (i.e., 

a graph with eight nodes representing the morphology of a normal ECG signal). Fig. 9 also 

presents a comparison of the final selected graphs and their performances for a window of 

this record. As these figures show, the model initialized with the complex graph structure 
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can achieve higher accuracy (i.e., a lower number of label errors) in a lower number of 

iterations than the model initialized with the simple graph structure.

The investigation of the experimental results shows that the greedy graph search algorithm 

can achieve optimal performance for the model trained with the manually defined graphs, 

although its performance is affected by the initial graph. We noticed that for most of the 

records from the MIT-BIH-AR database, the learned graphs could reach the performance of 

the manually defined graphs but with different graph structures. This means that the GCCD 

model can obtain global optima using various initialization structures, which will likely lead 

to different final graph structures. Fig. 10 compares the constraint graph structures defined 

manually vs. those learned automatically using the initial graph structure in Fig. 2a for 

Record 100 of the MIT-BIH-AR dataset. As shown in this figure, the manually defined 

graph and the learned graph both achieved the optimal performance but with different graph 

structures. We also noticed that for some records from the MIT-BIH-AR database, the graph 

learning algorithm chose the same structure as the manually defined graph structure. Fig. 11 

shows the model performance using the graph learning algorithm for Record 232 from the 

MIT-BIH-AR dataset, for which the manually defined constraint graph and the learned graph 

had the same structures.

Different metrics were adopted to evaluate the performance of the proposed model with both 

the manual and learning-based graph designs. These metrics included sensitivity (Sen), 

positive predictivity rate (PPR), and detection error rate (DER), which are calculated by:

Sen % = TP
TP + FN × 100 (4)

PPR % = TP
TP + FP × 100 (5)

DER % = FN + FP
TP + FN × 100 (6)

where TP is true positives, FP is false positives, FN is false negatives, and TN is true 

negatives. Table.1 presents the performance of the proposed model regarding both the 

manually defined and learning graphs against other state-of-the-art methods for R-peak 

detection (QRS complex). As shown in the table, the proposed algorithm achieved Sen = 

%99.76, PPR = %99.68, and DER = 0.55 for the manual definition of the constraint graph 

and Sen = %99.64, PPR = %99.71, and DER = 0.19 for the learning constraint graph using 

the MIT-BIH-AR database. Note that the model constrained to the manually defined graphs 

outperformed the model combined with the graph learning algorithm because in the latter, 

the model’s performance was largely dependent on the initial graph structure.

ECG recordings in the MIT-BIH-AR database were chosen to challenge the R-peak 

detection task because they represent a wide variety of QRS morphologies with real-world 

variability. Our proposed model yielded outstanding results when detecting R-peaks in these 

tricky records. Records 103, 104, 105, 108, 111, 112, 116, 200, 201, 203, 205, 208, 210, 
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217, 219, 222, and 228 are comprised of abrupt changes in ECG morphology, and they are 

severely affected by noise and artifacts. Fig. 5 shows the capability of the model to detect R-

peaks in the presence of baseline wandering noise. We re-emphasize that these comparable 

results were obtained without applying any preprocessing operations, as opposed to other 

methods in the literature. Records 108, 113, 117, 201, 202, 203, 213, 219, 222, 223, 231, 

and 232 contain many peaks with unusual amplitudes. Small-amplitude R-peaks or high-

amplitude P- and T-peaks embedded in high-amplitude QRS complexes can lead to high FN 

and FP errors in the R-peak detection task. As a representative example, Fig. 4 illustrates the 

efficiency of the GCCD model in R-peak detection for Record 117, which contains many 

beats with high-amplitude T-peaks.

The experimental results obtained using the proposed model justify changepoint detection 

models as a potential approach to extract ECG fiducial points. In this study, we 

demonstrated the capability of the GCCD model in locating R-peaks within various 

morphological patterns of ECG. The proposed greedy graph search algorithm can potentially 

detect ECG waves other than the R wave (i.e., P, Q, S, and T waves) by considering 

corresponding prior knowledge of the graph editing candidates. We noticed that in Records 

114, 200, 203, 207, and 210, the Sen and PPR values were less than 99%. These records 

contain multiple different morphological patterns, including negative QRS complexes, and 

Records 200 and 203 have several QRS complexes with ventricular arrhythmias. The 

constraint graph for these records involves learning a graph with more than one optimum 

graph path. Learning a multi-path constraint graph is also required to detect all ECG waves 

due to the various morphological patterns of each wave incorporated into the graph. The 

other point that should be considered here is that the GCCD model estimates the ECG signal 

using a Gaussian function. A modified model with a multi-Gaussian fitting method can 

drastically improve the ECG-related changepoint detection task.

Future work should focus on developing the proposed model with a multi-Gaussian fitting 

and a multi-path graph learning algorithm. Incorporating these modifications into the 

proposed model could provide a promising platform for evolving new graph-based tools to 

detect and classify heart arrhythmias. A multi-path graph learning algorithm could reveal the 

morphology of the ECG signal (time duration, amplitude, and direction of each wave) in 

each cardiac cycle. Subsequently, new graph-based features could be extracted from the 

constraint graph path for an ECG cycle to classify heartbeats.

4. Conclusion

The accurate delineation of R-peaks in the ECG signal plays a crucial role in most 

automated ECG analysis tools. This paper proposed a novel graphical model based on 

changepoint detection techniques for detecting R-peaks within a non-stationary ECG signal. 

The proposed model was highly successful at detecting R-peaks in noisy ECG data without 

applying any preprocessing steps. To our knowledge, this is the first time that a changepoint 

detection model has been applied for ECG fiducial points detection. In this new framework, 

prior biological knowledge about the expected sequences of changes was incorporated into 

the model using a graph. We defined the constraint graph manually and automatically using 

a proposed greedy graph search algorithm. Using the proposed graph learning algorithm, the 
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initial graph structure can develop into a structure containing edge parameters with 

maximum detection accuracy for a record. The experimental results provided in this paper 

demonstrate that the GCCD model can be a promising approach for detecting ECG waves 

and developing new graph-based tools for further ECG analysis. The proposed graphical 

model approach can be advanced by learning a multi-path constraint graph and fitting a 

multi-Gaussian curve model to the ECG signal, which should be considered in future 

studies.
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Fig. 1. 
An overview of the GCCD model. The GCCD model takes a constraint graph and a raw 

ECG signal as inputs and then detects segments corresponding to the nodes of the constraint 

graph at the output.
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Fig. 2. 
(a:) The initial constraint graph structure with two nodes labeled as A and R, representing an 

alternative segment and the R-peak segment, respectively, in a cycle. (b–g:) Some of the 

applied graph editing candidates related to the edge (Vi, Vj) with an up change.
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Fig. 3. 
Demonstration of R-peak detection using the proposed model on Record 230 of the MIT-

BIH-AR dataset. (Top:) The proposed model represents Record 230 as piece-wise locally 

stationary segments (blue lines). Extracted R-peak positions are marked with a red “R.” 

(Bottom:) The graph structure for the proposed model. The constraint graph has a vertex for 

each state including state “R” for the R-wave. Below each edge e we show the penalty λe, 

which is either a constant λ > 0 or 0; above we show the constants δ, γ in the constraint 

function ge(mi, mi+1) = δ(mi —mi+1) + γ ≤ 0 , where δ = 1 for a non-decreasing change 

(shown with ↑), δ = −1 for a non-increasing change (shown with ↓), and γ ≥ 0 is the 

minimum magnitude of change.
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Fig. 4. 
Demonstration of constraint graph optimization using the proposed graph learning algorithm 

for Record 107 of the MIT-BIH-AR dataset. (a–e, top:) Extracted R-peak positions given 

the learned constraint graph in each learning iteration. The red and orange coverage bands 

show the used labels in the training procedure, including training and validation sets. The 

blue lines represent separate states at the model output over the raw ECG signal (gray 

points). (a–e, bottom:) The learned constraint graph in each learning iteration. For each 

edge, λ is the penalty, g is the gap (the minimum magnitude of change), and the up/down 

arrow shows the type of change. The part of the graph that is modified from the previous 

iteration is shown in red. (f:) Testing results for the final learned constraint graph using a 

new window of data. The pink coverage bands show the labels in the testing set.
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Fig. 5. 
Detection of R-peak positions for Record 219 of the MIT-BIH-AR dataset using the 

proposed graph learning algorithm. (a–h, top:) Extracted R-peaks given the constraint graph 

structure learned in each iteration. The orange and red coverage bands present training and 

validation labels, respectively. The blue line demonstrates locally stationary segments at the 

model output, and the gray points also show the raw ECG signal at the model input. (a–h, 
bottom:) The constraint graph learned in each iteration. The red part of the constraint graph 

represents the selected graph editing candidate in each iteration.
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Fig. 6. 
Test result for Record 219 for two different windows of time. The pink coverage bands 

represent the labels in the testing set, and the blue lines demonstrate model output.
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Fig. 7. 
Training progress for (a) Record 107 and (b) Record 219 of the MIT-BIH-AR dataset.
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Fig. 8. 
Comparison of the training progress initialized with two simple and complex initial graph 

structures for Record 106 of the MIT-BIH-AR dataset.
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Fig. 9. 
Comparison of the trained models for Record 106 of the MIT-BIH-AR dataset inititalized 

with (a) a simple graph structure and (b) a complex graph structure.
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Fig. 10. 
Comparison of the constraint graph structures (a) defined manually and (b) learned using the 

proposed graph learning algorithm for Record 100 of the MIT-BIH-AR dataset.
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Fig. 11. 
The model’s performance for Record 230 of the MIT-BIH-AR dataset. (a) The training 

progress, (b) extracted R-peaks for a window of this record, and (c) the constraint graph 

structure.
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Table 1

Comparison of the performance of several R-peak detection methods using the MIT-BIH-AR database.

Method Sen (%) PPR (%) DER (%)

Park et al. [8] 99.93 99.91 0.163

Farashi [39] 99.75 99.85 0.40

Sharma and Sunkaria [3] 99.50 99.56 0.93

Castells-Rufas and Carrabina [2] 99.43 99.67 0.88

GCCD Model with Manual Definition of the Constraint Graph 99.76 99.68 0.55

GCCD Model with Learning of the Constraint Graph 99.64 99.71 0.19
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