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Abstract: Electrocardiogram (ECG) signals contain a great deal of essential information which can be
utilized by physicians for the diagnosis of heart diseases. Unfortunately, ECG signals are inevitably
corrupted by noise which will severely affect the accuracy of cardiovascular disease diagnosis.
Existing ECG signal denoising methods based on wavelet shrinkage, empirical mode decomposition
and nonlocal means (NLM) cannot provide sufficient noise reduction or well-detailed preservation,
especially with high noise corruption. To address this problem, we have proposed a hybrid ECG
signal denoising scheme by combining extreme-point symmetric mode decomposition (ESMD) with
NLM. In the proposed method, the noisy ECG signals will first be decomposed into several intrinsic
mode functions (IMFs) and adaptive global mean using ESMD. Then, the first several IMFs will be
filtered by the NLM method according to the frequency of IMFs while the QRS complex detected
from these IMFs as the dominant feature of the ECG signal and the remaining IMFs will be left
unprocessed. The denoised IMFs and unprocessed IMFs are combined to produce the final denoised
ECG signals. Experiments on both simulated ECG signals and real ECG signals from the MIT-BIH
database demonstrate that the proposed method can suppress noise in ECG signals effectively while
preserving the details very well, and it outperforms several state-of-the-art ECG signal denoising
methods in terms of signal-to-noise ratio (SNR), root mean squared error (RMSE), percent root mean
square difference (PRD) and mean opinion score (MOS) error index.

Keywords: electrocardiogram; signal denoising; extreme-point symmetric mode decomposition;
nonlocal means

1. Introduction

An electrocardiogram (ECG), derived from the body’s surface, indicates the rhythmic electrical
activity of myocardia. The interpretation of abundant physiological and pathological information on
the heart contained in ECG recordings provides a noninvasive technique for cardiovascular disease
diagnosis. However, ECG signals are usually contaminated with baseline wander, high-frequency
noise caused by electromyography, and motion artifacts during collection and transmission. Since
these contaminants overlap the cardiac component in both the spatiotemporal and frequency domains,
the extraction of weak cardiac components from the corrupted ECG signals and the preservation of the
subtle features of the signals are fairly difficult. Indeed, ECG signal denoising is very important for
improving the quality of ECG signals, thereby facilitating subsequent signal processing and analysis
tasks such as ECG watermarking, compression [1], feature extraction and classification [2,3].
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Numerous ECG signal denoising methods have been proposed. These methods can be generally
divided into three categories, i.e., spatiotemporal domain methods, frequency domain methods and
statistical techniques. Classical low-pass filters [4,5], median filter (MED) [6] and adaptive filtering
methods [7–9] analyze and reduce the noise in ECG signals in the spatiotemporal domain. These
methods generally cannot deliver sufficient noise reduction, especially at high noise corruption.
As regards frequency domain methods, wavelet transform-based methods have undergone tremendous
development and become a common practice for signal denoising [10–14]. These methods realize
noise reduction by shrinking the wavelet transform coefficients of ECG signals and performing inverse
wavelet transform of thresholded coefficients. However, in these methods, the base functions are fixed
and do not change with the different signals. Meanwhile, the hard thresholding technique may lead to
the oscillation of the reconstructed ECG signal while the soft thresholding technique may reduce the
amplitudes of the ECG waveforms, especially the R waves [15].

Denoising methods based on empirical mode decomposition (EMD) [16], ensemble empirical
mode decomposition (EEMD) [17,18] and variational mode decomposition (VMD) [19] have attracted
much attention in recent years. The EMD algorithm decomposes the signal into a collection of intrinsic
mode functions (IMFs) and a final residue, which is a monotonic first order function. The EMD based
denoising method usually produces the denoised result by combining the remaining IMFs except the
first several ones with the final residue. This method is difficult to use to adaptively determine the best
sifting times and the termination criterion in the gain of every IMF. Furthermore, the final residue will
lose evolutionary trend information. These disadvantages will lead to the attenuation of the amplitudes
of QRS complexes in denoising ECG signals. As for the EEMD algorithm, it decomposes the complex
of ECG signals and the added different white noise by the EMD algorithm and produces the denoised
result as the EMD-based denoising method does. Therefore, the problems of the EMD-based denoising
method also exist in the EEMD algorithm. For the VMD method, it uses the non-recursive VMD
model to determine an ensemble of modes and their respective center frequencies for the input signal
such that the combined modes can reproduce this signal. Although the VMD method is more robust
to sampling and noise than the EMD method, it will reduce the amplitudes of the ECG waveforms,
especially the R waves.

Statistical techniques such as independent component analysis [20], principal component
analysis [21] and neural networks [22] have also been applied to ECG noise suppression. These
methods are powerful ways to remove in-band noise by discarding the dimensions corresponding to
noise, but the models are fairly arbitrary depending on different types of noise and extremely sensitive
to the changes in either the signal or the noise.

In 2005, Buades et al. [23] proposed the nonlocal means (NLM) method for image denoising.
Based on the assumption that patterns of an image are often self-similar and redundant, the NLM
method replaces a pixel considered noisy with the weighted average of all the pixels in the whole
image or a pre-defined search window, where the weights are robustly determined by the nonlocal
comparison of image patches instead of individual pixels. Because the NLM can achieve adequate
noise suppression and excellent detail preservation results, Tracey and Miller have recently applied it
to ECG signal denoising [24]. However, the NLM method cannot suppress noise in highly corrupted
ECG signals well because it involves inaccurate weight computation based on noisy signals, which
will lead to degraded restoration performance. Besides, this method will attenuate the amplitudes of
QRS complexes in ECG signals because of the improper weighted averaging.

To address these issues, we have proposed to combine the extreme-point symmetric mode
decomposition (ESMD) [25] with the NLM method for ECG signal denoising. The introduction
of ESMD into ECG signal denoising is due to the fact that the ESMD method can automatically
determine the termination criterion in the gain of every IMF and the best sifting times, which is
the maximum number of IMFs. Because most noise is included in the first several IMFs after the
ECG signal decomposition by ESMD, these IMFs will be used for denoising by the NLM method.
To ensure good detail preservation, such characteristic waves as the QRS complexes are detected and



Sensors 2016, 16, 1584 3 of 18

are preserved during NLM denoising by using relatively small decay parameters. Experimentally,
it has been demonstrated that the proposed method has excellent detail preservation performance
in the characteristic waves such as the QRS complex, P wave and T wave and good noise reduction
performance in the PQ and ST segments of ECG signals. Meanwhile, our method outperforms many
existing ECG signal denoising methods by providing a higher signal to noise ratio (SNR) as well as
lower root mean squared error (RMSE), percent root mean square difference (PRD) and mean opinion
score (MOS) error index.

2. Method

2.1. ESMD-Based ECG Signal Decomposition

The ESMD has been recently proposed by Wang et al. as a modification of the EMD. The ESMD
decomposes the signal into a series of intrinsic mode functions (IMFs) and a final residue which is
an optimal adaptive global mean (AGM) curve. The IMF is the basic oscillation mode and the AGM
curve reflects the evolutionary trend information of the signal. Different from the EMD, the ESMD
allows the existence of a certain number of extreme points in the final residue and it determines the
best sifting times to obtain the IMFs by optimizing the AGM curve. Using the ESMD method, the ECG
signal Sn can be decomposed as:

Sn =
M

∑
i=1

IMFi + R (1)

where M is the number of IMFs and R is the final residue which will be optimized to be an optimal
AGM curve.

The detailed implementation of the ESMD based ECG signal decomposition involves the
following steps.

Step 1: Find all local extrema points of the ECG signal Sn, and then connect all the extrema
points with line segments. Mark their midpoints and add the boundary points on the left and
right, respectively.

Step 2: An interpolating curve based on all the midpoints (m1, . . . , mk)(k ≥ 1) can be constructed.
And then the mean value m∗ of all midpoints can be calculated as:

m∗ =
1
k

k

∑
i=1

mi (2)

Step 3: Steps 1 and 2 should be repeated with Sn = Sn −m∗ until the number of sifting times
attains the preset maximum value T or |m∗| ≤ 0.001σS where σS denotes the standard deviation of
ECG signals. Then we can get the first mode IMF1.

Step 4: Repeat above steps with Sn = Sn − IMF1 and get the other IMFs until the last residue R
has no more than a certain number of extrema points.

Step 5: Repeat the above steps with different T in a finite integer interval from Tmin to Tmax.
Choose T0 with the smallest variance ratio v(v = σR/σS) as the optimal sifting times, where σR denotes
the standard deviation of R.

Step 6: Repeat step 1 to step 4 with the optimal sifting times T0. In this way, we will obtain all the
IMFs and the final residue R.

To demonstrate the effect of the ESMD method in decomposing the ECG signal, Figure 1 shows
the decomposed results of the simulated ECG signals corrupted by Gaussian noise with the variance
of 60. From Figure 1, we can see that the frequency of IMFs decreases with the increasing orders.
The high frequency components of ECG signals located in QRS complexes are mainly distributed
in the first two IMFs. Here, IMF1 contains merely high frequency noise component and there is no
apparent correlation between IMF1 and the ECG signals. IMF2 consists of QRS complex together with
high-amplitude noise. IMF3~IMF5 are slightly stained by high-frequency noise. Other IMFs and AGM
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contain the low frequency components, and they involve almost no noise. The decomposed results of
the ECG signal indicate that it is desirable to only denoise IMF1~IMFi while leave IMFi+1~IMFn and
the residual R unprocessed to ensure effective noise reduction and good detail preservation.
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Figure 1. The ESMD method based decomposition of the noisy ECG signal corrupted by Gaussian
noise with the variance of 60.

2.2. QRS Detection

When the ECG signals are contaminated by high levels of noise, the noise will be decomposed
into IMF1 and IMF2 as shown in Figure 1. Because noise will submerge the QRS complex components
in IMF1 and IMF2, it is preferable to extract the exiguous QRS complex components while suppress
the noise. However, this is a very difficult task. If the NLM filter is directly implemented on them, the
noise and the ECG components will be removed simultaneously. Therefore, we propose to detect the
location of QRS complexes by the wavelet based detection algorithm. Using this algorithm, we will
obtain the set P of points in the QRS complexes.

As regards the detection of R wave, the wavelet transform is applied to IMF1 and IMF2, and the
singularity is found in the wavelet domain. Then the mean amplitudes of the poles are obtained by
setting the threshold of R wave to be 30% of the difference value between the maximum amplitudes
and the minimum ones. Finally, the distance between two adjacent maxima is computed. If this
distance is less than 0.4, the maxima with lower amplitude will be removed. In this way, the points in
the R wave will be obtained.

For the detection of the Q wave, if the wave is a forward/inverted wave, a minimum/maximum
forward from the R wave is found in the wavelet transform domain. The detection of the S wave is
similar to that of the Q wave. The only difference is that the S wave is found backward from the R
wave in the wavelet transform domain.

2.3. NLM Denoising of IMFs

For ECG signal denoising, the NLM method restores a given point using the weighted average of
point intensities within a search window Ω, where the weights are determined based on the similarity
between two windows centered at the two considered points. The principle of the NLM method is
shown in Figure 2.
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Let the ECG signal Sn be Sn = So + η, where So and η denotes the noise-free ECG signal and
noise, respectively. Mathematically, the restored intensity SNLM(i) of the ith point by the NLM method
is computed as:

SNLM(i) = NL(Sn)(i) =
1

C(i) ∑
q∈Ω

ω(i, q) · Sn(q) (3)

where C(i) = ∑
q∈Ω

ω(i, q) is the normalization constant, and Sn(q) is the intensity of the point centered

at q in the noisy ECG signal; ω(i, q) is the weight measured by the difference of the similarity windows
N(i) and N(q) centered at i and q, respectively. The weight ω(i, q) is computed as:

ω(i, q) = exp(−
||Sn(N(i))− Sn(N(q))||2

2,a

h2(i)
) (4)

where ||Sn(N(i))− Sn(N(q))||2
2,a means the weighted distance between Sn(N(i)) and Sn(N(q)) with

a denoting the standard deviation of the Gaussian kernel, and h(i) denotes the decay parameter.
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Figure 2. The principle of the NLM method.

The decay parameter has an important influence on the restoration performance of the NLM
method. To expound the choice of this decay parameter for the effective ECG signal denoising, we will
introduce the bias-variance principle [26]. Based on this principle, the corresponding mean square
error (MSE) for the denoised result SNLM(i) can be expressed as the sum of the squared bias term
bias2(SNLM(i)) and the variance var(SNLM(i)):

MSE(SNLM(i)) = bias2(SNLM(i)) + var(SNLM(i)) (5)

The two items bias2(SNLM(i)) and var(SNLM(i)) are both relevant to h(i). According to [26],
bias2(SNLM(i))increases and var(SNLM(i)) decreases with the increasing h(i), because smaller
bias2(SNLM(i)) means better noise suppression performance while smaller var(SNLM(i)) means better
detail preservation performance. Therefore, h(i) should change with different ECG signal points to
obtain good restoration performance. For the points in the PQ and ST segments of ECG signals, h(i)
should be large to ensure sufficient noise reduction by producing relatively small bias2(SNLM(i)).
On the contrary, h(i) should be small for the points in the characteristic waves such as the P wave,
QRS complex and T wave to provide good sharpness preservation by producing relatively small



Sensors 2016, 16, 1584 6 of 18

var(SNLM(i)). Based on the above analysis, this parameter hj(i) will be determined for different IMFs
according to the QRS detection results, i.e.,

hj(i) =

{
hQRS,j i ∈ P
hj(i) i /∈ P

(6)

where hQRS,j denotes the decay parameter for the points in the QRS complex of IMFj. Inspired by the
work in [27,28], the parameters h2

j (i) and h2
QRS,j will be chosen to be proportional to the estimated

noise variance δ2. Because the noise will become weaker and weaker with the increasing orders of
IMFs, the parameter h2

j (i) will be chosen adaptively for each IMFj as h2
j (i) = (c · δ2)/j where c is a

constant with 0.5 < c < 1.5. Considering that hQRS,j should be smaller than hj(i) to ensure good signal
sharpness preservation, we will define it as h2

QRS,j = (c · δ2)/(3j). As regards δ, it is estimated using
the median absolute deviation (MAD) method as:

δ = 1.4826×MAD(R) = 1.4826×median (|D−median(D)|) (7)

where median denotes the median operator, and D = {D(1), · · · , D(l), · · ·D(L)} is the set of
the local residuals of the selected homogenous region of length L in the noisy signal Sn with
D(l) = (2Sn(l)− (Sn(l − 1) + Sn(l + 1)))/

√
6.

3. Implementation of Our Method

The implementation of the ESMD-based NLM denoising method is given in Figure 3. It involves
the following three steps.
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Figure 3. The flowchart of the ESMD-based NLM method for ECG signal denoising.

Step I. The given ECG signals are decomposed into several IMFs and AGM using the
ESMD method.

Step II. The different IMFs with different orders are processed as follows.
II-1. The QRS complexes in IMF1 and IMF2 are detected and the decay parameter is adaptively

determined for each point in IMF1 and IMF2 based on the QRS detection result. IMF1 and IMF2 are
filtered by the NLM method using the point-wise decay parameter.

II-2. IMF3 ~IMFj are filtered by the NLM method using the adaptive decay parameter, where j
will be chosen flexibly according to the levels of noise.

II-3. IMFj+1 ~IMFn and AGM are kept intact.
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Step III. The denoised results IMF′1~IMF′ j of IMF1~IMFj, unprocessed IMFj+1~IMFn and AGM
are combined to reconstruct the final denoised ECG signals.

4. Experimental Results

To evaluate the performance of the proposed ESMD-based NLM (ESMD-NLM) method, we
have chosen four other denoising methods for comparison including the NLM method [24], the
VMD method [29], the EEMD method [17] and the median (MED) filter [6]. Experiments have been
conducted on the simulated ECG signals corrupted with Gaussian white noise and muscle artifact
(MA) noise as well as the real ECG signals downloaded from MIT-BIH database, QT database and
MIH-BIH ECG compression test database [29]. The performance of the five methods is evaluated by
such metrics as SNR, RMSE, PRD and MOSerror index [30]. The higher SNR value and lower RMSE,
PRD and MOSerror values mean better signal restoration performance. Here, the MOSerror index is
used to measure signal distortion based on the clinical blind and semiblind MOS tests [30]. The blind
and semiblind tests are performed to obtain the cardiologists’ evaluation of the denoised signals from
different denoising algorithms without knowing the source of each tested signal and without knowing
the denoising method, respectively. The MOSerror value is computed as the mean of the results of
the blind and semiblind tests of three independent cardiologists for the simulated ECG signals [30].
The other metrics are defined as:

SNR = 10 · log10


m
∑

i=1
(So(i))

2

m
∑

i=1
(SNLM(i)− So(i))

2

 (8)

RMSE =

√√√√√ m
∑

i=1
(SNLM(i)− So(i))

2

m
(9)

PRD =

√√√√√√√
m
∑

i=1
(SNLM(i)− So(i))

2

m
∑

i=1
(So(i))

2
× 100 (10)

where m is the length of the ECG signals.

4.1. Parameter Setting

As regards the NLM method, the decay parameter is fixed at 1.1δ. The half-width of the search
window and that of the similarity window in the NLM and ESMD-NLM methods are chosen to be
500 samples and 10 samples, respectively. For the VMD method, the moderate bandwidth constraint is
2000, the noise-tolerance is 0, the number of modes is 7~10 and the initialized center frequencies of all
modes are 8~11. As for the EEMD method, the standard deviation of the added white noise is 0.02, the
number of realizations is 500 and the maximum number of sifting iterations is 5000. For the median
filter, the filtering window is fixed at 5 samples.

4.2. Comparison of Restoration Performance

4.2.1. Comparison Based on the Simulated ECG Signals

For the simulated ECG signals, Gaussian white noise with the variance σ2 of 20, 30, 40, 50 and
60, and muscle artifact noise with the variance of 60 will be added to the noise-free ECG signals.
Here, the simulation of the uncorrupted ECG signals and two kinds of noise is done using the
Open-Source Electrophysiological Toolbox (OSET). This toolbox implemented in MATLAB is available
at http://oset.ir/category.php?dir=Tools.

http://oset.ir/category.php?dir=Tools
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Figures 4 and 5 show the two groups of simulated ECG signals, the ECG signals corrupted by
Gaussian white noise with a variance of 50 and the denoised results for the five methods.

To demonstrate the advantage of our method, we will focus the performance evaluation on the
restored results of smooth segments and the ECG’s amplitudes. From Figures 4 and 5, we can see that
the smooth segments remain very smooth when processed by the ESMD-NLM method, but some noise
still remains in these segments for the MED, EEMD, VMD and NLM methods. As for the amplitudes,
the values of the first amplitudes in the first simulated ECG signal and the denoised results are 203,
206, 189.3, 196, 183 and 184, and the differences of amplitudes between the corresponding denoised
signals and the original signal are 3, 13.7, 7, 20 and 19 for the ESMD-NLM, EEMD, NLM, VMD and
MED methods, respectively. Apparently, our method outperforms the compared methods in terms
of the preservation of ECG’s amplitudes. The above comparison indicates that the proposed method
has excellent detail preservation performance in the characteristic waves such as the QRS complex, P
wave and T wave and good noise reduction performance in the PQ and ST segments of ECG signals.
The reason will be explained below. Our method can preserve QRS complexes very well due to the
introduction of the QRS detection algorithm and the adoption of a small decay parameter. Meanwhile,
the proposed method can deliver sufficient noise reduction because of the utilization of a relatively
large decay parameter for the smooth segments.
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Figure 4. Comparison of denoised results of the ESMD-NLM method and other four methods operating
on the simulated ECG signal. (a) The original ECG signal, (b) the noisy ECG signal (Gaussian white
noise, σ2 = 50), (c) the ESMD-NLM method, (d) the EEMD method, (e) the NLM method, (f) the VMD
method, (g) the MED filter. The digits and the black box represent the values of amplitudes and the
P-Q and S-T segments of ECG signals, respectively.
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Figure 5. Comparison of denoised results of all evaluated methods operating on another simulated
ECG signal. (a)Tthe original ECG signal, (b) the noisy ECG signal (Gaussian white noise, σ2 = 50),
(c) the ESMD-NLM method, (d) the EEMD method, (e) the NLM method, (f) the VMD method, (g) the
MED filter.

Figures 6–8 show the PRD, SNR and RMSE comparisons for all the evaluated methods operating
on the simulated ECG signals corrupted with Gaussian white noise of different variances. Table 1
shows the mean MOSerror values for all evaluated methods. The mean MOSerror is computed as the
mean of all MOSerror values for each compared denoising method when σ2 = 20, 30, 40, 50 and 60.
It can be seen that from Figures 6–8 and Table 1 that for the various noise variances, the ESMD-NLM
method outperforms all other compared methods by providing much higher SNR values and much
lower PRD, RMSE and MOSerror values. Here, it should be noted that the MOSerror value of the MED
method reaches 30 while the MOSerror values of the ESMD-NLM method and the VMD and EEMD
methods are lower than 15 and 30, respectively. Based on the classification criterion of the signal quality
in [30], it can be seen that the quality of the denoised signals for the MED method is bad. The quality
of the denoised signals for the ESMD-NLM method is very good and it is better than that for the VMD
and EEMD methods, although the latter is good to some extent. The above comparison indicates that
the ESMD-NLM method can provide the highest-quality denoised signals by suppressing Gaussian
white noise and preserving the details much better than the other compared methods. The superiority
of the proposed method results from the fact that it separates the noise-free signals from noise by
decomposing the signals into several IMFs using the ESMD, which can attenuate the influence of noise
and thus facilitate determining the weight in the NLM method accurately.
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Figure 6. The PRD for the two groups of simulated ECG signals filtered by all evaluated methods
when the variance σ2of Gaussian noise is 20, 30, 40, 50 and 60, respectively. (a) The first group; (b) the
second group.
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Figure 7. The SNR for the two groups of simulated ECG signals filtered by all evaluated methods
when the variance σ2of Gaussian noise is 20, 30, 40, 50 and 60, respectively. (a) The first group. (b) The
second group.
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Figure 8. The RMSE for the two groups of simulated ECG signals filtered by all evaluated methods
when the varianceσ2 of Gaussian noise is 20, 30, 40, 50 and 60, respectively. (a) The first group. (b) The
second group.
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Table 1. The mean MOSerror values for the two groups of simulated ECG signals filtered by all
evaluated methods.

The First Group The Second Group

ESMD-NLM NLM VMD EEMD MED ESMD-NLM NLM VMD EEMD MED
10 15 20 25 30 10 20 25 25 30

To further demonstrate the effectiveness and advantage of the proposed method in removing
other kinds of noise, we have conducted experiments on the first group of simulated ECG signals
corrupted by muscle artifact noise with the variance of 60. Here we will only make comparisons
among the ESMD-NLM method, the VMD method, the EEMD method and the NLM method because
the latter are closely related to our method. Figure 9 shows the simulated ECG signals, the noisy ECG
signals and the denoised results for the above four methods. From Figure 9, we can see that the smooth
segments in the noisy ECG signals keep more smooth when processed by the ESMD-NLM method
than by other methods. Meanwhile, the ESMD-NLM method can generally maintain the shape of
the QRS complex, the P wave and the T wave better than the compared methods. The above visual
comparison indicates the advantage of the proposed method over the VMD, EEMD and NLM methods
in denoising the ECG signals corrupted with muscle artifact noise.

Table 2 shows the PRD, SNR, RMSE and MOSerror comparisons for the ESMD-NLM method and
the other three compared methods operating on the first group of simulated ECG signals corrupted
with MA noise. As shown in Table 2, the SNR values of the EEMD, VMD and NLM methods are lower
than those of the ESMD-NLM method, and their PRD, RMSE and MOSerror values are higher than
those of the proposed method. Please note that the MOSerror values of the VMD and EEMD methods
are higher than 50, which indicates the very bad quality of the denoised signals for the two methods.
Likewise, the NLM method provides the bad quality denoised signals because its MOSerror value
reaches 30. By comparison, the proposed method can provide the denoised signals with good quality.
Indeed, the data in this table illustrate that the ESMD-NLM method can suppress muscle artifact noise
and preserve the details better than other methods.
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Figure 9. Comparison of denoised results of the ESMD-NLM method, the NLM method, the EEMD
method and the VMD method operating on the simulated ECG signal corrupted by muscle artifact
noise with the variance of 60. (a) The original ECG signal, (b) the noisy ECG signal (muscle artifact
noise, σ2 = 60), (c) the ESMD-NLM method, (d) the EEMD method, (e) the NLM method, (f) the
VMD method.
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Table 2. The PRD, SNR, RMSE and MOSerror values for the ESMD-NLM, NLM, VMD and EEMD
methods operating on the simulated ECG signal corrupted with muscle artifact noise.

Metrics ESMD-NLM NLM VMD EEMD

PRD 13.405 14.734 17.689 18.317
SNR 17.455 16.634 15.046 14.743

RMSE 5.491 6.036 7.247 7.504
MOSerror 20 30 55 60

4.2.2. Comparison Based on the Real ECG Signals

To demonstrate the practicality of the proposed method, we have applied it to denoising the
three groups of real ECG signals. Here, we have selected the 100m.dat, 111m.dat and 221m.dat from
MIT-BIH Arrhythmia Database as the first group, the sel100m.dat, sel117m.dat and sel114m.dat from
QT database as the second group, and the 13420_12m.dat, 13649_04m.dat and 12713_04m.dat from
MIH-BIH ECG Compression Test Database as the third group. For the real ECG signals in units of mV,
the gain is 200 and 400 for the first and second groups and the third group, respectively. The base is
1024 and the sampling frequency is 360 Hz for the first group while the base is 0 and the sampling
frequency is 250 Hz for the second and third groups.

Figures 10–12 show the signals from 100m.dat, sel100m.dat and 13420_12m.dat and the denoised
results for all evaluated methods, respectively. Figures 13–15 show the signals from 111m.dat and
221m.dat, sel117m.dat and sel114m.dat, 13649_04m.dat and 12713_04m.dat as well as the denoised
results for the proposed method and the NLM method, respectively. From Figures 10–12, we can see
that the ESMD-NLM method provides amplitude values of the denoised signals much closer to those
of the clinical ECG signals than the EEMD, VMD and MED methods, which demonstrates that the
proposed method performs better in preserving signals’ amplitudes than the latter. Meanwhile, it can
be seen from Figures 10–15 that the ESMD-NLM method can suppress noise in the smooth segments
in the ECG signals more effectively than the other four methods. Indeed, the visual comparisons
demonstrate the practicality and superiority of our method in denoising the different clinical ECG
signals in terms of noise removal and detail preservation.
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Figure 10. Comparison of the denoised results for all evaluated methods operating on the 100m.dat in
the first group of clinical ECG signals. (a) The clinical ECG signal, (b) the ESMD-NLM method, (c) the
NLM method, (d) the EEMD method, (e) the VMD method, (f) the MED filter.
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Figure 11. Comparison of the denoised results for the ESMD-NLM, NLM, EEMD, VMD and MED
methods operating on the sel100m.dat in the second group of clinical ECG signals. (a) The clinical ECG
signal, (b) the ESMD-NLM method, (c) the NLM method, (d) the EEMD method, (e) the VMD method,
(f) the MED filter.
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Figure 12. Comparison of the denoised results for the ESMD-NLM, NLM, EEMD, VMD and MED
methods operating on the 13420_12m.dat in the third group of clinical ECG signals. (a) The clinical
ECG signal, (b) the ESMD-NLM method, (c) the NLM method, (d) the EEMD method, (e) the VMD
method, (f) the MED filter.
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Figure 13. Comparison of the denoised results for the ESMD-NLM and NLM methods operating on the
111m.dat and 221m.dat in the first group of clinical ECG signals. (a) The clinical ECG signal (111m.dat),
(b) the ESMD-NLM method (111m.dat), (c) the NLM method (111m.dat), (d) the clinical ECG signal
(221m.dat), (e) the ESMD-NLM method (221m.dat), (f) the NLM method (221m.dat).
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Figure 14. Comparison of the denoised results for the ESMD-NLM and NLM methods operating on the
sel117m.dat and sel114m.dat in the second group of clinical ECG signals. (a) The clinical ECG signal
(sel117m.dat), (b) the ESMD-NLM method (sel117m.dat), (c) the NLM method (sel117m.dat), (d) the
clinical ECG signal (sel114m.dat), (e) the ESMD-NLM method (sel114m.dat), (f) the NLM method
(sel114m.dat).
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Figure 15. Comparison of the denoised results for the ESMD-NLM and NLM methods operating on the
13649_04m.dat and 12713_04m.dat in the third group of clinical ECG signals. (a) The clinical ECG signal
(13649_04m.dat); (b) the ESMD-NLM method (13649_04m.dat); (c) the NLM method (13649_04m.dat);
(d) the clinical ECG signal (12713_04m.dat); (e) the ESMD-NLM method (12713_04m.dat); (f) the NLM
method (12713_04m.dat).

To evaluate the performance of these compared methods operating on the real ECG signals, the
MOS tests are also implemented. Because the original noise-free versions of these real ECG signals are
unknown, only the clinical blind MOS tests are done by the three cardiologists without knowing the
source of each tested signal. For the blind MOS tests, only the general quality score of the denoised
signals is obtained for each cardiologist as described in [30] and the final quality score denoted by
MOS is the average of the scores from the three cardiologists. The larger the MOS value, the higher
the quality of the denoised signal is. Tables 3 and 4 list the MOS values for all the evaluated methods
operating on the three groups of clinical ECG signals and the ESMD-NLM and NLM methods operating
on the six groups of clinical ones, respectively. Tables 3 and 4 show that the ESMD-NLM method
provides the highest MOS values for the nine groups of ECG signals among all evaluated methods.
Therefore, the proposed ESMD-NLM method outperforms other methods in terms of the visual quality
of the denoised signals, and it may facilitate more accurate diagnosis of heart disease.

Table 3. The MOS values for the ESMD-NLM, NLM, VMD and EEMD methods operating on the three
groups of clinical ECG signals.

Data
Methods

ESMD-NLM NLM EEMD VMD MED

100m 4.33 3.33 2.33 2.67 2.33
Sel100m 5 4 2.67 3 2.33

13420_12m 4.67 3.33 2 2.67 2
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Table 4. The MOS values for the ESMD-NLM and NLM methods operating on the six groups of clinical
ECG signals.

Methods
Data

111m 221m Sel117m Sel114m 13649_04m 12713_04m

ESMD-NLM 5 4.67 5 5 4.33 5
NLM 3.33 3.33 3.67 4.67 3.33 3

4.3. Comparison of Computational Efficiency

To compare the computational efficiency of all evaluated methods operating on the 100m.dat,
sel100m.dat and 13420_12m.dat, Table 5 lists the computational time for these methods. Here, all
the methods are implemented using MATLAB R2014a (MathWorks, Natick, Massachusetts, MA,
USA) on a personal computer with 2.30 GHz CPU and 4.00 GB RAM. It is shown in Table 5 that the
proposed ESMD-NLM method has higher computational efficiency than the EEMD method, but lower
computational efficiency than the NLM and VMD methods. The reason lies in the fact that in the
proposed method, much computational time is involved in the ESMD based ECG signal decomposition
and the NLM denoising for different IMFs. Indeed, the parallel computing strategy can be adopted to
greatly improve the computational efficiency of our method.

Table 5. The implementation time (s) for the ESMD-NLM, NLM, VMD and EEMD methods operating
on the three groups of clinical ECG signals.

The Clinical ECG Signals ESMD-NLM NLM VMD EEMD

The first group (100m.dat) 65.586 11.17 21.405 407.167
The second group (sel100m.dat) 56.31 10.334 15.361 1107.875
The third group (13420_12m.dat) 54.346 11.591 17.36 764.325

5. Conclusions

In this paper, we have proposed a novel ECG signal denoising method by combining ESMD
with NLM. In the proposed ESMD-NLM method, ECG signals are decomposed into many IMFs
with different frequencies, and then the IMFs are denoised by nonlocal means using different decay
parameters based on the QRS detection results. Quantitative comparisons based on the simulated ECG
signals demonstrate that the ESMD-NLM method performs better than the median filter, the wavelet
based method, the EEMD method and the NLM method by providing lower PRD, RMSE and MOS
error values as well as higher SNR values. Visual comparisons based on the simulated and clinical
ECG signals indicate that the proposed method gains an advantage over the compared methods in
terms of noise suppression and detail preservation. Future work will be focused on the extension of
the ESMD-NLM method to denoising other physiological signals such as electrooculogram (EOG),
electroencephalograph (EEG) and electromyogram (EMG) signals.
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ECG electrocardiogram
NLM nonlocal means
EMD empirical mode decomposition
EEMD ensemble empirical mode decomposition
ESMD extreme-point symmetric mode decomposition
VMD variational mode decomposition
IMFs intrinsic mode functions
AGM adaptive global mean
MA muscle artifact
EM electrode movements
WAV wavelet transform
MED median filter
PRD percent root mean square difference
SNR signal-to-noise ratio
PSNR peak signal-to-noise ratio
RMSE root mean square error
MOS mean opinion score
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