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ABSTRACT
The utmost issue in Motor Imagery Brain-Computer Interfaces (MI-BCI) is the BCI poor performance 
known as ‘BCI inefficiency’. Although past research has attempted to find a solution by investigat-
ing factors influencing users’ MI-BCI performance, the issue persists. One of the factors that has 
been studied in relation to MI-BCI performance is gender. Research regarding the influence of 
gender on a user’s ability to control MI-BCIs remains inconclusive, mainly due to the small sample 
size and unbalanced gender distribution in past studies. To address these issues and obtain reliable 
results, this study combined four MI-BCI datasets into one large dataset with 248 subjects and 
equal gender distribution. The datasets included EEG signals from healthy subjects from both 
gender groups who had executed a right- vs. left-hand motor imagery task following the Graz 
protocol. The analysis consisted of extracting the Mu Suppression Index from C3 and C4 electrodes 
and comparing the values between female and male participants. Unlike some of the previous 
findings which reported an advantage for female BCI users in modulating mu rhythm activity, our 
results did not show any significant difference between the Mu Suppression Index of both groups, 
indicating that gender may not be a predictive factor for BCI performance.
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1. Introduction

Brain-Computer Interfaces (BCIs) allow controlling 
external devices using brain activity signals only [1,2], 
most often recorded by electroencephalogram (EEG). 
A widely used BCI paradigm is Motor Imagery BCI (MI- 
BCI) which relies on the active imagination of 
a movement by the user [1]. By mentally rehearsing the 
visual or kinesthetics of a movement, the user engages in 
the Motor Imagery (MI) task, which leads to event- 
related desynchronization (ERD) and synchronization 
(ERS) of the EEG signals in the mu (8-13 Hz) frequency 
band [3,4] as well as the beta (13–30 Hz) band in some 
reports [1,5]. The attenuation of mu band power follow-
ing the MI task is known as mu suppression. Mu suppres-
sion is stronger for the brain hemisphere contralateral to 
the imagined body movement hence it is often used by 
the MI-BCI classifiers to distinguish between left versus 
right MI [3,6].

Since MI-BCIs rely on the active involvement of the 
user and their ability to execute the MI task, they suffer 
from the issue of BCI inefficiency [7,8]. BCI inefficiency, 
also known as BCI illiteracy in older articles [9], refers to 

the problem where up to 50% of BCI users are unable to 
reach a desirable performance (70% accuracy) on their 
first interaction with the system [10–12]. In addition, 15 
to 30% of this population remains unable to reach the 
threshold of 70% accuracy after standard training [7,8]. 
BCI inefficiency is one of the reasons why MI-BCI 
systems are still restricted to laboratories and controlled 
scenarios. Although the notion of BCI inefficiency has 
been criticized by some scholars as it puts the locus of 
deficiency on the user [7], it is still a relevant approach 
to address this issue by identifying the factors that 
influence an individual’s ability to generate distinguish-
able neural patterns when performing a MI task. 
Consequently, adapting the training protocols or using 
smart algorithms that consider these influential factors 
can expedite the training process [2,13,14].

Past research has already investigated some of the 
factors that could influence MI-BCI performance 
[6,13–15]. The factors that have been examined in the 
literature can be divided into five categories (Table 1).

The first category refers to neurophysiological dif-
ferences between subjects, e.g., the amplitude of their 
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mu rhythm at rest [10]. These differences can facilitate 
or impede the BCI system from detecting the appro-
priate neural signals needed to distinguish changes in 
the EEG patterns [7,10,17–19]. The second category 
entails the subject’s mental state while executing the 
MI task and how it affects the BCI performance 
[13,14]. Through extensive research, it has been 
shown that some intra-subject variability can be 
explained by changes in the subject’s attention level, 
fatigue, frustration, relaxation, and motivation [8]. 
However, these are factors that vary by subject and 
depend on the temporal course of study, making them 
difficult to control or monitor during the training 
process. The third category considers the subject’s 
cognitive skills, e.g., spatial ability, vividness of visual 
imagery, visuospatial memory, and visuomotor coor-
dination skills. Researchers have found that subjects 
with a high BCI performance tend to have a different 
cognitive profile than low performers [13–15,22,23]. 
Personality traits (e.g., orderliness, autonomy, self- 
reliance, emotional stability) compose the fourth cate-
gory of factors influencing BCI performance [13,14]. It 
has been argued that personality traits affect MI-BCI 
performance because they influence users’ response to 
the training protocol and hence their MI learning [13]. 
Having a tense personality reflects an impatient and 

frustrated subject with a lower BCI performance, while 
a self-reliant subject that has a high ability to learn 
autonomously can achieve a higher BCI performance 
after training [13,14]. This type of information about 
a subject can be useful when assigning them to adap-
tive training protocols or when predicting their 
response to the training [20,32].

The last category focuses on the effect of demo-
graphics on BCI performance. Although some research 
has been done on the effect of age, education, gender, 
and other demographic factors [6,14,27,28], there is no 
consensus on whether these factors influence BCI per-
formance. One factor with contradictory findings is 
gender. According to the study of Randolph [27] 
which employed 80 subjects (45 females), the partici-
pant’s sex is a fundamental factor for BCI performance, 
with females being better at modulation of mu suppres-
sion. These findings were corroborated by later research 
of Cantillo-Negrete et al. [28] and Alimardani and 
Gherman [6] who compared BCI performance between 
the two gender groups using data from 32 (16 females) 
and 54 (23 females) subjects, respectively. On the con-
trary, Jeunet et al. [13] did not find a gender difference 
based on the BCI classification accuracy of 18 users (9 
females). Similarly, the study performed by Hagedorn 
et al. [15] did not discover a significant difference in mu 
suppression values between genders (36 females vs. 19 
males). Therefore, the existing evidence does not allow 
drawing a conclusion on the impact of gender on MI- 
BCI performance, although gender seems to impact 
neural activity during motor planning [33] as well as 
motor execution [34].

Given the above-mentioned gap in the literature, this 
study aimed to extend the analysis done by Alimardani 
& Gherman [6] to elucidate the effect of gender on MI- 
BCI performance using a large dataset, with equal gen-
der distribution. By combining four openly available 
EEG datasets (n = 248) that followed a left- vs. right- 
hand motor imagery paradigm, we compared males’ 
and females’ ability to modulate mu rhythms. This 
extension of the analysis aimed to increase the robust-
ness and reliability of the previous findings since it 
tackled two main issues in past research: small sample 
sizes and unequal gender distribution [6,14]. 
A sufficiently large sample size allows for isolating the 
gender effect, even in the presence of other factors.

In sum, we pursued to answer the following 
research question: ‘Does an individual’s gender relate 
to their ability to perform the motor imagery task for 
BCI control?’ To quantify motor imagery perfor-
mance, we extracted mu suppression patterns from 
EEG signals as this has been previously identified as 
one of the main features associated with MI-BCI 

Table 1. Factor categories influencing MI-BCI performance and 
studies that support those findings.

Factor categories Studies

Neurophysiology Blankertz et al. [10]
Grosse-Wentrup et al. [16],
Ahn et al. [17]
Thompson [7]
Tzdaka et al. [18],
Leeuwis et al. [19]

Mental states Jeunet et al. [13]
Leeuwis et al. [14]
Zhang et al. [8]
Myrden & Chau [20]
Mladenovic et al. [21]
Rimbert et al. [22]

Cognitive skills Hagedorn et al. [15]
Jeunet et al. [13]
Jeunet at al [23].
Leeuwis et al. [14]
Leeuwis & Alimardani [24]
Hammer et al. [25]
Rimbert et al. [26]
Rimbert et al. [27]

Personality dimensions Jeunet et al. [13]
Leeuwis et al. [14]
Mladenovic et al. [21]
Rimbert et al. [27]

Demographics Randolph [28]
Alimardani & Gherman [6]
Leeuwis et al. [14]
Cantillo-Negrete et al. [29]
Zapała et al. [30]
Pillette et al. [31]
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control [3,6,28,34]. This study is the first of its kind in 
BCI user training research to combine various online- 
available datasets that satisfy a given selection criteria. 
This will make it a valuable contribution to the cur-
rent methodology in the field, by encouraging open 
science practices such as sharing and reusing datasets 
to increase the reliability and generalization of past 
findings.

2. Method

2.1. Dataset selection

This research combined all datasets that followed 
a similar MI-BCI protocol and were available online. 
The datasets were chosen following six selection criteria 
(see Table 2), which were basic guidelines the datasets 
had to comply with for the EEG data to be comparable 
after applying the same processing steps.

The most critical criteria for selection of datasets was 
the experimental paradigm that was followed during the 
recording of the EEG signals. While there are 
a considerable number of MI-EEG datasets available 
online, we only included MI-BCI datasets that followed 
the standard Graz protocol with abstract feedback strat-
egy (explained in section 2.2). In order to have sufficient 
samples for mu suppression analysis, the MI task should 
have lasted at least 3 seconds. In addition, to prevent any 
effect of neuromuscular disorders on brain signals, all 
recruited subjects should have been healthy and neuro-
typical. For this specific research, the gender of each 
subject needed to be documented, in order to classify 
the combined datasets into two groups of females and 
males. The EEG channels C3 and C4 must have been 
recorded in order to obtain the mu suppression values 
associated with the MI task. These two channels were 
essential to the computation of Mu Suppression Indices 
[6], as they are the primary left and right electrodes 
placed above the sensorimotor area of the brain. 
Finally, we only included openly available datasets to 
ensure their accessibility as well as the replicability of 
this study.

This led to a total of four datasets included in this study. 
Detailed description of these datasets is provided in 2.3.

2.2. Motor imagery (MI) task

To minimize variation across datasets, this research only 
focused on MI-EEG datasets that were collected using the 
standard MI-BCI paradigm described by Pfurscheller & 
Neuper [36]. This paradigm, also known as the Graz 
protocol, consists of a binary MI task, in which subjects 
are instructed to imagine either a right-hand or a left- 
hand movement. To execute the imaginary movement, 
there is an externally paced time protocol, presented on 
a computer screen, that guides the subject through the 
trial (see Figure 1). Every single trial lasts around 8 sec-
onds, starting with a fixation cross in the center of the 
screen. After that, a left- or right-pointing arrow is pre-
sented for 1.25 sec to indicate the hand for which the 
subject should imagine the movement. The subject is 
instructed to continue the imagination until the fixation 
cross disappears. Normally, for calibration of the BCI 
system, the first run consists of multiple non-feedback 
or sham-feedback trials with equal distribution of right- 
hand and left-hand MI. Following calibration of the sys-
tem, subjects practice the MI task with feedback runs. In 
feedback runs, the trials follow the same 8-second proto-
col, only that at second 4.25, a horizontal feedback bar 
appears indicating the classifier output. The direction and 
length of the bar represent the classifier output, i.e., the 
recognized MI task and the confidence in that decision, 
based on the produced EEG sensorimotor activity. The 
bar is presented to the user until the trial ends [35]. 

2.3. Dataset description

This section provides information about each dataset, 
such as the dataset’s descriptive statistics, sample size, 
sampling frequency, and researchers who collected the 
data. A summary of the dataset information is provided 
in Table 3. For a more detailed description of each 
dataset and experimental procedure, refer to the corre-
sponding source.

The first dataset was shared by Leeuwis et al. [37]. 
The dataset collected EEG signals from 55 novice BCI 
users (36 females, 19 males, Mage = 20.71, SDage = 3.52), 
during a two-class MI task. Sixteen electrodes were 
placed according to the 10–20 international system. 

Table 2. Selection criteria employed during screening of MI-BCI datasets in this study.
Number Criterion

1 The experimental paradigm followed the standard MI paradigm in Graz protocol (see section 2.2).
2 The MI task was at least 3 sec long.
3 The dataset consisted of only healthy subjects.
4 The dataset had documented the gender for each subject.
5 EEG channels C3 and C4 were recorded.
6 The dataset is openly available.
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The sampling rate of the recorded EEG signals was 250  
Hz. A bandpass filter from 0.5 to 30 Hz was applied 
during the recording, to reduce the noise. The MI-BCI 
task was repeated in 4 runs (one calibration run without 
feedback and consequently three runs with feedback). 
Each run consisted of 40 MI trials (20 right and 20 left), 
with a random order of right-hand or left-hand MI. 
Feedback was based on online classification from 
Common Spatial Patterns (CSP) + Linear Discriminant 
Analysis (LDA) that was recalibrated between every run.

The second dataset was made available on 
GigaScience by Lee et al. [12]. The dataset consists 
of EEG data from 54 subjects, among them 38 were 
novice users (23 females, 31 males, Mage = 24.24, 
SDage = 3.01). The EEG signals were recorded from 
62 electrodes, placed following the international 10– 
20 system. The sampling rate was set to 1000 Hz. This 
dataset contains signals from three different 

paradigms. According to the selection criteria, only 
trials from MI-BCI sessions were considered for this 
research, which led to a total of 50 right-hand and 50 
left-hand MI trials per subject. Subjects did not 
receive any feedback during these trials.

The third dataset also came from the open repository 
GigaScience and was created by Cho et al. [38]. For this 
dataset, 52 subjects took part in the experiment of whom 
5 had BCI experience before (19 females, 33 males, 
Mage = 24.8, SDage = 3.86). The EEG signals were 
recorded from 62 electrodes, placed according to the 
international 10–10 system, at a sampling rate of 512  
Hz. For each subject, there were 4 or 6 runs of 40 trials 
combining both tasks (left-hand vs. right-hand). 
Subjects did not receive any feedback during these trials.

The fourth dataset was shared on Zenodo by 
Dreyer et al. [39]. It consists of EEG signals from 
87 novice participants (45 females, 42 males, Mage =  

Figure 1. An illustration of the motor imagery BCI task according to the Graz protocol as employed in Leeuwis et al. [35]. Each trial lasts 
8 sec, starting with a fixation cross in the center of the screen, followed by an arrow-shaped cue that guides the MI task. A right- 
pointed arrow signals the subject to imagine a right-hand movement (Right MI) and a left-pointed arrow signals the imagination of 
a left-hand movement (Left MI). In the first run, subjects do not receive any feedback or sham feedback only, and the collected data is 
used for calibration of the BCI system. In the following runs, subjects receive feedback in the form of a horizontal bar that extends to 
the right or left depending on the classifier output. Subjects should continue imagination of the movement until the fixation cross and 
feedback disappear.

Table 3. An overview of the datasets included in the current study.
Dataset Source Sample size (female, male) Number of trials per subject Sampling rate

1 Leeuwis et al. [35] 55 (36 f, 19 m) 160 250 Hz
2 Lee et al. [12] 54 (23 f, 31 m) 100 1000 Hz
3 Cho et al. [36] 52 (19 f, 33 m) 160 or 240 512 Hz
4 Dreyer et al. [37] 87 (45 f, 42 m) 240 512 Hz
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28.22, SDage = 9.06) who participated in three differ-
ent experiments with the same MI-BCI protocol 
[31,40]. The signals were recorded from 27 electro-
des, placed around motor and somatosensory cor-
tices according to the international 10–20 system. 
The signals were recorded at a sampling rate of 
512 Hz. Each participant conducted 40 trials (20 left- 
hand and 20 right-hand MI) per run in a total of 6 
runs, i.e. a total of 240 trials. The first two runs were 
calibration runs where the subject received sham 
feedback. Consequently, a CSP+LDA classifier was 
trained on this data and provided online classifica-
tion in the following 4 runs. Notably, only positive 
feedback was shown.

The above four datasets were combined into one 
large dataset, composed of 248 subjects (123 females, 
125 males, Mage = 24.39). To date, this makes it the 
largest dataset used to study the relationship between 
gender and BCI control. The following section 
describes the preprocessing and analysis steps 
applied to this large dataset.

2.4. Data processing and analysis

All data analysis including signal preprocessing, spectral 
analysis, and statistical testing were performed in 
Python 3 (version 3.9.12), using NumPy (version 
1.22.3), Pandas (version 1.3.4), SciPy (version 1.7.1) 
and MNE (version 0.24.1) libraries. A pipeline was 
created as a guideline to be followed during the data 
processing and data analysis (see Figure 2). The pipeline 
was based on the methodology presented by Alimardani 
& Gherman [6] and details all stages and steps required 
for the computation of Mu Suppression Indices from 
the combined dataset.

The pipeline outlined the creation of a Python script 
used to perform all processing steps. Due to the combi-
nation of multiple datasets, all data was converted into 
MNE-raw objects respecting the different loading meth-
ods depending on the data format. The first preproces-
sing step was to resample all EEG recordings to 
a frequency of 250 Hz. Additionally, a 4th order IIR 
Butterworth filter was applied to bandpass filter the 
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Figure 2. Data processing pipeline. All EEG signals were resampled at 250Hz and bandpass filtered to the mu band (8–13 Hz). The 
filtered signals from C3 and C4 were selected and segmented into MI task (3 sec) and resting state (ٍRest: 2 sec) per each trial. Next, the 
power spectral density (PSD) in MI and Rest segments were extracted and used in the computation of Mu Suppression Indices. Finally, 
all obtained indices were averaged across corresponding trials to have one value per index per subject. The values were then 
compared between gender groups (females vs. males) using independent t-tests.
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signals within 8–13 Hz, and then EEG channels C3 and 
C4 were selected to compute the changes of the mu 
band oscillations in the sensorimotor cortex.

Next, the data was segmented to extract the windows 
of interest from the signals. The EEG recordings had 
four markers indicating the start of trials, the end of 
trials, the time at which the arrow cue was presented, 
and the MI class that the trial corresponded to (i.e. left 
or right). This allowed segmentation of the time series 
into individual trials and consequently segmentation of 
trials into resting state (Rest) and motor imagery (MI) 
epochs. The MI window was selected as the 3 seconds 
after the appearance of the arrow, and the Rest window 
was considered the first 2 sec from the start of a trial. 
The length of windows was chosen based on the avail-
able timeframe in all datasets.

To compute the Mu Suppression Index, it was neces-
sary to extract the power spectral density (PSD). The 
PSD values were extracted from every window of every 
trial using the SciPy.signal.spectrogram function. 
Consequently, Equation 1 was used to calculate ERD/ 
ERS (mu suppression) per each trial using the average 
power in the mu band during the resting state and 
motor imagery windows [3,6].  

The mu suppression pattern following the MI task 
depends on the MI class, where it is prominently obser-
vable in the hemisphere contralateral to the imagined 
movement. To distinguish between the left and right MI 
trials, we looked at the lateralization of mu suppression 
for each class. That is, we extracted the above ERD/ERS 
from both C3 and C4 channels and subtracted their 
values to obtain a lateralization index for mu suppres-
sion. Two different formulas were used to calculate the 
Mu Suppression Index specific to each MI task 
(Equation 2 and 3). The goal of the Mu Suppression 
Index is to compare the mu band power drop (negative 
values) in the ipsilateral hemisphere as opposed to the 
contralateral one. Since this drop is expected to be 
stronger in the hemisphere contralateral to the MI 
task, the index defined by Equations 2 and 3 yields 
mostly positive values. Additionally, the larger this posi-
tive value, the better the subject could generate distin-
guishable MI patterns [6].  

For all Left-hand and Right-hand MI trials, the Mu 
Suppression Index was obtained, and the values were 
averaged across runs, in order to get one Mu 
Suppression Index per class for every subject. 
Additionally, to acquire one index reflecting subjects’ 
MI performance regardless of the imagined hand, an 
Overall Mu Suppression Index (Equation 4) was gener-
ated by summing the Left- and Right-hand MI Mu 
Suppression Indices [6].  

Finally, the subjects were divided into two groups: 
Female (n = 123) and Male (n = 125), and their ERD/ 
ERS values as well as Mu Suppression Indices were 
compared using independent t-tests. To perform 
a parametric independent t-test, the dataset needs to 
fulfill certain assumptions. However, this study has 
more than 30 samples per group, for which the central 
limit theorem (CLT) states that the assumptions can be 
dismissed [43,44].

3. Results

In this section, the findings obtained through statistical 
analysis are discussed. The statistical analysis consisted 
of independent samples t-tests comparing the ERD/ERS 
values, Right-hand MI Mu Suppression Index, left-hand 
MI Mu Suppression Index, and the Overall Mu 
Suppression Index between gender groups. As specified 
in the Methods section, Mu Suppression Indices indi-
cate the lateralization of the ERD/ERS values between 
the two brain hemispheres and are used by this study to 
define a subject’s ability to perform the MI task.

3.1. ERD/ERS

Figure 3 presents the ERD/ERS values associated with 
right-hand MI trials (measured at EEG channel C3) and 
left-hand MI trials (measured at EEG channel C4) for 
Female and Male groups. The more negative the ERD/ 
ERS values, the higher the event-related desynchronization 
caused by the MI task. Levene’s test confirmed the homo-
geneity of variances between groups for both RH-MI trials 
(p = .65) and LH-MI trials (p = .83). Therefore, indepen-
dent t-tests were conducted with the assumption of equal 
variances. The results yielded no significant effect for gen-
der when subjects performed right-hand MI as can be seen 
in Figure 3(a) (Female: M = −0.29, SD = 0.22, Male: 
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M = −0.30, SD = 0.22, t(245) = 0.35, p = .72) nor did it 
when they performed left-hand MI trials (see Figure 3(b), 
Female: M = −0.28, SD = 0.23, Male: M = −0.29, SD = 0.25, 
t(245) = 0.54, p = .59).

3.2. Mu Suppression Indices

The Mu Suppression Indices for Right-hand MI, 
Left-hand MI, and both hands (Overall Index) are 
illustrated in Figure 4 for both gender groups. In 
contrast to the ERD/ERS values, Mu Suppression 
Indices are mostly positive because of the way they 
were defined in Equations 2, 3, and 4. Three inde-
pendent t-tests were performed to examine whether 
the difference in Mu Suppression Indices between 
Female and Male groups was significant. 
Homogeneity of variances was confirmed in all 

cases using the Levene’s test (LH-MI: 
p = .35, RH-MI: p = .66, Overall MI: p = .48). Thus, 
independent t-tests were conducted with the 
assumption of equal variances. The tests revealed 
no significant effect of gender on the Left-hand MI 
Mu Suppression Index (Female: M = 0.04, SD = 0.16, 
Male: M = 0.06, SD = 0.14, t(246) = 0.99, p = .32), nor 
did it when comparing Right-hand MI Mu 
Suppression Index between the two groups (Female: 
M = 0.05, SD = 0.17, Male: M = 0.06, SD = 0.14, t 
(246) = 0.45, p = .65). Similar outcome was obtained 
for the Overall Mu Suppression Index (Female: M =  
0.08, SD = 0.22, Male: M = 0.12, SD = 0.20, t(246) =  
1.32, p = .19), indicating that the null hypothesis 
cannot be rejected, hence, the lateralization of 
ERD/ERS values during the MI task was not statis-
tically different between the two genders.

Figure 3. ERD/ERS values calculated based on Equation 1 for both Female and Male groups at (a) EEG channel C3 representing mu 
suppression values for right-hand MI tasks, and (b) EEG channel C4 representing the values associated with left-hand MI tasks.

Figure 4. Mu Suppression Indices in Female and Male groups for (a) Left-hand MI, (b) Right-hand MI and (c) both hands.
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4. Discussion

This research aimed to investigate the impact of users’ 
gender on their mu rhythm modulation during motor 
imagery BCI interaction. By combining four MI-BCI 
datasets, we gathered EEG signals from 248 subjects 
(123 females and 125 males) who performed a right- 
vs. left-hand motor imagery task according to the stan-
dard Graz protocol. Following past research, ERD/ERS 
values indicating mu suppression in the contralateral 
hemisphere [3] as well as the hemispheric lateralization 
of ERD/ERS obtained by the Mu Suppression Indices 
[6] were calculated per subject and compared between 
gender groups during motor imagery of the left hand, 
right hand, and both hands. The results showed no 
significant differences in ERD/ERS values nor Mu 
Suppression Indices between female and male users in 
none of the MI tasks, providing evidence that gender 
has no impact on the user’s ability to modulate mu 
rhythm activity during MI-BCI control.

The outcome of the current study is contradictory to 
the results of Alimardani & Gherman [6] and Randolph 
(2102), who reported an advantage for females in pro-
ducing mu suppression patterns when performing the 
motor imagery task. However, it resonates well with the 
reports of other studies (e.g., [13,15,27,,]) that did not 
find gender influence on MI-BCI control. Indeed, this 
study embarked on the collection and analysis of an 
extremely large dataset to address these inconsistencies 
that existed in previous reports with respect to the 
impact of gender in MI-BCIs. A sufficiently large sample 
size allows the isolation of the gender effect, even in the 
presence of other factors that have been identified as 
potential contributors to the MI-BCI performane and 
BCI inefficiency problem (see Table 1). Thus, the results 
of the current study can be deemed more reliable as the 
limitations of past research such as small sample size 
and an unequal gender distribution in the dataset were 
addressed.

The existence of a gender difference in brain anat-
omy, neurophysiology, and cognition has been con-
siderably debated and studied in the past. According 
to a mini review by [41], the reported differences 
between sex/gender groups are not compelling enough 
to support a clear classification of ‘female brains’ vs. 
‘male brains’. Similarly, [42] state that although some 
anatomical and functional features occur statistically 
more often in females and some features are typical of 
males, these features often overlap far too much, mak-
ing the impact of gender irrelevant. During the motor 
imagery task for BCI control, there are various indivi-
dual factors (e.g., age, sports experience, etc.) as well 
as psychological (e.g., attention, motivation, etc.) and 

cognitive factors (e.g., visuospatial memory, etc.) that 
could influence a person’s ability to modulate mu 
band oscillations [8,17,23]. When the recruited sample 
consists of a modest number of participants, the 
impact of one or more of these factors might prevail 
in one gender group, resulting in a significantly higher 
BCI performance for that group. However, our results 
confirm that when the sample is large enough to 
include a diverse population, the effect of gender on 
MI-based mu suppression no longer holds.

To compare gender groups, the current study only 
employed mu suppression values and indices obtained 
from two EEG electrode locations (i.e., C3 and C4) as 
indicators of motor imagery task performance following 
previous literature [3,6,35]. This choice was made mainly 
due to the existing inconsistencies across available data-
sets, namely, the differences in the EEG recording con-
figuration and the number of available trials per 
individual. Moreover, it has been shown that neurophy-
siological analysis of motor related EEG patterns is 
a better metric of MI-BCI users’ skills, contrary to classi-
fication accuracy which reflects a mix of users’ skills and 
machine learning classifiers’ abilities [45]. However, it is 
likely that for some subjects, the modulation patterns 
associated with the motor imagery task were reflected in 
other brain areas or frequency bands. Future research can 
expand this work by establishing offline BCI classifiers 
that recruit subject-specific spectral and spatial filters and 
compare BCI classification accuracy between gender 
groups [32]. This requires a higher level of homogeneity 
across selected datasets for instance similar EEG electrode 
placement over sensorimotor area as well as an equal 
number of MI trials per subject.

While the outcome of this study does not support the 
effect of participants’ gender on mu rhythm modulation 
during motor imagery task execution, gender remains 
a relevant factor in future MI-BCI training protocols. 
Previously, Pillette et al. [32] reported that the interac-
tion between experimenters’ and participants’ genders 
could influence user experience as well as their perfor-
mance across motor imagery BCI trials. They observed 
that women experimenters could positively influence 
the progress of subjects on the task. Another neurofeed-
back study by Wood and Kober [46] reported the 
reverse effect where female participants trained by 
female experimenters showed lower training outcomes 
compared to male participants. These contradictory 
findings demonstrate the complex relationship between 
gender and BCI skill development which deserves future 
investigation. Particularly in the current work, the gen-
der of experimenters was not specified by all datasets 
and hence should be considered as a limitation when 
interpreting the results.
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A practical implication of this study is in the 
design of subject-specific training protocols for MI- 
BCIs. Cantillo-Negrete et al. [31] argued that gender 
could be an important factor in developing subject- 
independent BCI classifiers. Using data from 32 par-
ticipants, they showed that a gender-specific motor 
imagery BCI could achieve a better performance than 
a gender-nonspecific one. However, our results and 
that of Pillette et al. [32] suggest that the impact of 
gender on motor imagery performance might be 
more psychosocial than physiological, hence, the 
effect of such contextual factors that interact with 
the user’s gender, personality, and psychological 
states should be considered more earnestly in the 
design of future MI-BCI training schemes [47]. For 
instance, the delivery of instructions for the MI task 
could be adaptive to the user needs depending on 
their level of autonomy and preference for external 
or internal guidance [14,23], or the feedback accu-
racy and visual design during the BCI interaction 
could be manipulated for each user to optimize 
their experience and ultimately improve their learn-
ing gain [21,31,48,49]. Alternatively, while our study 
suggested no relationship between gender and sen-
sorimotor activity during MI-BCI use, it could be 
that there is such a relationship with other EEG 
patterns, e.g., in frequency bands other than mu or 
electrodes other than C3 and C4, as discussed before. 
If that is the case, then gender-specific classifiers 
could still be useful, to exploit non-SMR-based dif-
ferences between genders. That would be an interest-
ing research question to investigate in the future.

Another approach to tackle performance variation 
among BCI users is to employ data-driven methods 
for the development of better predictive models that 
identify user-specific EEG patterns associated with the 
MI task rather than considering mu rhythm modulation 
as a one-fits-all solution. When comparing low and 
high-aptitude BCI performers, it was found that other 
neural metrics such as intra-brain connectivity may 
differ between the two groups [19], and that end-to- 
end deep learning methods have an advantage over 
more traditional (and shallow) machine learning algo-
rithms in extracting subject-specific EEG patterns, thus 
improving the performance of inefficient users [50]. 
These findings are aligned with the report of Benaroch 
et al. [40] who also showed that user-specific frequency 
band characteristics can predict a person’s BCI perfor-
mance and that to improve BCI classification accuracy 
in machine learning pipelines, researchers should con-
sider feature selection steps based on neurophysiological 
prior of the user.

Finally, this study provides a basis for future BCI 
research by promoting open science and data sharing 
practices. EEG data collection for BCI experiments is 
costly, thus oftentimes the research teams report their 
findings with a modest number of participants. In 
order to increase the replicability and validity of find-
ings, BCI researchers are encouraged to make their 
data openly accessible to other researchers [51]. 
A challenge we faced during dataset screening for 
this study was the lack of compatibility between MI 
protocols and data quality in open datasets, as well as 
missing demographic information such as gender. 
Future studies should consider a standardization of 
data collection, curation, and sharing practices for the 
development of a large reference dataset that could be 
widely used when investigating inter-subject variabil-
ity in BCI research.

5. Conclusion

The current study aimed to answer whether gender is an 
influential factor in determining a user’s performance 
on motor imagery BCIs. By combining four EEG data-
sets, we compared mu rhythm suppression patterns 
between two groups of females (n = 123) and males 
(n = 125) when they performed a right- vs. left-hand 
MI task following the Graz protocol. Unlike some pre-
vious studies that found an advantage for females in 
performing the motor imagery task, we found no evi-
dence of such a gender effect on a person’s ability to 
modulate mu band activity during MI-BCI interaction. 
This leads to the conclusion that a user’s gender alone is 
not a contributing factor to the BCI inefficiency pro-
blem. However, more research is required to gain 
insights into the psychosocial dimensions of gender 
and how that influences an individual’s interaction 
with the BCI training environment and experimenters.
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