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Abstract

Although categorization can take place at different levels of abstraction, classic studies on semantic

labeling identified the basic level, for example, dog, as entry point for categorization. Ultrarapid

categorization tasks have contradicted these findings, indicating that participants are faster at

detecting superordinate-level information, for example, animal, in a complex visual image. We

argue that both seemingly contradictive findings can be reconciled within the framework of parallel

distributed processing and its successor Leabra (Local, Error-driven and Associative, Biologically

Realistic Algorithm). The current study aimed at verifying this prediction in an ultrarapid

categorization task with a dynamically changing presentation time (PT) for each briefly

presented object, followed by a perceptual mask. Furthermore, we manipulated two defining

task variables: level of categorization (basic vs. superordinate categorization) and object

presentation mode (object-in-isolation vs. object-in-context). In contradiction with previous

ultrarapid categorization research, focusing on reaction time, we used accuracy as our main

dependent variable. Results indicated a consistent superordinate processing advantage,

coinciding with an overall improvement in performance with longer PT and a significantly more

accurate detection of objects in isolation, compared with objects in context, at lower stimulus PT.

This contextual disadvantage disappeared when PT increased, indicating that figure-ground

separation with recurrent processing is vital for meaningful contextual processing to occur.
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Introduction

To understand our visual surroundings, we need to be able to categorize the complex visual
input as efficiently as possible. A semantic category can be defined as a group of two or more
objects with different attributes, properties, or qualities, which are treated similarly with
regard to their meaning. Within the hierarchical organization of semantic information,
categorization can take place at different levels of abstraction (Rosch, Mervis, Gray,
Johnson, & Boyes-Braem, 1976). The same object or scene can be categorized at a more
general, superordinate level and at a less general, basic level of abstraction. Rosch et al.
(1976) defined the basic object level as the level of categorization at which the categories
can mirror the structure of attributes perceived in the world by sharing a common shape.

Basic Versus Superordinate Advantage

In this classic study by Rosch et al. (1976), the basic level was identified as entry point for
visual information and categorization (e.g., ‘‘dog’’ rather than ‘‘animal’’ or ‘‘golden
retriever’’) in a free naming task. If participants were allowed to use this level, they
responded faster compared with when they used the superordinate-level categorization
(Mervis & Rosch, 1981). This led to the belief that we can only label an object at a
superordinate level, for example, animal, if we already know it at a basic level, for
example, dog (Jolicoeur, Gluck, & Kosslyn, 1984). This idea was based on the theory that
object processing occurs in a hierarchical system where the entry point or gateway was
defined at the basic object level. If true, a basic-level categorization advantage should
occur in every experimental design. Importantly, all experiments claiming this initial basic-
level advantage used conscious (verbal) semantic labeling tasks without any time constraints
(Macé, Joubert, Nespoulous, & Fabre-Thorpe, 2009; Vanmarcke & Wagemans, 2015). More
recent evidence suggests, however, that learning the superordinate level does not necessarily
involve basic object level knowledge. Mandler and McDonough (1993, 1998, 2000) used
imitation techniques to show that very young children, when they did not label but
interacted with objects to imitate a story, clearly understood and manipulated the world
on a superordinate level. Even infants between 9 and 14 months old seemed to grasp
superordinate concepts like animals and vehicles. This convinced the authors that the
building of a conceptual system starts at a superordinate level and that children only learn
to differentiate between objects on a basic level in a later stage. For example, children first
learn that animals need to drink water, whereas inanimate objects do not. Later on, they
learn to link the conceptual knowledge of ‘‘barking’’ to dogs. This does not mean however
that children or infants do not see the difference between the objects at a basic level. When
infants imitated a story and had to choose between different animals, they preferred the same
animal as in the example shown by the experimenter. Nonetheless, children seemed to build
their semantic knowledge based on a more abstract level (Mandler & McDonough, 2000). So,
even before they started to use language, infants categorized on the superordinate level
without clustering different basic levels together. Such a learning process seems to
undermine the idea that the superordinate level is purely an abstraction of the basic level.

Interestingly, ultrarapid go/no-go categorization tasks (Macé et al., 2009; Thorpe, Fize, &
Marlot, 1996; Wu, Crouzet, Thorpe, & Fabre-Thorpe, 2015) showed that the basic object
level is not necessarily the semantic information activated fastest during visual processing. In
such ultrarapid go/no-go categorization, a naturalistic image is briefly (20ms) presented and
participants are asked to indicate whether a predefined basic (e.g., dog) or superordinate
(e.g., animal) object class is present in the display. Research indicated that people were able to
do this nearly perfectly (Thorpe et al., 1996) and that participants were consistently faster
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at detecting an object at the superordinate level, in comparison with detecting an object at the
basic level (Macé et al., 2009; Prab, Grimsen, König, & Fahle, 2014). Similar observations
(e.g., Kadar & Ben-Shahar, 2012; Rousselet, Joubert, & Fabre-Thorpe, 2005) were made for
scene gist categorization in which participants have to judge the broad semantic category of
the presented scene picture (e.g., ‘‘forest’’ or ‘‘desert’’): People were faster at distinguishing
natural or manmade (superordinate scene level) than sea or mountain (basic scene level).
These findings were further supported by the observation that participants, when choosing
between a target and a distracter image by making a saccade toward the target, needed more
information when making an eye movement toward a basic object level (Wu et al., 2015).
This would suggest that the visual system rapidly accesses coarse level more abstract
representations of an object or scene first, before activating more fine-grained
representations corresponding to a smaller category. This consistent behavioral effect in
ultrarapid categorization tasks is denoted as the superordinate advantage and seems
robust for increased presentation time (PT) of the stimuli (Poncet & Fabre-Thorpe, 2014).
Furthermore, recent findings suggest that this perceptual categorization of rapidly presented
information is also influenced by the chosen experimental trial context (Mack & Palmeri,
2015; Palmeri & Mack, 2015). Specifically, the superordinate advantage disappeared when a
randomized target category design was used, in which superordinate- or basic-level
categorization always changed after a few consecutive trials (e.g., maximum of four
repetitions). This would suggest that the dynamics of object categorization is flexible and
requires a blocked trial design, focusing specifically on either superordinate- or basic-level
categories over a long series of trials, in order to observe a superordinate processing
advantage in ultrarapid categorization. The current study aimed to replicate and extend
these previous findings on semantic categorization by systematically manipulating the
time-dependent task properties of ultrarapid categorization, within a blocked experimental
trial design, and by providing an overarching theoretical framework which includes time
course and task dependency.

Theoretical Framework

McClelland and Rogers (2003) were the first to apply the parallel distributed processing
(PDP) framework to hierarchical semantic categorization. In this framework, semantic
processing uses the propagation of activation among simple neuron-like processing units,
forming a bottom-up processing network. Initially, the connection weights between the
processing units within this neural network remain uninformative. During the learning
process, the weights change slowly, gradually reducing errors, and becoming informative
about how the activation of units in one level of representation determines the activation
at another level of representation (McClelland & Rogers, 2003; Rogers & McClelland, 2004).
Later, Leabra (Local, Error-driven and Associative, Biologically Realistic Algorithm), the
successor of PDP, incorporated more biologically realistic mechanisms (Aisa, Mingus, &
O’Reilly, 2008). This led to the development of LVis (Leabra Vision; Wyatte,
Herd, Mingus, & O’Reilly, 2012). This computational model of visual processing is
capable of identifying stand-alone objects and labeling them at the basic object level
(O’Reilly, Wyatte, Herd, Mingus, & Jilk, 2013). Other neural network simulations with
Leabra demonstrated the critical role inhibition plays in lexical selection (Snyder et al.,
2010) . In contradiction to strictly bottom-up models of object recognition, the LVis
model uses recurrent processing as a key feature to correctly identify partially occluded
objects (Wyatte et al., 2012). More precisely, the neural interconnectivity within- and
between-brain regions helps to create a stable and clear representation of an ill-visible
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object by allowing high-level visual brain areas to shape the neural activation and predictions
of low-level visual areas through inhibitory and excitatory recurrent connections (O’Reilly
et al., 2013). Recurrent processing also plays an important role in figure-ground segmentation
(Lamme, Zipser, & Spekreijse, 2002), border ownership, and subjective surface perception
(Kogo & Wagemans, 2013a, 2013b). The neural activation from the low-level visual areas
needs to be linked to one distinct lexical category. In ultrarapid categorization tasks, the label
of the object is predefined, allowing top-down biasing of the relevant visual features. This
facilitates the predefined categorization decisions, resulting in a top-down bias favoring
superordinate categorization (Bar, 2004; De Cesarei, Peverato, Mastria, & Codispoti,
2015) and translating into the observed superordinate advantage in the ultrarapid
categorization literature (e.g., Rogers & Patterson, 2007; Vanmarcke & Wagemans, 2015).
However, the PDP theory (Rogers & McClelland, 2004; Wyatte et al., 2012) also proposed
that, after initial activation, similarity-based generalization implies strong generalization
within basic categories but weak generalization between them. In this way, similarity-
based generalization promotes rapid and active learning of basic-level names. For instance,
the name ‘‘dog’’ tends to generalize strongly to items with similar representations, such as
other dogs, but not to items with more distal representations, such as other kinds of animals.
Because superordinate category learning benefits more slowly from this similarity-based
generalization in comparison to basic-level information, this superordinate advantage can
turn into a basic-level advantage over time when the task requires an active, conscious
labeling of different semantic categories. This dynamic network characteristic is in
agreement with the finding that people are faster to confidently name and verify category
membership verbally at the basic level when no time constraints are in place (Rosch et al.,
1976). The same reasoning applies with regard to the influence of the experimental trial
context on flexibly categorizing semantic information at different levels of abstraction
(Mack & Palmeri, 2015).

Time-Dependent Task Properties of Ultrarapid Categorization

In the current study, we use the theory summarized earlier to formulate specific experimental
predictions for behavioral processing in masked ultrarapid basic- and superordinate-level
categorization in a blocked experimental trial design. In contradiction with previous
ultrarapid categorization research, focusing on differences in participant reaction times, the
current study used accuracy as its main dependent variable. More precisely, we estimated the
best-fitting sigmoid function (Weibull distribution) per participant by using maximum
likelihood parameter estimation (psychometric performance curve) for categorization
performance by dynamically changing stimulus PT (ranging from 16 to 80ms). After
stimulus presentations, a perceptual mask was shown in order to explicitly control for the
influence of the top-down biasing of the relevant visual features during categorization
(Fahrenfort, Scholte, & Lamme, 2007). This was done in an ultrarapid categorization task
in which we varied two defining task variables: (a) level of categorization (basic vs.
superordinate categorization) and (b) object presentation mode (object-in-isolation vs.
object-in-context).

Hypothesis 1: Basic versus superordinate advantage in ultrarapid categorization.

Longer PT of the ultrarapid categorization task without perceptual masking did not reverse
the superordinate advantage in a blocked experimental trial context (Poncet & Fabre-
Thorpe, 2014). However, previous psychophysical studies showed that masking the
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stimulus presentation allowed to dissociate between the bottom-up and top-down (recurrent)
components of the neural response (for review, see Breitmeyer & Ogmen, 2006; Enns & Di
Lollo, 2000). Previous research on ultrarapid categorization suggested that significant top-
down modulation should be possible after a stimulus presentation of 40 to 60ms (Roland,
2010; Serre, Oliva, & Poggio, 2007). To investigate the possible influence of both bottom-up
and top-down categorization processes on the behavioral performance in a masked and
predefined ultrarapid categorization task, we dynamically manipulated the stimulus PT
within a range of 16 to 80ms. Based on the PDP theory and Leabra models (O’Reilly
et al., 2013), and in accordance with previous research on the time course of object
categorization with a blocked trial design (Mack & Palmeri, 2015), we predicted
participants to show a consistent superordinate accuracy advantage across all PT
(Hypothesis 1). This hypothesis followed from the unambiguously predefined search goal
in ultrarapid categorization, which would allow the top-down biasing of the relevant visual
features for coarse (superordinate vs. basic) scene categorization (Bar, 2004; De Cesarei et al.,
2015).

Hypothesis 2: Influence of object presentation mode on ultrarapid object detection.

Objects can either be presented in isolation or can be embedded within a meaningful scene
context. Previous research indicated that such contextual information can facilitate object
identification compared with incongruent background information (Rémy et al., 2013). More
precisely, when objects are embedded in a familiar context, for example, a plane in the sky,
object recognition is both faster and more accurate than when objects are presented in an
incongruent context in which they are less likely to appear, for example, a bed in a forest
(Fize, Cauchoix, & Fabre-Thorpe, 2011; Joubert, Fize, Rousselet, & Fabre-Thorpe, 2008).
Similar findings were observed in an ultrarapid categorization paradigm without perceptual
masking (Crouzet, Joubert, Thorpe, & Fabre-Thorpe, 2012). This direct influence of context
on object recognition might be related to the lifelong experience of the visual system with our
visual surrounding world and its efficiency at extracting visual regularities (Davenport, 2007;
Rémy et al., 2013). Furthermore, electroencephalography research showed that masking
stimuli interrupts figure-ground segmentation by interrupting recurrent (top-down)
processing (Fahrenfort et al., 2007). In the current study, we were therefore interested
whether object-congruent background information could speed up categorization before
figure-ground segmentation was completed. More concretely, we were interested in how
the time course of masked ultrarapid object categorization would influence the
discrimination accuracy of objects, either presented in isolation or embedded within a
meaningful everyday scene. Based on the Leabra theory (O’Reilly et al., 2013), we
predicted that participant performance would only be influenced by the object-congruent
context when longer PT in perceptually masked rapid categorization allowed top-down
processing to affect response speed (Hypothesis 2). This hypothesis was based on the
expected impact of meaningful contextual information on object detection, resulting from
the inherent influence of relevant global scene statistics diagnostic for object categorization
on the identification of salient objects (Bar, 2004; De Cesarei et al., 2015).

Materials and Methods

Participants

A group of 140 participants (20 men and 120 women) was tested, with a median age of 18
(SD¼ 3.57; [min, max] age¼ [17, 43]; interquartile range [IQR]¼ 1). All participants were
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first-year psychology students at the University of Leuven (KU Leuven). They received
course credits for participation. Participants who did not follow the task instructions or
did not complete the task as requested were deleted from the data set before onset of the
actual analysis. The final participant set therefore contained exactly 136 participants (20 men
and 116 women), with a median age of 18 (SD¼ 1.66; [min, max] years old¼ [17, 29];
IQR¼ 1). The study was conducted in line with the ethical principles regarding research
with human participants as specified in The Code of Ethics of the World Medical
Association (Declaration of Helsinki). The study was approved by the Ethical Committee
of the Faculty of Psychology and Educational Sciences (EC FPPW) of the University of
Leuven (KU Leuven), and the participants provided written informed consent before starting
the experiment.

Computer Task

This section provides an overview of the ultrarapid categorization task completed by all
participants. Participants were asked to take a comfortable position before the computer
screen (at about 57 cm of the computer display) and placed both hands on the keyboard
(spacebar) in front of the computer monitor (resolution: 1920� 1080; refresh rate: 60Hz;
type: DellP2211H). The experiment was conducted using the open-source software library
PsychoPy, which is written in Python (Peirce, 2008).

Design. The ultrarapid categorization task (Figure 1) took about 30 minutes, and all
instructions were projected on the computer screen. Every trial started with a fixation
cross (300ms). Then the stimulus was presented for a variable duration (see later). After
the stimulus presentation, a perceptual mask was shown (350ms). The mask was computed
by dividing each image into pixel-squares (2 by 2 pixels per square) and then randomly
scrambling these stimulus elements (per image). Such a scrambled version was created for
each stimulus in the object-in-context condition, as exemplified in Figure 2(b). To avoid

Figure 1. A graphical overview of the trial design of the ultrarapid categorization task.
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a strong influence of the gray image background in the object-in-isolation condition masks,
we first imposed a diagonal black-white watermark (50% transparency) before scrambling
the images. This is exemplified in Figure 3(a). Importantly, rigorous pilot testing on an
independent sample of naı̈ve participants, several weeks before the main experiment,
indicated that these masks, in both conditions, made it impossible (chance-level
performance) to correctly categorize the stimuli when the PT was 16ms (or less) and
stimulus presentation was masked (chance-level performance). Furthermore, in the main
experiment, the stimulus PT in the ultrarapid categorization task depended on subject
performance. Performance was calculated every 10 stimuli and PT decreased (or increased)
with performance above (or below) 75% with 16ms. The experiment started with two
alternating PT: one initialized at 16ms, a second at 80ms. Subjects who did not reach
75% performance at a PT of 80ms during the entire task were assumed to be inattentive
or not understanding the task. Their results were discarded before the actual data analysis
began. In general, information on the following stimulus PT was collected: 16, 32, 48, 64, and
80ms. Subjects had a 1000-ms response window and when the target was not presented, the

Figure 2. A general overview of the type of images used within the ultrarapid categorization task for both

the (a) object-in-isolation and the (b) object-in-context condition. The complete picture set is made available

online on http://www.gestaltrevision.be/en/resources/supplementary-material/76-resources/supplementary-

material/826
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subject had to wait until the trial ended. After the response, a new trial started about 200ms
later. In the practice trials, visual feedback was given. The word ‘‘correct’’ flashed in green
when a correct answer was given. When the answer was incorrect, the word ‘‘wrong’’ flashed
in red. Practice trials ended after six correct answers, and PT during these trials was always
80ms. Analysis indicated that all subjects (except those discarded due to inattentiveness) had
a high performance in the practice trials, indicating that the task was well understood. The
practice trials were followed by two test sessions of 10 minutes, one test session on basic and
one on superordinate object level. Between the test sessions, a break of 1 minute was given.
After the task, a short debriefing followed and participants were randomly divided into
different conditions.

Stimuli. Every participant was randomly assigned to one of two conditions (Figure 2). In the
object-in-isolation condition, stand-alone objects with a gray background were used, while in
the object-in-context condition, the object was embedded in a scene. For the object-in-
isolation condition, we used 480 gray-scaled images (320� 214 pixels) from the CU3D-100
dataset (O’Reilly et al., 2013). The object could be everywhere in the image but was always in
the foreground and fully visible. In both the superordinate and the basic-level test session of
the object-in-isolation condition, the stimuli were randomly chosen from this set of 480 gray-
scaled pictures: 50% of the selected stimuli were used as targets, 50% were used as
nontargets. Every stimulus was shown only once or twice. In line with previous research
(e.g., Macé et al., 2009; Prab et al., 2014), targets and nontargets of the same level of
categorization were used in each stimulus category: at superordinate- and basic-level object

Figure 3. (a) To avoid a strong influence of the gray image background in the object-in-isolation condition

masks, we first imposed a diagonal black-white watermark (50% transparency) before scrambling the images.

(b) The first panel exemplifies one of the stimuli (e.g., a chair) used in the object-in-context condition, and the

second panel shows the mask as it was made in the main experiment. The third and last panels show how the

perceptual mask was constructed in the control experiment, using a black-white watermark (50%

transparency), similar to the perceptual mask in the object-in-isolation condition of the main experiment.
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categorization. To make this more explicit: (a) in the furniture (vehicle) category, vehicle
(furniture) stimuli were used as nontargets and (b) in the bed (chair or plane or dog) category,
chair, plane, and dog (bed), stimuli were used as nontargets. In each of the different image
categories, a wide variety of possible scenes were selected. For the object-in-context
condition, a total set of 480 gray-scaled images (320� 214 pixels) were used for this task.
These scenes were selected (by unanimous consensus between several lab members including
the first two authors) on the Internet and taken with a 1NIKKOR camera. The same
principles as in the objects-in-isolation condition were used to create the sets of target and
nontarget stimuli. To avoid low-level confounds eliciting behavioral differences between
stimulus categories and conditions (Wichmann, Braun, & Gegenfurtner, 2006), each of the
selected images was set to the same global luminance and root mean square contrast
(corresponding to a luminance distribution, within the gray-scale spectrum, with a mean of
[110] and a standard deviation of [25.00]) by computing the average luminance and root mean
square contrast across all images. The mean luminance of the images on the screen was 10 to
20 cd/m2.

Task instructions. Every participant was randomly assigned to either the object-in-context or
the object-in-isolation condition. In each of these conditions, participants were asked to
complete one test session on superordinate level and one on basic object level
categorization (in a random order). Both types of test sessions started with an instruction
question: (a) Is there a piece of furniture in the photo? (press spacebar), (b) . . . a vehicle . . . ,
(c) . . . bed . . . , (d) . . . chair . . . (e), . . . plane . . . , or (f) . . . car . . . . Sessions 1 and 2 are at the
superordinate level, while Sessions 3, 4, 5, and 6 are at the basic ordinate level. While
Session 1 was always performed together with 3 or 4, Session 2 was always performed
together with 5 or 6. An exact overview of the number of participants (in the final sample)
in each of the possible combination of test session is provided in Appendix A. Similar to
previous findings in ultrarapid categorization (e.g., Macé et al., 2009), no between-subject
differences in performance were observed for the different detection tasks (e.g., car, plane,. . .),
for neither the object-in-isolation or the object-in-context condition, at the same basic or
superordinate level of categorization.

Mask control experiment. It might be argued that the perceptual masks used in either the object-
in-isolation (Figure 2(a)) or the object-in-context condition (Figure 2(b)) could have a
differential influence on participant performance given that they visually differed
substantially between both conditions (Figure 2(a) compared with Figure 2(b)). To test
this possible confounding variable, we conducted a control experiment on an independent
sample of 29 participants (13 men and 16 women), with a median age of 23 (SD¼ 8.51; [min,
max] age¼ [18, 31]; IQR¼ 3). These participants were asked to perform the exact same go/
no-go categorization task as in the main experiment. The only difference with the original set-
up was the mask in the object-in-context condition. This control mask was a scrambled
version of the presented image for which, similar to the object-in-isolation condition mask
of the main experiment, we imposed a diagonal black-white watermark (50% transparency)
before scrambling the images (Figure 3(b)). Furthermore, similar to the main experiment, in
the mask control experiment, participants were asked to take a comfortable position before
the computer screen (at about 57 cm of the computer display) and placed both hands on the
keyboard (spacebar) in front of the computer monitor (resolution: 1920� 1080; refresh rate:
60Hz; type: DellP2211H). Furthermore, in this control experiment, but not in the main
experiment, the head position of the participants was stabilized by means of a head and
chin rest during testing.
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Analysis

For every participant separately, the accuracy data on each test session of the ultrarapid
categorization task (consisting out of an average of 318 trials) were used to determine the
best-fitting sigmoid function (Weibull distribution) using maximum likelihood estimation for
parameter estimation (Wichmann & Hill, 2001a). This psychometric fitting was done using
the Psignifit Toolbox in MATLAB R2009a (Wichmann & Hill, 2001b), with accuracy as the
dependent variable (DV) and PT as the independent variable. This resulted in two separate
psychometric fits per participant: one for the object-in-context and one for the object-in-
isolation condition (Figure 4). The main parameters of these sigmoid functions, alpha (a) and
bèta (b), provided an overall estimation of the time-dependent categorization performance in
each test session per participant. We then used both a and b as the DVs in a mixed analysis of
variance (ANOVA) with presentation mode (object-in-context vs. object-in-isolation
condition) as a between-subjects factor and level of categorization (basic vs. superordinate)
as a within-subjects factor. Participants were regarded as a random factor. Furthermore, we
also used a and b separately as DVs in a general linear mixed modeling (GLMM) approach
(McCullagh, 1984). Furthermore, to further pinpoint possible differences in categorization
between participants, also the threshold and slope values at specific points of the individual
psychometric fits (60, 75, and 90%) were taken into account. Deviance values were calculated
for the regression models based on a maximum likelihood estimation (Aitkin, 1999) of all
DVs on the tasks. By evaluating the drop in deviance together with the Akaike (Akaike,
1973) and Bayesian Information Criterion (Schwarz, 1978) values (for overview, see
Appendix C), the final model was selected. After model selection, the individual predictive
value of each selected parameter was tested using Welch’s t test with Satterthwaite
approximation for the denominator degrees of freedom (McArdle, 1987) in the random
intercepts regression analysis. Descriptive measures (e.g., age and gender) were tested as

Figure 4. The figure provides an example of the best-fitting sigmoid functions for a single participant. In

(a) the basic level object-in-isolation (light blue bar) and object-in-context (dark blue bar) conditions are

presented, while in (b) the superordinate-level object-in-isolation (pink bar) and object-in-context (red bar)

are provided. The main parameters of these sigmoid functions, alpha (a) and bèta (b), provided an overall

estimation of the time-dependent categorization performance in each test session per participant.
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possible covariates. The mixed ANOVA analysis provided very similar results as the GLMM
approach. We therefore decided only to report the GLMM outcomes and to include all other
results in Appendix B. The outcomes of the GLMMwere obtained by using the lme4 package
(Bates, 2005) of the statistical software program R version 3.1.1 (R Core Team, 2013). The
mixed ANOVA was done using IBM SPSS (Version 22).

For the psychometric function parameter a, both presentation mode (object-in-context vs.
object-in-isolation condition) and level of categorization (basic vs. superordinate) were
regarded as fixed effects in the final model. These observations were further refined when
taking the performance of participants at specific psychometric threshold (60%, 75%, and
90%) values into account: level of categorization was a significant predictors of performance
on all specified threshold levels (60%, 75%, and 90%), but presentation mode only predicted
performance on the lower threshold levels (60% and 75%). Furthermore, for the
psychometric function parameter b, only presentation mode (object-in-context vs. object-
in-isolation condition) was withheld as a fixed effect in the final model. These observations
were further refined when taking the performance of participants at specific psychometric
slope (60%, 75%, and 90%) values into account: presentation mode was a significant
predictor of performance for slope at all points of the curve. The Presentation
Mode�Level of Categorization interaction was not significant for any of the conducted
analysis. Descriptive variables such as test order, age, or gender were also not withheld as
significant predictors of performance in the final models for a and b. The goodness-of-fit
measures (for overview, see Appendices) for each of the parameter estimates (�2) in the final
GLMM model are provided in the results section. Data and an example of the analysis code
are available online on http://www.gestaltrevision.be/en/resources/supplementary-material/
76-resources/supplementary-material/826.

Finally, we also analyzed the data of the control experiment using the same GLMM
modeling approach as in the main experiment. These findings replicated our original
results and indicated that the mask type was no confounding variable in explaining the
current results. We added the regression parameter estimates for the main parameters,
alpha (a) and bèta (b), of the individual sigmoid maximum likelihood fits in Appendix D.

Results

Hypothesis 1: Basic versus superordinate advantage in ultrarapid categorization (Figure 5).

We found a significant main effect of the within-subjects variable level of categorization for
the psychometric function parameter a (t(136)¼�2.85; P(�2)¼ 5.11� 10�3). This parameter
provides an estimate of the overall PT necessary for participants to correctly judge whether a
predefined basic or superordinate object was presented or not. More precisely, the current
results indicated that participants were generally faster at detecting superordinate (more
abstract) information (e.g., vehicle) than in observing more basic (more concrete) level
representations of its constituting subcategories (e.g., plane). In line with the absence of a
main effect of level of categorization for the psychometric (slope) parameter b
(t(272)¼�1.32; P(�2)¼ .18), this superordinate advantage in performance was found to be
clearly present over all PT (60% threshold: t(136)¼�2.83; P(�2)¼ 5.41� 10�3 j 75%
threshold: t(136)¼�3.17; P(�2)¼ 1.86� 10�3 j 90% threshold: t(136)¼�2.60; P(�2)¼ .01).
Such a finding indicated that PT and categorization performance differed between basic and
superordinate processing when categorization required a rapid, predefined object detection.
When graphically exploring this effect further (Figures 6(a) and 7(a)), it seemed to result from
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Figure 5. Overview of (a) average a estimates across participants and (b) average presentation time

necessary to achieve an overall accuracy of 60%, 75%, or 90% correct in rapidly detecting a basic-level object-in-

isolation (light blue bar), a basic-level object-in-context (dark blue bar), a superordinate-level object-in-isolation

(pink bar), or a superordinate-level object-in-context (red bar). The data are represented as the mean

performance across participants, with error bars depicting the standard error of the mean (SEM).

Figure 6. Overview of the overall distribution of the (a) a and (b) b estimates of the participants. The different

boxplots represent the four different conditions: basic-level object-in-isolation (light blue bar), basic-level object-in-

context (dark blue bar), superordinate-level object-in-isolation (pink bar), and superordinate-level object-in-

context (red bar).
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a shift in threshold distribution. More precisely, the superordinate a distribution peaks earlier
than the basic-level distribution due to the presence of more participants with low a values
(heavier tale). This consistent processing advantage for superordinate information was in line
with the PDP theory (O’Reilly et al., 2013) and our predictions (Hypothesis 1). See Table 1
for parameter estimates and 95% confidence intervals of the final models.

Hypothesis 2: Influence of object presentation mode on ultrarapid object detection (Figure 8).

We found a significant main effect of the between-subjects variable presentation mode for a
(t(143)¼ 4.37; P(�2)¼ 2.41� 10�5). This parameter provides an estimate of the overall PT
necessary for participants to correctly judge whether a predefined object, either in context or
in isolation, was presented or not. More precisely, the current results indicated that
participants were generally faster in detecting an object-in-isolation than in detecting an

Figure 7. Overview of the overall distribution of the (a) a and (b) b estimates of the participants. The

different side-by-side histograms represent the four different conditions: basic-level object-in-isolation (light

blue bar), basic-level object-in-context (dark blue bar), superordinate-level object-in-isolation (pink bar), and

superordinate-level object-in-context (red bar). While the ordinate depicts the (a) a or (b) b estimates, the

frequency values are provided on the abscissa.

Table 1. Overview of the Regression Parameter Estimates for the Main Parameters, Alpha (a) and Bèta (b),

of the Individual Sigmoid Maximum Likelihood Fits.

Parameter Estimate (SE) P(�2) 95% CI

Alpha (a)

Intercept 28.13 (.92) 2.00� 10�16 [26.33, 29.93]

Presentation mode 5.19 (1.19) 2.41� 10�5 [2.86, 7.52]

Level of categorization �1.88 (.66) 5.11� 10�3 [�3.17, �.59]

Bèta (b)

Intercept 8.91 (.49) 2.00� 10�16 [8.42, 9.87]

Presentation mode �2.19 (.67) 1.25� 10�3 [�3.50, �.88]

Level of categorization �.88 (.67) 1.90� 10�1 [�2.19, .43]

Note. These provided an overall estimation of the time-dependent categorization performance in each test session per

participant and were used separately as DV in a General Linear Modeling (GLMM) approach (McCullagh, 1984).
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object embedded within a meaningful context (Hypothesis 2). Simultaneously, we also found
a significant main effect of presentation mode for b (t(272)¼�3.26; P(�2)¼ 1.25� 10�3) in
which participants were found to have steeper, PT-dependent, slope values in the context
condition compared with the object-in-isolation condition. This difference in steepness was
similar across the entire psychometric curve (60% slope: t(272)¼ 2.29; P(�2)¼ .02 j 75%
slope: t(272)¼ 2.39; P(�2)¼ .02 j 90% slope: t(272.00)¼ 2.28; P(�2)¼ .02). When translating
this in terms of the specific threshold values, we found that participants only performed better
in the object-in-isolation condition, compared with the context condition, at lower PT (60%
threshold: t(141)¼ 3.66; P(�2)< .001 j 75% threshold: t(140)¼ 2.28; P(�2)¼ .03). When PT
became larger, this difference in performance disappeared (90% threshold: t(138)¼ .25;
P(�2)¼ .80). When graphically exploring this effect further (Figures 6 and 7), we observed
a general distribution shift for both threshold (a) and slope (b) values. More precisely, the
objects-in-isolation distributions peak earlier than the objects-in-context distributions. See
Table 1 for parameter estimates and 95% confidence intervals of the final models.

Figure 8. Overview of (a) average b estimates across participants and (b) average steepness of the

psychometric curve at 60%, 75%, or 90% correct categorization performance when rapidly detecting a basic-

level object-in-isolation (light blue bar), a basic-level object-in-context (dark blue bar), a superordinate-level

object-in-isolation (pink bar), or a superordinate-level object-in-context (red bar). The data are represented

as the mean performance across participants, with error bars depicting the standard error of the mean (SEM).
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Mask control experiment

Our analysis of the mask control experiment (see Appendix D for parameter estimates and
95% confidence intervals for the main parameters, a and b, of the individual sigmoid
maximum likelihood fits) provided a clear replication of our experimental findings. More
precisely, we found significant main effects of level of categorization (t(29)¼�2.14;
P(�2)¼ .04) and presentation mode (t(29)¼ 7.47; P(�2)< .01) for a and a main effect of
presentation mode (t(29)¼�2.13; P(�2)¼ .04) for b. This indicated that the difference in
mask type, used in either the object-in-isolation or the object-in-context condition, was no
confounding variable in explaining the current results.

Discussion

Hypothesis 1: Basic versus superordinate advantage in ultrarapid categorization.

We observed a consistent advantage across participants to rapidly identify superordinate-level,
compared with basic-level, object information correctly (Hypothesis 1). This was in line with
previous studies on ultrarapid categorization without perceptual masking (e.g., Poncet &
Fabre-Thorpe, 2014; Prab et al., 2014; Vanmarcke & Wagemans, 2015), and the predictions
formulated based on the Leabra model (O’Reilly et al., 2013). This model stated that a
predefined search task would allow top-down biasing of the relevant visual features even
when stimulus PT lasted long enough to allow recurrent processing to influence the initial
bottom-up sweep of information in the visual cortex (Bar, 2004; De Cesarei et al., 2015).
More specifically, this idea follows from the PDP prediction that the categorization
mechanism uses a general-to-specific process of conceptual differentiation, allowing
unambiguous and well-learned object recognition with prolonged stimulus PT to occur in a
dominantly bottom-up manner (Liu, Agam, Madsen, & Kreiman, 2009; VanRullen & Koch,
2003). The observed basic-level advantage in verbal semantic labeling tasks without any time
constraints (Mervis & Rosch, 1981; Rosch et al., 1976) only follows when an active, conscious
labeling of different semantic categories becomes necessary to resolve the given task (Rogers &
Patterson, 2007). Simultaneously, Fabre-Thorpe and coworkers followed a similar reasoning
claiming that the visual processing stage of object categorization has the property of the
observed superordinate-level advantage, while active semantic processing leads to a basic-
level advantage (Fabre-Thorpe, 2011; Joubert et al., 2008; Macé et al., 2009). They argued
that the requirement for lexical access was critical: the behavioral superordinate- versus basic-
level categorization advantage was determined by the extent to which the semantic domain
canceled out the superordinate-level advantage in the visual domain. This prediction was
supported by evidence indicating that ultrarapid categorization was color-blind (Delorme,
Richard, & Fabre-Thorpe, 2010), robust to contrast reductions (Macé, Delorme, Richard, &
Fabre-Thorpe, 2010) and relied on very coarse object representations (Thorpe, Gegenfurtner,
Fabre-Thorpe, & Bülthoff, 2001). Furthermore, different studies indicated that rapid
categorization can be performed in the near absence of attention (e.g., Li, VanRullen, Koch,
& Perona, 2002; Rousselet, Macé, & Fabre-Thorpe, 2003). The detection of objects in
ultrarapid categorization was therefore regarded as a preattentive and automatic process
(VanRullen, Reddy, & Koch, 2004). Recurrent processing even was found to incur small
costs in raw overall performance in relatively simple categorization tasks (O’Reilly, 2001). It
was argued that these costs could provide a processing benefit in more complex, conscious
recognition problems involving generalization or occlusion across nonvisual semantic
dimensions. This argumentation would fit the predictions of the PDP theory within the more
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general cognitive framework of the reverse hierarchy theory of visual processing (Ahissar &
Hochstein, 2004; Hochstein & Ahissar, 2002). Ultrarapid categorization can be successfully
completed by the rapid and implicit bottom-up processing of visual information without
gaining any processing advantage when activating explicit, attention-focused top-down or
reverse hierarchical pathways to effectively inform low-level representations in the visual cortex.

Hypothesis 2: Influence of object presentation mode on ultrarapid object detection.

We predicted that participant performance would only be influenced by the congruent context
when and if longer PT in perceptually masked rapid categorization allowed recurrent processing
to affect response speed (Hypothesis 2). Results indicated that participants were generally faster
in detecting an object-in-isolation correctly than in detecting an object embedded within a
meaningful context, when stimulus PT remained short. When stimulus PT and categorization
accuracy increased, differential performance between both conditions decreased rapidly and it
disappeared completely with almost perfect categorization performance. These outcomes argue
against a contextual processing advantage for participants who are instructed to rapidly detect a
salient object in a masked ultrarapid categorization task. This would suggest that embedding the
salient object within a meaningful surrounding initially increases stimulus ambiguity and
complexity and therefore increases the overall task difficulty (O’Reilly, Wyatte, Herd,
Mingus, & Jilk, 2013). This contradicted with previous findings, indicating the existence of a
reaction times advantage when rapidly detecting objects-in-context, compared with objects-in-
isolation, in an ultrarapid categorization task (e.g., Crouzet et al., 2012; Sun, Simon-Dack,
Gordon, & Teder, 2011). The absence of such a contextual facilitation effect could be linked
to the absence of perceptual masking in previous categorization designs (Fahrenfort et al., 2007).
This prediction follows from the idea that masking derives its effectiveness from disrupting
recurrent processing, while leaving feedforward signals intact (Lamme & Roelfsema, 2000).
These recurrent connections have been suggested to play an integral role in a range of visual
processes (Hochstein & Ahissar, 2002; Kastner & Ungerleider, 2000; Spratling & Johnson,
2004), such as figure-ground segmentation (Lamme et al., 2002). The latter process thereby
seems especially important within the current time-dependent and masked ultrarapid
categorization design. Due to the lack of contextual distractor elements or items in the
isolated object condition, object identification is more accurate than the detection of objects
embedded in a congruent background. We therefore predict that scene context will only
facilitate response speed in ultrarapid categorization, when stimulus PT becomes larger than
the time needed for participants to rapidly categorize the presented objects or scenes nearly
perfectly (Davenport, 2007; Rémy et al., 2013). This contextual processing advantage might be
based on excitatory recurrent processing, predominantly selecting the most likely object category
within the contextual surrounding (Bar & Ullman, 1996; Fabre-Thorpe, 2011). More precisely, it
was shown that humans can implicitly learn the temporal covariance of semantic categories of
natural scenes (Brady & Oliva, 2008) and the global features of these scenes could be used to
modulate the saliency of different contextual regions to guide visual search to pertinent scene
locations (Torralba, Oliva, Castelhano, & Henderson, 2006). This would further underline the
flexible dynamics of object categorization, depending jointly on the level of abstraction, time for
perceptual encoding, and category context (Mack & Palmeri, 2015).

Future Research

Because task performance depends on the intersection between task demand and object
information, performance cannot be described in absolute terms (Schyns, 1998). Concretely,
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in our study, this means that performance depends on how much information is available to
perform the task in each target image and in each nontarget image, on the similarities among
images of each group, and also on the information overlap between target and nontarget
images. So unless task-related information can be quantified for every image, it remains
difficult to directly compare absolute performance between image categories and between
tasks. For similar (and additional) reasons, differences in stimulus PT can also not directly,
or indirectly, reflect the timing of the corresponding (underlying) brain processes (VanRullen,
2011). As a result, the estimation of processing speed for different image categories or in
different tasks, and its generalization across different image sets, has to be done with
caution. The more conservative conclusion, when two psychometric functions are found to
differ, is that the two processes cannot be equated, and thus rely (at least in part) on distinct
neuronal mechanisms. Future research on the influence of scene congruency and top-down
processing during (ultrarapid) categorization should further focus on quantifying the low-level
image properties (e.g., orientation, complexity, and shape) of the selected stimulus set (Joubert,
Rousselet, Fabre-Thorpe, & Fize, 2009; Wichmann et al., 2006) and benchmarking it based on
the available information in the specific images (VanRullen, 2011). This is necessary because
the diversity of the image set by itself is no guarantee to avoid possible systematic differences
between various image classes, and it has been shown that these differences can allow
participants to discriminate between natural image categories almost perfectly (Brand &
Johnson, 2014). For instance, it might be that different distributions of attention facilitate
the extraction of different types of information within a scene (Brand & Johnson, 2014; Chong
& Treisman, 2005). When attention is focused locally (e.g., on more low-level physical
properties), features are bound together resulting in the identification of an object. When
attention is distributed more globally (e.g., on more high-level physical properties), the
semantic meaning of a scene is extracted based on its global layout. Finally, future research
should also focus more on using electrophysiological, rather than psychophysical, methods to
pinpoint the precise latency of the brain processes involved during categorization.
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Appendix A

Overview of the amount of participants, included in the final analysis of the ultrarapid
categorization task, in each of the different test conditions. No between-subject differences
in performance were observed for the different detection tasks (e.g., car, plane,. . .) for either
within-basic- (bed vs. chair vs. car vs. airplane) or within-superordinate- (furniture vs.
vehicle) level categorization.

Appendix B

We used the alpha (a) and bèta (b) values, of each of the participants, as the
dependent variables in a mixed ANOVA with presentation mode (object-in-context vs.

Number of participants

in each condition?

Superordinate-level categorization

Furniture? Vehicle?

Object-in-

isolation

Object-in-

context

Object-in-

isolation

Object-in-

context

Basic-level categorization Bed? 18 Participants 18 Participants – –

Chair? 17 Participants 14 Participants – –

Car? – – 17 Participants 18 Participants

Airplane? – – 16 Participants 18 Participants
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object-in-isolation condition) as a between-subjects factor and level of categorization (basic
vs. superordinate) as a within-subjects factor. Participants were regarded as a random factor.

Appendix C

Results of the modeling scheme—for both main psychometric parameters separately—in
terms of fixed effects (with the SD between brackets) and goodness-of-fit. Based on a
maximum likelihood estimation, we calculated the deviance values and selected the final
model by evaluating the drop in deviance, together with the Akaike and Bayesian
Information Criterion values. More precisely, we regarded the former as our main
criterion for model selection, while the latter two information criterions provided extra
information. The different models were always compared with the previous model and for
alpha (a), Model C is the selected model with the best found fit (with presentation mode and
level of categorization as main predictors), while in bèta (b) the best fit is observed in Model B
(with presentation mode as main predictor).

Fixed effects Model A Model B Model C Model D Model E

Alpha (a)

Intercept 29.91

(.64)

27.20

(.87)

28.13

(.92)

27.96

(.99)

36.13

(11.80)

Presentation mode 5.15

(1.19)

5.19

(1.19)

5.50

(1.36)

5.59

(1.36)

Level of categorization �1.88

(.66)

�1.55

(.96)

�1.55

(.96)

Presentation Mode� Level of Categorization �.63

(1.33)

�.63

(1.33)

Age �.47

(.59)

Gender �11.62

(14.85)

Age�Gender .66

(.77)

Goodness-of-fit

Deviance 1881.4 1863.9 1856 1855.8 1854.5

Drop in Deviance – 17.5 7.9 .2 1.3

(continued)

Parameter F statistic p Effect size (�2
p)

Alpha

Presentation mode F(1, 134)¼ 18.96 2.60� 10�5 �2
¼ .12

Level of categorization F(1, 134)¼ 7.59 7.00� 10�3 �2
¼ .05

Presentation Mode� Level of Categorization F(1, 134)¼ .23 .63 �2
¼ 2.00� 10�3

Bèta

Presentation mode F(1, 134)¼ 9.74 2.00� 10�3 �2
¼ .07

Level of categorization F(1, 134)¼ 1.97 .16 �2
¼ .01

Presentation Mode� Level of Categorization F(1, 134)¼ 2.58 .11 �2
¼ .02
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Appendix D

Overview of the regression parameter estimates for the main parameters, alpha (a) and bèta
(b), of the individual sigmoid maximum likelihood fits of the mask control experiment. These
provided an overall estimation of the time-dependent categorization performance in each test
session per participant and were used separately as DV in a General Linear Modeling
(GLMM) approach (McCullagh, 1984).

Continued.

Fixed effects Model A Model B Model C Model D Model E

Akaike Information Criterion 1887.4 1871.9 1866 1867.8 1872.5

Bayesian Information Criterion 1898.2 1886.3 1884 1889.4 1905.0

Bèta (b)

Intercept 7.75

(.35)

8.91

(.49)

9.34

(.59)

9.86

(.68)

19.61

(6.53)

Presentation mode �2.19

(.67)

�2.19

(.67)

�3.18

(.94)

�3.13

(.93)

Level of categorization �0.88

(.67)

�1.93

(.97)

�1.93

(.96)

Presentation Mode� Level of Categorization 1.99

(1.34)

1.99

(1.32)

Age �0.46

(.33)

Gender �1.01

(8.21)

Age�Gender �.13

(.42)

Goodness-of-fit

Deviance 1713.7 1703.3 1701.6 1699.4 1691.7

Drop in Deviance – 10.4 1.7 1.2 7.7

Akaike Information Criterion 1719.7 1711.3 1711.6 1711.4 1708.1

Bayesian Information Criterion 1730.5 1725.8 1729.6 1733.0 1733.3

Parameter Estimate (SE) P(�2) 95% CI

Alpha (a)

Intercept 28.55 (1.74) 2.00� 10�16 [25.14, 31.96]

Presentation mode 7.47 (2.20) 2.04� 10�3 [3.16, 11.78]

Level of categorization �3.55 (1.66) 4.13� 10�2 [�6.80, �.30]

Bèta (b)

Intercept 6.64 (.80) 5.90� 10�11 [5.07, 8.21]

Presentation mode �2.13 (.97) 3.66� 10�2 [�4.03, �.23]

Level of categorization .86 (.85) 3.20� 10�1 [�.81, 2.53]
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