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Abstract

Recent work with functional connectivity data has led to significant progress in understanding the 

functional organization of the brain. While the majority of the literature has focused on group-

level parcellation approaches, there is ample evidence that the brain varies in both structure and 

function across individuals. In this work, we introduce a parcellation technique that incorporates 

delineation of functional networks both at the individual- and group-level. The proposed technique 

deploys the notion of “submodularity” to jointly parcellate the cerebral cortex while establishing 

an inclusive correspondence between the individualized functional networks. Using this 

parcellation technique, we successfully established a cross-validated predictive model that predicts 

individuals’ sex, solely based on the parcellation schemes (i.e. the node-to-network assignment 

vectors). The sex prediction finding illustrates that individualized parcellation of functional 

networks can reveal subgroups in a population and suggests that the use of a global network 

parcellation may overlook fundamental differences in network organization. This is a particularly 

important point to consider in studies comparing patients versus controls or even patient 

subgroups. Network organization may differ between individuals and global configurations should 

not be assumed. This approach to the individualized study of functional organization in the brain 

has many implications for both neuroscience and clinical applications.
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1. Introduction

The human brain is functionally segregated into multiple spatially-distributed networks, and 

how best to divide or parcellate the brain into these networks is a fundamental question for 

neuroscience (Power et al., 2011; Yeo et al., 2011; Yang et al., 2016). Resting-state 

functional magnetic resonance imaging (fMRI) studies have consistently identified a number 

of brain networks that replicate across different datasets (Power et al., 2011; Yeo et al., 

2011) and overlap with task activation patterns (Smith et al., 2009). The spatial organization 

of these networks is thought to support a wide range of cognitive functions (Dosenbach et 

al., 2007; Laird et al., 2011), and such networks have been shown to be altered in clinical 

disorders (Bush, 2011; Stern et al., 2012; Zhu et al., 2012).

The majority of previous work on parcellating the brain into networks has been focused on 

group-level analyses (Power et al., 2011; Yeo et al., 2011; Shen et al., 2013; Gordon et al., 

2014) with the aim of defining a set of networks that generalizes over all individuals. Group-

level analysis is typically accomplished by collapsing data from individuals, either by 

averaging the subject’s connectivity matrices (Power et al., 2011; Yeo et al., 2011) or by 

concatenating time courses from each subject, as in the case of Independent Component 

Analysis (ICA) (Beckmann et al., 2005; Smith et al., 2009). As a result, these approaches do 

not preserve information regarding inter-individual variability.

Nevertheless, emerging studies have highlighted the importance of inter-individual 

variability in functional connectivity in contributing to individual differences in behavior and 

cognition (Van Horn, Grafton et al., 2008; Baldassarre et al., 2012; Mueller et al., 2013; 

Zilles and Amunts, 2013; Calluso et al., 2015; Finn et al., 2015; Smith et al., 2015; Finn and 

Constable, 2016, Rosenberg et al., 2016). Such inter-individual variability in functional 

connectivity is likely to be expressed at the network level and thus should be revealed by 

functional parcellation schemes.

Accordingly, individual-level parcellation of the brain into networks has recently received 

increased attention. To enable functional network parcellation at the individual-level, one 

plausible approach is to apply a back-projection from the group-level parcellation. This 

approach has been prevalent in ICA studies; and techniques such as principal component 

analysis (PCA) back-projections (Calhoun et al., 2001) and GLM dual regression 

approaches (Beckmann et al., 2009) have been developed. However, studies have reported 

notable limitations for ICA approaches at the individual-level (Zuo et al., 2010), including 

shortcomings to address inter-subject variation, limitations in scaling to higher dimensions 

(i.e. finer grained parcellations), and high sensitivity to artifacts such as motion, scanner 

noise, and physiological noise (McKeown et al., 2003; Cole et al., 2010). To reduce the 

impact of ICA limitations in addressing inter-subject variability, extensions of this method 

such as independent vector analysis (IVA) have been proposed (Lee et al., 2008; Michael et 

al., 2014). While promising, IVA is highly sensitive to each individual data and suffers from 

excessive computational burden and memory requirements (Michael et al., 2014). More 

recently, studies have used functional connectivity, as derived from BOLD fMRI, to 

establish individualized networks (Eickhoff et al., 2015), using techniques such as k-means 

(Flandin et al., 2002; Kahnt et al., 2012), hierarchical clustering (Meunier et al., 2010; 
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Moreno-Dominguez et al., 2014; Arslan and Rueckert, 2015), spectral clustering (Thirion et 

al., 2006; Van Den Heuvel et al., 2008, Craddock et al., 2012; Chen et al., 2013; Shen et al., 

2013), and boundary mapping (Cohen et al., 2008; Gordon et al., 2014). Although many of 

these approaches are promising, none of them provide a unified framework that incorporates 

joint individual- and group-level functional network parcellations with a comprehensive 

correspondence across the identified networks.

Wang et al. parcellated resting-state fMRI data into a number of coherent networks using an 

iterative parcellation approach that requires an initial group-level parcellation as a reference 

(Wang et al., 2015). Their approach requires this initiation step and thus cannot be used 

when there is no representative group-level parcellation. Similarly, Shen et al. provided a 

joint individual- and group-level parcellation approach through optimization of a rotation 

function derived from individualized functional connectivity (Shen et al., 2013). This 

approach, however, requires the same dataset for the group- and individual- level 

parcellations and thus does not provide a generalizable parcellation scheme that can be used 

across datasets.

Here we develop a comprehensive parcellation framework that overcomes the above 

concerns through a three-step flexible pipeline. The proposed method exploits “exemplar-

based clustering” that seeks to summarize the massive amount of data using a relatively 

small number of representative exemplars (Dueck and Frey, 2007; Badanidiyuru et al., 2014; 

Mirzasoleiman et al., 2016a, b). Using “exemplars” provides a flexible one-to-one mapping 

of the functional networks across subjects, easing localization of inter-individual variability 

over the cortex. Moreover, an intuitive notion of diminishing returns, known as 

“submodularity”, is utilized to provide an efficient optimization algorithm with provable 

bounds (Nemhauser et al., 1978). Unlike many other individual-level parcellations that are 

initiated from a group-level parcellation scheme to derive the corresponding functional 

networks for individuals (Zuo et al., 2010; Gordon et al., 2017b; Wang et al., 2015; Gordon 

et al., 2017a), our method moves a step forward by initiating from the individual data. We 

show that this approach has a higher sensitivity to individual variations and thus provides the 

basis for more powerful inferences. We evaluate our parcellation approach using clustering 

validation measures of stability and reproducibility. Finally, we compare our method with 

the two individual-level parcellations mentioned above – Shen et al. (Shen et al., 2013) and 

Wang et al. (Wang et al., 2015) – in two different aspects: (1) internal clustering evaluation, 

and (2) sensitivity to interindividual variations (i.e. predictive power). Of note, although 

there exists potentially interesting individual variability in functional organization both at the 

node- and network-levels, the focus of this initial work is to delineate the network-level 

organization. It should be noted, however, that the approach described here can be applied to 

voxel-level data in order to define a node-level functional atlas.

2. Theory

2.1. Overview

Exemplar-based clustering algorithms summarize massive datasets through the selection of a 

relatively small set of representative exemplars. Our proposed algorithm seeks to select K 

Salehi et al. Page 3

Neuroimage. Author manuscript; available in PMC 2018 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



exemplar regions (representing our networks) across the cerebral cortex. The clustering 

algorithm then assigns each of the nodes to one of the exemplars, i.e., one of the networks.

Most techniques for identifying exemplars define an objective function that measures the 

“representativeness” of each set of exemplars with regard to the full dataset. Often, these 

objective functions satisfy an intuitive notion of diminishing returns called submodularity 

(Nemhauser et al., 1978): for instance, if given two sets of exemplars S1 and S2 with S1 ⊆ 
S2, adding a new element to S1 is more beneficial than adding it to the superset, S2, as the 

new element can potentially add more information to S1 rather than S2.When using this 

concept of submodularity, the problem of finding K exemplars can be reduced to 

maximizing a non-negative monotone submodular set function subject to a cardinality 

constraint (i.e., a bound on the number K of elements that can be selected) (Krause and 

Golovin, 2012; Mirzasoleiman et al., 2016a,b). Simple greedy algorithms can efficiently 

maximize these objective functions (Nemhauser et al., 1978). See Mirzasoleiman, et al. 

(Mirzasoleiman, et al., 2016a,b) for recent developments of submodular maximization 

methods.

In the following, we formally define submodular functions following the work of Krause et 

al. (Krause and Golovin, 2012), and define the greedy algorithm, and exemplar-based 

clustering. We subsequently present our algorithm and the details of our implementation.

2.2. Submodular functions

Submodularity is a property of set functions, i.e., functions f: 2V → IR that assign each 

subset S ⊆ V a value f(S). Here, V is a finite set, commonly called the ground set, and S is a 

finite subset of V. The definition of submodularity relies on a notion of discrete derivative, 

also called the marginal gain. An important subclass of submodular functions (used in the 

proposed algorithm) includes those which are monotone.

Definition 1.1. (Discrete derivative)—For a set function f: 2V → IR, S ⊆ V, and e ∈ V, 

let Δf(e|S) : = f(S ⊂ {e}) − f(S) be the discrete derivative of f at S with respect to e.

Definition 1.2. (Submodularity)—A function f: 2V → IR is submodular if for every A ⊆ 
B ⊆ V and e ∈ V\B it holds that Δ(e|A) ≥ Δ(e|B). Meaning that adding an element e to a set 

A increases the utility at more than (or at least equal to) adding it to A’s superset, B, 

suggesting a natural diminishing returns.

Definition 1.3. (Monotonicity)—A function f: 2V → R is monotone if for every A ⊆ B ⊆ 
V, f(A) ≤ f(B). Equivalently, function f is monotone if and only if all its discrete derivatives 

are nonnegative, i.e., for every A ⊆ V and e ∈ V it holds that Δ(e|A) ≥ 0.

2.3. The greedy algorithm for optimization of the submodular function

In general, maximizing a non-negative monotone submodular function subject to a 

cardinality constraint, i.e.,

Salehi et al. Page 4

Neuroimage. Author manuscript; available in PMC 2018 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



max
S ⊆ V

f (S) s . t . ∣ S ∣ ≤ K, (1)

is NP-hard (Feige, 1998). However, a seminal result of Nemhauser et al. (Nemhauser et al., 

1978) proves that a simple greedy algorithm provides the best approximation (≈63%) to the 

optimal solution. In practice, this approximation is significantly closer to the optimal 

solution (see Supplementary Materials and Figure S5 for an empirical evaluation). The 

greedy algorithm starts with an empty set S0 = Ø, and at each iteration i, it selects and adds 

the element {ei
∗} ∈ V such that the marginal gain is maximized, i.e.,

ei
∗ = arg max

e ∈ V
Δ f e ∣ Si − 1 : = arg max

e ∈ V
f Si − 1 ∪ {e} − f Si − 1 , (2)

Si = Si − 1 ∪ {ei
∗} . (3)

The algorithm continues until the cardinality constraint is reached, i.e., until |S| =K.

2.4. Exemplar-based clustering

Exemplar-based clustering provides an approach to summarize the data by introducing a set 

of K exemplars that best represents the full dataset. A classic way of identifying such 

exemplars is solving the k-medoids problem, by minimizing the sum of pairwise distances 

between the elements of the dataset and the exemplars (see Friedman et al. (Friedman et al., 

2001) for more details on k-medoids problems). Specifically, assume we are given a 

dissimilarity function d: V×V → R, where d encodes the dissimilarities between the 

elements of the ground set V. The k-medoids problem minimizes the following loss 

function:

L(S) = 1
∣ V ∣ ∑

v ∈ V
min
e ∈ S

d(v, e) . (4)

L(S) measures how much information we lose if we represent all the data points in each 

cluster, with its corresponding exemplar.

By introducing an appropriate auxiliary element v0, we can turn L into a monotone 

submodular function, so that the minimization of (4) is equivalent to the maximization of the 

following monotone submodular function (5), and can be efficiently solved by the greedy 

algorithm:

f (S) = L(v0) − L(S ∪ v0) . (5)
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Technically, any vector v0 satisfying the following condition can be used as an auxiliary 

exemplar:

max
v′ ∈ V

d(v, v′) ≤ d(v, v0), ∀v ∈ V \S . (6)

This condition implies that the distance between the auxiliary element and all of the data 

points must be greater than the pairwise distances between the data points.

Note that in contrast to the classical clustering algorithms (such as k-means), the exemplar-

based clustering is very general in that it does not require the distance function d to be 

symmetric nor to obey triangle inequality. All it requires for d is nonnegativity. Here we 

used the squared Euclidean distance as the dissimilarity function:

d(x, x′) = ‖x − x′‖2 . (7)

Herein, we utilize the submodularity of our utility function further to implement an 

accelerated version of the greedy algorithm, called lazy greedy (Minoux, 1978).

2.5. Cortical parcellation algorithm

In this section, we deploy the aforementioned algorithm to parcellate the cerebral cortex into 

K functional networks. For each individual j ∈ {1,…, J}, we have a matrix VN × T
j , where N 

denotes the number of regions in the brain and T represents the number of time points. Each 

region n ∈ {1,…,N} of the brain, forms a vector in a T-dimensional space, denoted as vn
j . We 

aim to find K exemplar labels S= {e1, e2, …, eK} whose corresponding exemplar set for 

each individual j, i.e., S j = {ve1
j , ve2

j , …, veK
j } ⊆ V j, maximizes a desired utility function. In 

order to jointly consider the information of each individual and the group, we define a 

natural objective utility function as follows:

F(S) = ∑
j = 1

J
f j S j , (8)

where S is the exemplar label set and Sj is the set including the corresponding exemplar 

vectors in individual j. In addition, fj(Sj) is the utility function of individual j defined 

according to equations (2)–(5), and J is the total number of subjects. Note that 

submodularity is preserved under non-negative linear combination and thus F(S) remains a 

non-negative monotone submodular function that can similarly be optimized by the greedy 

algorithm. Also note that fj is a function that is locally defined for each individual j, meaning 

that it takes the label set S= {ei} ∈ {1,…,N} of regions and considers the corresponding 

vectors in each individual. The algorithm finally selects the K exemplar labels for which the 

corresponding exemplar vectors in each individual minimize the sum of loss functions over 
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all individuals. After K exemplars are obtained for each individual, the algorithm assigns 

each region n in individual j (i.e. vector vn
j) to the closest exemplar, i.e.,

Exemplar vn
j = arg min

ei ∈ S
vn

j , vei
j . (9)

Thus, the brain is parcellated into K networks each represented by an exemplar. In order to 

obtain the group-level parcellation, we employ a majority vote algorithm over all subjects. In 

other words, region n is assigned to network k if the majority of individuals vote for this 

assignment.

Overall, the proposed algorithm operates in three steps. First, the exemplar-search step finds 

the global exemplars over all subjects. Second, the individual-clustering step parcellates 

each individual’s brain by greedily maximizing a utility function, defined according to the 

group data. Third, the group-clustering step takes the majority vote of all individual clusters. 

The pseudocode in Fig. 1 shows each step in more detail.

One significant advantage of this algorithm is that there is a straightforward mapping 

between the parcellation of each individual to every other individual, and to the group, as 

each network is represented by a global exemplar. Thus, we do not require another algorithm 

to retrieve the correspondences. This facilitates direct comparison between individuals and 

the group.

3. Material and methods

3.1. Participants and processing

Data were obtained from the 900 subject release dataset in Human Connectome Project 

(HCP) (Van Essen et al., 2013). Analysis was limited to 825 subjects for which the complete 

scan data were available for each of the two resting states: REST1 and REST2. For details of 

scan parameters, see Uğurbil et al. (Uğurbil et al., 2013) and Smith et al. (Smith et al., 

2013). Starting with the minimally preprocessed HCP data (Glasser et al., 2013), further 

preprocessing steps were performed using BioImage Suite (Joshi et al., 2011) and included 

regressing 12 motion parameters (Movement_Regressors_dt.txt), regressing the mean time 

courses of the white matter and cerebrospinal fluid as well as the global signal, removing the 

linear trend, and low-pass filtering (as previously described in (Finn et al., 2015)). We 

employed a functional brain atlas (Shen et al., 2013) consisting of 188 nodes covering the 

cortex of the brain. This atlas was defined on a separate population of healthy subjects (Finn 

et al., 2015).

3.2. Functional distance matrix

Time courses from the two resting-state conditions (REST1 and REST2) and the two 

functional runs with opposing phase-encoding directions (left-right, “LR”, and right-left, 

“RL”) were concatenated and further used to generate a ground set consisting of N vectors 

in T-dimensional space. All the data points were normalized into a unit norm sphere 
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centered at the origin, and a point with the norm greater than two was used as the auxiliary 

exemplar (Eq. (6) in the Theory Section 2.4). For each individual, the pairwise squared 

Euclidean distances between the data points were calculated, and a matrix of size 188 × 188 

was obtained. Next, the greedy algorithm was employed to find the best K = {2, 3,…, 25} 

exemplars according to the algorithm described above.

3.3. Stability and convergence

We examined the stability and convergence behavior of our group-level parcellation. 

Stability was defined as the robustness of the output to slight perturbations to the input (Von 

Luxburg, 2010), which was examined here in terms of the variations both in the group size 

and the selection of subsets of individuals from the larger group. Convergence was examined 

through the rate at which the output parcellation converged to the final result as the input 

merged to span the entire dataset. We started with twenty-five subjects and incremented the 

number of subjects used in the network parcellation in steps of twenty-five. At each step t, 
we employed the exemplar-search algorithm (part 1 in Algorithm) over the set of 25 × t 
subjects, which we refer to as the training set herein. Using the exemplars derived from the 

training set, we applied the individual-clustering algorithm (part 2 in Algorithm) over both 

the training set (i.e. 25 × t subjects) and the entire dataset (i.e. 825 subjects), obtaining two 

sets of individual-level parcellations. Next, we employed majority voting (part 3 in 

Algorithm) over both the training set and the entire dataset, and then calculated the 

Hamming distances (Hamming, 1950) between the group-level parcellation derived from the 

training set (which here is called the perturbed parcellation) and the full parcellation derived 

from the entire dataset (Fig. 3).

3.4. Reproducibility of group-level parcellation

We investigated whether our proposed method was generalizable across different sets of 

subjects using two different pipelines (Fig. 4B). In the first pipeline, the dataset consisting of 

800 subjects was split into two equal size subsamples, and the three-step parcellation 

algorithm – including exemplar-search, individual-clustering, and group-clustering – was 

applied on each half independently (Fig. 4B, Right). Finally, the overlap between the two 

group-level parcellation schemes was calculated using the Dice coefficient (Dice, 1945). The 

process was repeated 100 times for different permutations of subjects (Fig. 4A, blue error 

bars). In the second pipeline, the data set was similarly split into two equal size subsets, but 

this time, a training-testing strategy was utilized. We employed the first part of the algorithm 

(i.e. exemplar-search) over group 1 (referred to as the training set). Next, using the 

exemplars derived from the training set, we ran the rest of the algorithm (i.e. individual-

clustering and group-clustering) over the individuals in group 2 (referred to as the testing 

set) as well as group 1 (the training set), obtaining two group-level parcellation schemes 

(Fig. 4B, Left). The overlaps between the two parcellations were computed using the Dice 

coefficient. The same process was repeated 100 times for different permutations of subjects 

(Fig. 4A, orange error bars). Note that in the second pipeline, there is a direct one-to-one 

mapping between the two parcellation schemes, through their common exemplars. In other 

words, all the regions with the same exemplar labels, are assigned to the same clusters 

(networks). This straightforward mapping across functional networks at individual-level and 
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group-level is a unique advantage of the exemplar-based clustering. It also provides a cross-

validation approach to the parcellation schemes through training-testing settings.

3.5. Reproducibility of individual-level parcellations across rest sessions

To investigate the reproducibility of parcellations at the individual- level, we repeated the 

parcellation analyses, this time taking into account the data from REST1 and REST2 scan 

sessions separately. As with the group-level reproducibility analysis, we employed two 

separate pipelines: First, we computed the individualized parcellations for each rest session, 

using the previously computed exemplars that were derived from the joint consideration of 

the two sessions. The advantage of this approach is that it preserves the correspondences 

between the resulting networks for each individual across the two sessions (referred to as the 

global exemplars). In the second pipeline, we recalculated the exemplars for the two rest 

sessions independently and used them to parcellate the individuals within each session. We 

refer to these as the local exemplars. For each pipeline, we calculated the Dice coefficients 

between the parcellation results of every individual in the two rest sessions: REST1 and 

REST2 (Figure S2).

3.6. Mapping highly variable regions

For each node in the cortex, we investigated the number of individuals that voted for the 

appointed network in the group-level parcellation; a measure labeled as F1 (or the frequency 

of the 1st mode). This measure captures the consistency of the node-to-network assignments 

across individuals, and thus, the inverse of F1 (1/F1) could be an indicator of the inter-

individual variability. Another metric of interest in the literature is the frequency of the 2nd 

mode (known as F2), i.e., the number of occurrences for the second most frequent network 

assignment. To further address the confidence of the node-to-network-assignments across all 

individuals, the ratio between F1 and F2 (i.e. F1:F2 ratio) was calculated. Similarly, to 

underscore the variability of regions, the inverse ratio (i.e. F2:F1 ratio or F2/F1) was 

considered. A high value for the inverse F1 and the F2:F1 ratio reflects greater variability in 

the network assignment. For each node, the two inter-individual variability measures (1/F1, 

F2/F1) were calculated and summed up over the number of networks ranging from K = 2 to 

K = 25, then the resulting numbers were scaled to the range (0, 100) (Fig. 5).

3.7. Sex-prediction

To illustrate that this individualized parcellation approach provides meaningful information, 

we next demonstrated a data-driven predictive model based on parcellation (i.e. node-to-

network assignments) to predict the sex for each individual. We used a gradient boosting 

machine (GBM) with 100 estimators (also known as decision trees) and 0.05 learning rate 

(see the code for more details on parameters) in a ten-fold cross-validated setting (Friedman 

et al., 2001). Each time, we fed the predictive model with node-to-network-assignment 

vectors for the individuals in the training set as features, and their corresponding sex as 

output. We predicted sex for the unseen fold of data across a varying number of networks 

from K = 2 to K = 25. The reported accuracies are the mean and standard deviations across 

all ten folds (Fig. 6A, blue error bars). To confirm that our prediction results were highly 

significant, we applied a nonparametric permutation testing by generating a null distribution 
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via randomly shuffling the outputs (i.e. sex) 100 times and running the generated vectors 

through our predictive model (Fig. 6A, orange error bars).

Of note, since we initially defined the network parcellations across all individuals and then 

used the same individuals for the sex prediction, these were not two independent samples. It 

is unlikely that this dependency has confounded the results, for two main reasons: first, the 

parcellation step was employed agnostic to the individuals’ sex. That is, the same 

parcellation algorithm was employed on both male and female subjects, with no prior 

knowledge on their sex. Second, the employed predictive model (GBM) is a non-parametric 

model with no sensitivity to the dependency of samples. Nevertheless, we tested for the 

potential biases by employing the parcellation and the prediction steps on two independent 

subsets. In one analysis, we split the entire population into two equal-size sets (each with 

400 subjects) and employed the training-testing framework described earlier (see the second 

pipeline in Method Section 3.4 and Fig. 4B [Left]), i.e. defined the exemplars on the training 

set and used those exemplars to parcellate individuals in both training and testing sets. We 

next conducted our predictive analysis by training on one set and testing on the other. The 

accuracies remained significant (Figure S3) despite the smaller size of the training set. In 

another analysis, we employed both the parcellation and predictions in a 10-fold cross-

validated setting. That is, we divided the entire population into 10 folds. At every step, the 

exemplars were calculated from the 9 training folds and used to parcellate the entire 

population. A GBM model was trained on the 9 training folds and tested to predict the sex 

for the one left-out testing fold. The entire procedure was repeated until each fold was left 

out once. The prediction accuracies remained significantly higher than chance (Figure S4).

A benefit of using gradient boosting machines is that after the decision trees are constructed, 

it is relatively straightforward to retrieve the importance of each feature. Importance is 

explicitly calculated as the number of times that each feature was used to make key 

decisions in the single decision tree, i.e. decisions that improve the performance measure. 

The feature importance is weighted by the number of observations within each decision tree 

and then averaged across all of the trees within the model. As our GBM model was fit with 

188 features indicating the network assignment of each node, we simply derived the 

importance of each node in sex identification by assessing the corresponding importance 

attribute. We further scaled the importance scores to the range (0, 100) as shown in Fig. 7.

3.8. Comparison with other approaches

We compared our proposed exemplar-based parcellation algorithm with two well-established 

individual-level parcellation methods: (1) our earlier rotation-based individual-level 

parcellation (Shen’s parcellation; Shen et al., 2013) and (2) Wang’s iterative scaling 

individual-level parcellation (Wang et al., 2015). Shen’s method had two free parameters, α 
which tunes the smoothing kernel’s standard deviation, and λ, which adjusts the level of 

similarity between individuals and the group. We set α = 0.2 and let λ take values in the 

range (0.1–0.6), with smaller numbers representing lower similarity. For the sake of clarity, 

we only report the results for the two ends of the interval (λ = 0.1 and λ = 0.6); similar 

results were found for other values of λ. For some specific number of networks (e.g. K = 17, 

18) Shen’s algorithm terminated at some lower K values, and these were then used instead 
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of the input K. Similarly, we derived the individualized parcellations for Wang’s method 

starting with their K = 7 and K = 17 group-level parcellation schemes (Yeo et al., 2011). For 

their averaging step, we deployed different weighting schemes, but the results were highly 

similar across different weighting schemes for the clustering evaluation measures and for 

sex-prediction analysis. Thus, we present results that used standard averaging.

To quantify the results of the comparison, we used two independent frameworks. In the first 

step, two clustering validation techniques were applied and in the second step, the sensitivity 

of these methods to inter-individual variability was examined through comparisons of the 

predictive power in a sex discrimination analysis.

We utilized two internal clustering validation measures – the Dunn Index (Dunn, 1973) and 

the Davies-Bouldin Index (Davies and Bouldin, 1979) – that are commonly reported in the 

literature (Halkidi et al., 2001; Ghosh et al., 2007; Saitta et al., 2007; Ziegler et al., 2010; 

Fichtinger et al., 2011). Similar to all other internal clustering validations, the Dunn and the 

DB indices utilize the clustered data itself to measure compactness and cluster separation. 

The Dunn index identifies to what extent the clustering scheme is successful in maximizing 

the inter-cluster distance while minimizing the intra-cluster distance. For K clusters, the 

Dunn index is defined as the ratio between the minimal inter-cluster distance to the maximal 

intra-cluster distance, according to Eq. (10):

DunnK = min1 < i, j < K
{

minx ∈ Ci, y ∈ C j
d(x, y)

max1 < k < K maxx, y ∈ Ck
d(x, y)}, (10)

where d(x, y) is the Euclidean distance between the two vectors x and y. Therefore, for a 

given assignment of clusters, a higher Dunn index indicates better clustering. We computed 

the Dunn index for each individual-level parcellation derived from the three different 

methods, for the number of clusters (networks) varying from K = 2 to K = 25. The Davies-

Bouldin index (DB) measures the average similarity between each cluster and its most 

similar one, and is defined according to Eq. (11):

DBk = 1
K ∑

i = 1

K
max

1 < j < K, j ≠ i
{

1
ni

∑x ∈ Ci
d(x, ci)

2
1
2 + 1

n j
∑x ∈ C j

d x, c j
2

1
2

d ci, c j
}, (11)

with ni the number of points and ci the centroid of cluster Ci. Since the objective is to obtain 

clusters with minimum intra-cluster and maximum inter-cluster distances, small values for 

DB are desired. Similarly, the DB indices were calculated using the three individual level 

parcellations (described above) for the number of clusters (networks) ranging from K = 2 to 

K = 25.

Finally, we assessed the predictive power of our proposed model in comparison with the two 

other approaches. We employed a sex-prediction analysis described previously, this time 
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using the individual-level parcellations resulting from Shen’s and Wang’s algorithm. We 

calculated the accuracies for the number of networks varying in the range K = 2 to K = 25.

We note here that there is a subtle change in the accuracy results each time the algorithm is 

executed. This is due to the randomness of ten-fold-cross-validation and also the initial state 

of the GBM. In the comparison of different methods, we fixed all these parameters and thus 

the result is for the same initial state and the same assignments of data points to the folds.

3.9. Implementation

The parcellation code was written in Matlab. Clustering was performed on a workstation 

with 64 GB of RAM and a 3.4 GHz Intel Xeon processor with 24 cores. Run time for our 

proposed method with K = 25 was 442.15 s for the exemplar-search, 1.95 s for the 

individual-clustering, and 0.22 s for the group-clustering. Predictive analysis code was 

written in Python using scikit-learn library (Pedregosa et al., 2011).

4. Results

4.1. Visualization of parcellations as a function of the number of networks

One advantage of using the greedy algorithm to solve the optimization of our submodular 

function is that it provides a hierarchy of nested clusters (through defining the new 

exemplars while maintaining the older ones) and hence enables an illustrative visualization 

for different granularities/resolutions as the number of networks is gradually incremented 

from K = 2 to K = 25. At K = 2, the brain is divided into two subnetworks that are associated 

with default mode network (DMN) – which is known as the task-negative network – and the 

rest of the brain, which attributes to the task-positive network. At K = 11, many canonical 

networks (including the DMN, frontoparietal network (FPN), and sensorimotor network 

(SMN)) are observable (Fig. 2). For K > 11 the changes are subtle and more difficult to 

observe (Figure S1).

4.2. Stability and convergence of group-level parcellation as a function of group size

For all numbers of networks, increasing the number of subjects in the training set (on 

average) decreases the distance between the perturbed parcellation, created with a subsample 

of subjects, and the final parcellation, created with all subjects (Fig. 3). The decrease in the 

error bars indicates that the distance between the perturbed parcellations resulting from 

random selection (of the same number) of subjects is also decaying. These findings suggest 

the algorithm converges to the final solution as the input expands to the entire set. 

Furthermore, for any number of networks, the average distance between the perturbed and 

the final parcellation is relatively small: when only using 25 subjects, the perturbed 

parcellation exhibited an average of 16% difference (i.e. 84% overlap) with the final 

parcellation. These findings suggest the stability of the algorithm to perturbations to the size 

of the input and to the selection of the subjects. That the exemplars derived from a relatively 

small portion of dataset produce parcellations highly similar to the final parcellation scheme 

(with 84% overlap on average) is a promising result with non-trivial implications for cross-

dataset validations.
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4.3. Reproducibility of group-level parcellations

Using two non-overlapping subsets, the Dice coefficients between the parcellation results of 

group 1 and group 2 are depicted in Fig. 4A (blue error bars). For all number of networks, 

there is on average more than 70% overlap between the two parcellations with the overlap 

generally greater than 80%. Using a training-testing replication method, the Dice 

coefficients between the training and testing group’s parcellation schemes are depicted in 

Fig. 4A (orange error bars). On average, the two parcellations have approximately 96% 

overlapping occurrences. As anticipated, the Dice coefficients for the second pipeline are 

significantly higher than the first, in part due to having common exemplars.

4.4. Reproducibility of individual-level parcellations across rest sessions

The Dice coefficients between each individual’s parcellations across the two rest sessions 

are depicted in Figure S2. The orange bars correspond to the analysis with global exemplars 

(across the two sessions). The blue bars display the comparison result using local session-

specific exemplars. There is on average 72% overlap between the parcellation results across 

the two sessions, using the global exemplars. This number decreases to 63% when 

employing the local exemplars. We note that reliability of individual parcellations across 

different sessions is subject to various factors including system noise, physiological noise, 

and intrinsic cognitive processes (Krüger and Glover, 2001; Bennett and Miller, 2010). Thus, 

the reliability of the parcellation results could be confounded by factors other than the 

specific parcellation algorithm employed, and hence warrants further investigation.

4.5. Inter-individual variability of individual-level parcellations

Fig. 5 displays the sorted distribution of inter-individual variability (in node-to-network 

assignments) across nodes, using two measures of variability: 1/F1 (Fig. 5A) and F2/F1 (Fig. 

5C). It suggests that there are regions with relatively high values for both measures summed 

across all numbers of networks. These regions, that follow relatively similar patterns for 

1/F1 and F2/F1 across all numbers of networks, display high variation, and lower consensus, 

in their network assignments between the individual- and the group-level parcellation. These 

regions are predominantly localized in higher-order association cortices in the frontal, 

parietal and temporal lobes (Fig. 5B, D). In particular, the frontoparietal network, default 

mode network, and anterior cingulate cortex display high 1/F1 and F2/F1 scores. On the 

contrary, primary-sensory regions, including the visual network, sensorimotor network, and 

medial temporal lobe display relatively lower 1/F1 and F2/F1 values. These latter regions 

demonstrate a higher consistency between the individualized and the group-level 

parcellation.

4.6. Sex-predictions

Fig. 6A displays the sex prediction accuracies for a range of network numbers (K = 2, …,

25), using gradient boosting machine (GBM) as the classifier. The accuracies are reported as 

the mean and standard deviation across all folds (blue bars). The accuracies for the null 

model are also depicted (orange bars).We observe that the model predicts sex for an unseen 

individual with the average accuracies ranging from 61% (for K = 2) to 70% (for K = 22), 

with the maximum of 75% (for K = 22). These reported accuracies are significantly higher 
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than random accuracies (permutation test; p-value<1e-10), for all numbers of networks even 

as low as K = 2, suggesting meaningful information is stored in the individualized 

parcellations.

We also tested for differences in head motion between the two sex groups (Fig. 6B), as 

motion could be a confound for our predictive analysis. We calculated the average frame-to-

frame displacement from the Movement_RelativeRMS.txt for each run and averaged over 

the 4 runs (REST1_LR, REST1_RL, REST2_LR, and REST2_RL). Using two-tailed t-tests, 

there were no significant differences in head motion between female (N = 458, mean = 

8.9e-02, s.d. = 3.41e-02) and male (N = 367, mean = 8.8e-02, s.d. = 3.55e-02) subjects (two-

tailed t-test: t(825) = 0.47, p = 0.64) (Fig. 6B).

To illustrate which regions were the most different between females and males, we utilized 

the “feature importance” attribute from gradient boosting machine classifier. Fig. 7A 

illustrates the sorted distribution of the importance scores for all the features used for 

classification, that is a vector of 188 cortical regions. We observe that regions in the anterior 

and posterior cingulate cortex, precuneus, superior parietal lobule, superior frontal gyrus, 

parahippocampal gyrus and inferior temporal gyrus (including anterior temporal pole) show 

relatively high importance scores (Fig. 7B). These regions, predominantly located in the 

default mode network (DMN) and the frontoparietal network (FPN), have been consistently 

associated with sex differences in the literature (Biswal et al., 2010; Scheinost et al., 2015).

4.7. Comparison with other methods

Fig. 8 displays the clustering evaluation results from three methods for varying number of 

networks, from K = 2 to K = 25 (Dunn Index: Fig. 8A; DB index: Fig. 8B). Fig. 8A (Left) 

reports the Dunn index for the exemplar-based and Shen parcellation for even Ks. Fig. 8A 

(Right) compares the same measure among all three parcellation approaches (exemplar-

based, Shen, and Wang) for K = 7, 17. Higher values of Dunn index indicate a better 

clustering algorithm, with larger intra-cluster and smaller inter-cluster similarities. Fig. 8B 

(Left) depicts the DB index for the exemplar-based and Shen’s approach for even Ks. Fig. 

8B (Right) displays the DB index for all three methods for K = 7 and K = 17. By definition, 

lower values for the DB index indicate a better clustering algorithm. These results suggest 

that our proposed exemplar-based algorithm is able to cohesively parcellate the brain for 

each individual, specifically for larger values of K.

In the second step of comparison, we seek to address the model’s predictive power in a sex 

discrimination analysis, using a GBM classifier. Fig. 9 (Left) displays the classification 

accuracies (the mean and standard deviation across all folds) for exemplar-based parcellation 

and Shen’s method, with the number of networks ranging from K = 2 to K = 24, only taking 

even values. Fig. 9 (Right) compares the three methods for K = 7 and K = 17.

5. Discussion

A novel algorithm has been introduced here that utilizes submodular optimization to 

parcellate the cerebral cortex into functional networks at both the group- and the individual-

levels. At the group-level, the proposed algorithm has favorable stability, convergence, and 
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replicability properties. At the individual-level, regions of high variability in parcellations 

overlap with known regions of high inter-individual variability in functional connectivity and 

parcellation. We showed that our algorithm performs well on internal clustering validation 

measures and more importantly it eliminates the cross-subject correspondence problem for a 

group when parcellating individuals. Finally, using only the individual differences in 

network parcellation vectors, we built a predictive model using a ten-fold cross-validated 

framework that predicts sex for the left out subjects with greater than 70% accuracy. This 

finding that network definitions are sex specific suggests that network studies need to take 

sex into account and that the same network should not be applied to the population as a 

whole. These prediction results show the benefit of individual-level parcellation for 

extracting additional information that would otherwise be missed by simply using a full 

group-level parcellation.

5.1. Exemplar-based clustering for individual network-level parcellation

Exemplar-based clustering algorithms have been successfully applied in a wide variety of 

data-mining applications. Exemplar-based approaches are conceptually similar to clustering 

methods such as k-means where we aim to find a set of representative points that best fit the 

data as a whole. Although k-means algorithms yield satisfactory results for problems with a 

small number of clusters, they generally suffer from sensitivity to the initialization (also 

called seeding). As the k-means cost function is highly non-convex, the commonly used 

iterative algorithms converge to local optima depending on the initialization. One key 

difference between the exemplar- based methods and k-means is that the former restricts the 

selection of the representative points to the actual observed data points. By doing so, instead 

of minimizing a continuous loss function, we maximize a discrete submodular function for 

which the classical greedy algorithm provides the best approximation to the optimal 

solution. Note that in general there are exponentially many possibilities. However, 

submodularity allows us to find a near-optimal solution in linear time (Mirzasoleiman et al., 

2015). In fact, exemplar-based clustering is empirically more robust to noise and outliers 

than k-means methods or its close variants such as Wang’s iterative brain parcellation (Wang 

et al., 2015). There are other variations of k-means that include soft assignment of nodes to 

clusters, such as fuzzy c-means (FCM) (Bezdek, 2013). Similarly, the proposed exemplar-

based approach could be extended to incorporate probabilistic assignment of nodes to 

networks, where the probability of assigning a node to a network is proportional to the 

inverse distance of the node to the corresponding exemplar. Finally, the greedy algorithm 

smoothly splits the old networks, similar to hierarchical clustering methods. This is in 

contrast to our earlier work (Shen et al., 2013) where for each value of K, a different 

network is proposed without preserving correspondences.

5.2. Comparison of algorithms for individual-level networks

We compared our exemplar-based parcellation with two other algorithms for delineating 

individual-level networks: Shen’s rotation based algorithm (Shen et al., 2013) and Wang’s 

iterative scaling algorithm (Wang et al., 2015). These two methods take contrasting 

approaches from each other to define individual-level networks, leading to different 

strengths and limitations. Shen’s method assumes that the entire dataset is accessible to 

jointly create new group- and individual-level networks. This method is well-suited for 
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studies where the network structure of the current population is not applicable for 

preexisting parcellations and a new parcellation must be created. However, this method may 

give different group-level networks for each study, and thus lacks a one-to-one 

correspondence between studies. Alternatively, Wang’s method assumes a group-level 

parcellation can be modified to fit an individual’s networks with limited changes to the gross 

topology of the group-level networks. This algorithm is well-suited for many studies where a 

preexisting group-level parcellation is a reasonable assumption. However, if an individual’s 

networks differ from the group-level parcellation such as in the case of brain tumors or other 

pathology (Ghumman et al., 2016), it is not clear how well this algorithm will perform. 

Given these limitations, neither approach can generalize to multiple applications. In contrast, 

our exemplar-based parcellation algorithm can be used to accomplish either of these 

purposes. We show our algorithm’s ability to find exemplars and parcellate individual-level 

networks in the main analysis (Figs. 2 and 4) and to find individual-level networks given a 

set of exemplars in the split-half analysis (Figs. 3 and 4). In this sense, our algorithm 

generalizes these contrasting approaches.

5.3. The need for individualized networks

Our finding that individual-level parcellations can predict sex demonstrates a problem of 

group-level parcellations. As the sex prediction relies only on network organization (not the 

connectivity based on these networks, as reported in Satterthwaite et al. (Satterthwaite et al., 

2015)), these results show that important information can be missed with group-level 

parcellations. If a basic characteristic such as sex in a cohort of healthy controls of a similar 

age results in different individualized networks, it is reasonable to assume that other 

characteristics linked to connectivity such as age (Hampson et al., 2012), cognition (Finn et 

al., 2015; Smith et al., 2015; Rosenberg et al., 2016), and neuropsychiatric diagnosis 

(Fornito and Harrison, 2012) could also show distinct individual-level networks. Overall, 

this finding suggests the need for individual-level parcellation algorithms, like our approach, 

to address individual differences, while maintaining a one-to-one correspondence of 

networks across subjects.

5.4. Localizing inter-individual variability

Our findings suggest that the greatest inter-individual variability in network organization is 

located in limbic, parietal, and prefrontal regions (Fig. 5). These findings are consistent with 

the previous studies that have examined inter-individual variability in connectivity (Mueller 

et al., 2013; Miranda-Dominguez et al., 2014; Finn et al., 2015; Mejia et al., 2016), and 

parcellations (Gordon et al., 2017b; Laumann et al., 2015; Wang et al., 2015). Accumulating 

evidence suggests that the neural systems subserving higher-order association cortices 

display more inter-individual variability in their connectivity profiles than those in 

sensorimotor regions (Frost and Goebel, 2012; Mueller et al., 2013). These regions further 

match with maps of evolutionary cortical expansion (Zilles et al., 1988) and long-range 

integration and regional segregation (Sepulcre et al., 2010), whose reflection on parcellation 

is expected.

Salehi et al. Page 16

Neuroimage. Author manuscript; available in PMC 2018 April 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.5. Sex differences

Recent neuroimaging studies have reported sex differences in functional connectivity 

(Kilpatrick et al., 2006; Biswal et al., 2010; Scheinost et al., 2015; Zhang et al., 2016). We 

observed that regions in the anterior and posterior cingulate cortex, precuneus, superior 

parietal lobule, superior frontal gyrus, parahippocampal gyrus and inferior temporal gyrus 

exhibited relatively high importance scores in the sex prediction analysis. These regions, 

predominantly located in DMN and FPN, have been reported to display sex differences 

(Biswal et al., 2010; Scheinost et al., 2015). These regions have also been consistently 

identified as functional hubs in the brain (Zuo et al., 2012; van den Heuvel and Sporns, 

2013), showing a high density of connections. When taken together, these observations 

suggest that functional hubs exhibit different network organization in males and females, 

consistent with previous studies (Tomasi and Volkow, 2012).

Note, however, that the main focus of the presented analysis was not to demonstrate sex 

differences in the functional organization of the brain. This could have been achieved using 

more informative features, such as functional connectivity matrices with information 

regarding all edges. Nor was it to distinguish between the two sex groups. Instead, the sex 

prediction was used to demonstrate that group effects can lead to different network 

definitions and thus patient versus control or patient group comparisons should not assume 

that the use of global network definitions is appropriate. As an aside, it is also interesting to 

note that given the minimal information stored in the functional node-to-network assignment 

vectors, composed of all integer values (1, 2, … K), it is impressive that such group effects 

can be detected.

5.6. Strengths and limitations

This study has several strengths. Unlike many other parcellation algorithms (Beckmann et 

al., 2005; Power et al., 2011; Yeo et al., 2011; Wang et al., 2015; Gordon et al., 2017a), our 

proposed approach does not depend on thresholds, or the selection of hyperparameters. Our 

method provides a one-to-one mapping across subjects and no additional algorithms are 

needed to map network correspondences. However, there are several limitations that should 

be noted. Individual-level networks could be influenced by individual differences in 

physiological noise (Rogers et al., 2007) and head motion (Van Dijk et al., 2012). As males 

and females did not show differences in motion, our network differences as a function of sex 

are unlikely due to the motion. In this work, the starting point was a 188-node functional 

atlas. It would be quite reasonable to begin, instead, at the voxel-level as individual node 

definitions may differ between the sexes, whereas our starting point assumes they are the 

same. Starting at the node level reduces the computational burden because the process of 

defining nodes already provides a large dimensionality reduction step. Moreover, as the atlas 

was derived from an independent dataset, this can reduce the chance of overfitting to the 

data of interest. On the other hand, it may cause propagation of registration noise and 

misalignment of the preexisting atlas. The approach described above, however, is applicable 

at the voxel-level and this can therefore be used to define nodes at the individual-level while 

maintaining cross-subject correspondences. Even though we started from a node-level atlas, 

the number of features used by the predictive model (d = 188) was relatively high comparing 

to the number of samples (n = 825). This may lead to a larger variance in the model and thus 
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make it harder to generalize over novel subjects. We deliberately did not reduce the number 

of features in order to achieve higher accuracies, as we sought to employ a fully transparent 

and data-driven analysis of the feature space with all the nodes included as features. In this 

regard, we also did not force any prior knowledge on the importance of nodes. Nevertheless, 

the achieved accuracies are comparable (or higher for some Ks) to the previous models that 

have used full functional connectivity data (Satterthwaite et al., 2015).

5.7. Conclusion

In conclusion, we present a novel algorithm to parcellate individual- level networks using 

exemplar-based clustering with submodularity optimization. The algorithm compares 

favorably with existing algorithms when parcellating nodes into individual-level networks 

while maintaining cross-subject correspondences. Using networks defined at the individual-

level, we demonstrated that brain network organization differs between the sexes as 

indicated by our ability to predict sex with greater than 70% accuracy. The sex prediction 

finding illustrates that individual parcellation of functional networks can reveal subgroups in 

a population and suggests that the use of a global network parcellation may overlook 

fundamental differences in network organization in subgroups. This is a particularly 

important point to consider in studies comparing patients versus controls or even patient 

subgroups. Network organization may differ between individuals and global configurations 

should not be assumed.
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Fig. 1. Pseudocode explaining the three steps of exemplar-based parcellation
In the first step (exemplar-search), K = 2, …, 25 exemplars are derived for each individual 

with a group constraint, i.e. by greedily optimizing a nonnegative monotone submodular 

function defined as the summation of the utility function over individuals. In the second step 

(individual-clustering), for each single individual, every node in the cortical area is assigned 

to its closest exemplar, where closeness is defined using a squared Euclidean distance 

function. Finally, in the third step (group-clustering), the group-level parcellation is derived 

by majority voting over all individual-level parcellations (i.e. the node-to-network 

assignment vectors).
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Fig. 2. The group-level parcellation schemes for the number of networks ranging from K = 2 to K 
= 25
At K = 2, the brain is roughly divided into the default mode network (DMN) and task-

positive network. As K is increased, the greedy algorithm discovers new exemplars while 

preserving the former ones, and hence parcellates the brain in a hierarchical setting. For 

example, at K = 3, the visual network is separated from the DMN and task-positive network. 

When K is increased to K = 11, many canonical networks (including the DMN, 

frontoparietal network (FPN), and sensorimotor network (SMN)) are observable. K = 25 was 

the finest resolution parcellation derived here. For K > 11 the changes are subtle and more 

difficult to observe (Fig. S1).
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Fig. 3. Stability and convergence of the group-level parcellation algorithm as a function of group 
size and individual selection
For each number of networks taking even values in the range K = 2, …, 25, the Hamming 

distance between the two parcellation schemes is displayed: 1) the group-level parcellation 

derived from the training set (that is a portion of the full dataset) and 2) the group-level 

parcellation derived by considering the entire dataset (with 825 subjects). On the x-axis, the 

number of subjects in the training set is displayed. On the y-axis, the Hamming distance (i.e. 

the number of network differences in the node-to-network assignment vectors) is displayed. 

Error bars correspond to the variations resulting from 100 permutations for the selection of 

subjects for the training set. The model is stable to the variation in the group size as the 

average difference between the perturbed parcellation using a subset of the subjects and the 

final parcellation using all the subjects is bounded and less than 30 (16% of the full vector 

with 188 nodes). The model converges to the final solution with a general decaying rate both 

in the average distance between the perturbed and the final parcellations and in the error bar 

lengths. Error bars are a proxy of the distances between perturbed parcellations using the 

same number of subjects selected from the entire dataset over 100 permutations.
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Fig. 4. Reproducibility of the group-level parcellation measured by the Dice coefficient
A) Dice coefficients between the group-level parcellation of two equal-size sets (with 400 

subjects). The reproducibility is examined by two different pipelines shown in part B. The 

colors match between the error bars (part A) and the diagrams (part B). The blue error bars 

represent the Dice coefficient between the parcellations derived by running the entire three-

step algorithm over each subset (group 1 and group 2) separately, as displayed by the right 

(blue) diagram in part B. The orange error bars show the Dice coefficient between the two 

group-level parcellations with the same exemplars (derived from group 1). Due to having a 

setting similar to training-testing validation, group 1 is called train 1 here and group 2 is 

called test 2. It corresponds to the left (orange) diagram in part B. B) The two pipelines for 

addressing the reproducibility of the group-level parcellation algorithm. The Dice coefficient 

between the parcellation outcomes of the left diagram is depicted in orange, and the 

corresponding measure for the parcellation of the right diagram is depicted in blue in part A.
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Fig. 5. Inter-individual variability measured by the first and second votes in the majority voting
A) The inverse F1 is displayed for all the cortical nodes in the brain, sorted from high to low. 

For all numbers of networks (K = 2, …, 25), inverse F1 measures are collapsed, scaled, and 

depicted in a barplot. As F1 measures the number of individuals who voted for the group-

vote node-to-network assignment, the inverse F1 is a measure of variability between 

individuals and the group, with a higher measure indicating higher variability and lower 

confidence. B) The inverse F1 depicted on the brain after summing over all numbers of 

networks. C) The ratio between the second (F2) and the first (F1) vote for the node-to-

network assignments is displayed for all cortical nodes in the brain, sorted from high to low. 

Similarly, the F2:F1 ratio is a measure of variability across individuals, as a high F1 and a 

low F2 corresponds to a confident network assignment reproduced across individuals. The 

barplot displays the corresponding measure for all numbers of networks (K = 2, …, 25) 

stacked on top of each other and scaled to the range (0,100). D) F2:F1 ratio depicted on the 

brain after summing over all numbers of networks. The higher-order association areas in the 

frontal, parietal and temporal lobes display higher inverse F1 and F2:F1 ratio values 

compared to primary-sensory areas.
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Fig. 6. Sex prediction accuracies using parcellation schemes as features, for the numbers of 
networks from K = 2 to K = 25
A) The sex prediction accuracies for a 10- fold cross-validation using gradient boosting 

machine (GBM) as the classifier. The classifier is fed with the node-to-network assignment 

vectors (with 188 elements) as features and a binary output (male vs. female) is predicted for 

an unseen fold of subjects. The mean and standard deviation across all folds are depicted in 

blue error bars. To determine the significance of our predictive model, the accuracies derived 

from the null distributions are also depicted in orange error bars. B) 2-tailed t-test 

comparison of the head motion between the two sex groups. There are no significant 

differences in head motion between female (N = 458, mean = 8.9e-02, s.d. = 3.41e-02) and 

male (N = 367, mean = 8.8e-02, s.d. = 3.55e-02) subjects (two-tailed t-test: t(825) = 0.47, p 

= 0.64).
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Fig. 7. Node importance in the sex-discrimination predictive model
A) The sorted distribution of node importance values in discriminating sex based on the 

parcellation schemes. The importance is derived from the “feature importance” attribute of 

the GBM sex classifier and scaled to the range (0,100). B) The feature importance measures 

depicted on the brain after summing up over all numbers of networks. Regions in the 

anterior and posterior cingulate cortex, precuneus, superior parietal lobule, superior frontal 

gyrus, parahippocampal gyrus and inferior temporal gyrus have relatively high importance 

scores.
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Fig. 8. Comparison of clustering evaluation measures (the Dunn and the Davies-Bouldin (DB) 
indices) across the three methods
A) The comparison of Dunn index between the exemplar-based method and Shen’s 

approach for even values of K = 2, …, 24 (Left), and the comparison of all three methods for 

K = 7 and K = 17 (Right). A higher Dunn index represents higher clustering quality with 

more compactness within clusters and more separation between clusters. B) The comparison 

of DB index between the exemplar-based method and Shen’s approach for even values of K 

= 2, …, 24 (Left) and the comparison of all three methods for K = 7 and K = 17 (Right). A 

lower DB index indicates a higher clustering quality.
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Fig. 9. Comparison of the models’ ability to preserve the inter-individual variability as measured 
by sex-prediction accuracies
The individual-level parcellation schemes derived from each model are separately fed to the 

GBM classifier. The classification accuracies (the mean and standard deviation across all 

folds) for exemplar-based parcellation and Shen’s method are displayed with the numbers of 

networks ranging from K = 2 to K = 24, taking even values (Left). The classification 

accuracies for all three methods are displayed for K = 7 and K = 17 (Right).
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