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Department of Oncology, Chifeng Municipal Hospital, Chifeng, China

As a major reason for tumor metastasis, circulating tumor cell (CTC) is one of the critical
biomarkers for cancer diagnosis and prognosis. On the one hand, CTC count is closely
related to the prognosis of tumor patients; on the other hand, as a simple blood test with
the advantages of safety, low cost and repeatability, CTC test has an important reference
value in determining clinical results and studying the mechanism of drug resistance.
However, the determination of CTC usually requires a big effort from pathologist and is
also error-prone due to inexperience and fatigue. In this study, we developed a novel
convolutional neural network (CNN) method to automatically detect CTCs in patients’
peripheral blood based on immunofluorescence in situ hybridization (imFISH) images. We
collected the peripheral blood of 776 patients from Chifeng Municipal Hospital in China,
and then used Cyttel to delete leukocytes and enrich CTCs. CTCs were identified by
imFISH with CD45+, DAPI+ immunofluorescence staining and chromosome 8
centromeric probe (CEP8+). The sensitivity and specificity based on traditional CNN
prediction were 95.3% and 91.7% respectively, and the sensitivity and specificity based
on transfer learning were 97.2% and 94.0% respectively. The traditional CNN model and
transfer learning method introduced in this paper can detect CTCs with high
sensitivity, which has a certain clinical reference value for judging prognosis and
diagnosing metastasis.

Keywords: circulating tumor cells, detection, count, convolutional neural network, transfer learning
INTRODUCTION

Circulating tumor cells (CTC) are all kinds of tumor cells in peripheral blood (1). Most of the CTCs
undergo apoptosis or phagocytosis after entering the peripheral blood, while a minority of CTCs
develop into metastasis and undergo for a period of dormancy, and lead to metastatic tumor (2, 3).
Cancer recurrence andmetastasis are the main causes of death in cancer patients (4, 5). A large number
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of experiments on esophageal squamous cell carcinoma (6), breast
cancer (7, 8), prostate cancer (9) and lung cancer (10) have proved
that CTCs were closely related to the prognosis of patients with
advanced cancer. As a simple blood test, CTCs detection has the
advantages of high safety, low cost and repeatability, which is
available at any time to evaluate the prognosis and recurrence risk
of patients (11, 12). Many experiments used liquid biopsy to
monitor the CTCs response in patients with malignant tumors to
evaluate the therapeutic response (13–15). Many studies have
shown that CTCs count is closely related to prognosis, which has
an important reference value for determining clinical results and
recurrence risk (16–18). The fluid biopsy can predict disease
progression in real time to assess tumor heterogeneity, and it was
possible to detect single CTCs or cell clusters (13, 19–21). Immune
enrichment with multiparameter flow cytometric is the gold
standard of CTCs detection (22), but this method was limited
due to the lack of tumor-specific markers, in this case, multi-label
immunofluorescence staining was essential. Epithelial cell adhesion
molecule (EpCAM) was often used to detect cancer cells in the
blood because it mediates contact with homotype cells in epithelial
tissue (23–25). The methods of CD45+, DNA fluorescence in situ
hybridization (FISH) of the centromere of chromosome 8 probe
(CEP8+)/chromosome 17 centromere duplication (CEP17+) have
been widely used to identify CTCs (26, 27).

In recent years, rapid and automatic identification of CTCs is
becoming more and more important, and the research on the
automatic identification process of CTCs was also accelerating
(28, 29), such as cell search system to obtain digital images (30),
rare event imaging system (REIS) (31), microfluidic platform
composed of multi-functional microfluidic chip and unique
image processing algorithm (32). However, due to the
heterogeneity of CTCs, these classification methods were often
subjective. Therefore, under certain conditions, test results vary
from examiner to examiner. The development of artificial
intelligence (AI) has accelerated scientists’ research on machine
learning. Machine learning has been widely used in medical
research because of its advantages of objectivity, rapidity, and
overcoming noise (33–35), especially in medical images (36, 37).
As the classical algorithms of machine learning, deep learning
and convolutional neural network (CNN) have made
outstanding contributions in promoting medical research (38–
40). Anthimopoulos et al. proposed the first problem specific
deep CNN for classification of interstitial lung diseases (ILD), the
results showed that (classification performance~85.5%) CNN
has potential in analyzing ILD (41). Poplin et al. used the
Inception-v3 neural network structure to predict potential
cardiovascular risk factors in retinal fundus images (42). Le
et al. constructed a deep neural network to classify Rab protein
molecules through two-dimensional CNN, which provided a
valuable reference for biological modeling using deep neural
network (43). At present, CNN has been widely used to promote
biomedical image analysis and successfully applied in cancer
diagnosis and tissue identification (44, 45). Compared with the
traditional machine learning methods, CNN-based automatic
image processing method has the advantage of eliminating the
bias caused by personal subjectivity (46). Negative enrichment
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combined with immuno fluorescence in situ hybridization
(imFISH) to detect CTCs has been proven to be feasible and
clinically valuable (47, 48).

In this study, we applied deep learning to identify CTCs to
reduce the subjective error. ImFISH was used to detect patients’
CTCs, each image contains positive CTCs nucleus and negative
control to segment the images of circulating tumor cells. CNN
deep learning network was used to identify circulating tumor
cells and count CTCs.
MATERIALS AND METHODS

A Framework for Identifying CTCs
The complete process of identifying CTCs based on CNN was
shown in Figure 1. Specifically, the peripheral blood of 776
cancer patients in Chifeng Municipal Hospital was collected
firstly. Then the blood samples were processed by the Cyttel
method. Based on the principle of immunology and with the help
of magnetic particle technology, CTCs were enriched by
gradually removing the components of plasma, red blood cells
and white blood cells, and CTCs were processed by imFISH (26).
Finally, after preprocessing the images, stratified sampling was
used to divide the data, 80% of the images were used for training,
and a deep learning algorithm based on CNN was used to train
the model. The remaining 20% were used as separate test set. The
prediction performance of the model was evaluated with the
results of a 5-fold cross validation (CV).

Samples Preparation
We conducted a retrospective study using plasma samples from the
Chifeng Municipal Hospital. A total of 776 patients were enrolled
from 2017 to 2019. Cancer types include lung cancer, liver cancer,
gastrointestinal cancer, breast cancer, carcinoma of thyroid, NPC
and others. After puncture for each patient, discarding the first 2ml
blood sample to avoid skin epithelial cell pollution, then routinely
collect 4ml peripheral venous blood, these samples were placed in a
blood collection vessel containing acid citrate dextrose (ACD),
gently inverted and mixed for 8 times before stored at room
temperature, and CTCs were enriched within 24 hours after
collection. The study was approved by the Ethics Committee of
Chifeng Municipal Hospital.

Enrichment of CTCs
The detection method selected in this study was Cyttel (49). The
collected blood was taken out and put into a centrifuge tube for
centrifugation experiment. After centrifugation at 776 g for 5
minutes, the supernatant was discarded to retain the precipitation,
washed the precipitate with CS1 buffer (Cyttel Biosciences Co., Ltd.,
Beijing, China), and then the red blood cells were fully dissolved
with CS2 buffer. Added anti-CD45+ monoclonal antibody binding
beads and the mixture was shaken evenly for 20 minutes to fully
bind with leukocytes. Another 3 ml of separation medium was
added to the centrifuge tube and centrifuged at a gradient of 300 g
for 5 minutes. Then the upper rare cell layer was then centrifuged at
a gradient of 776 g for 5 minutes, resuspended with CS1 buffer, and
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the test tube was placed on a magnetic scaffold for 2 minutes.
ImFISH identification was performed within 24 hours after coating,
fixing, and drying.

imFISH Identification of CTCs
The samples were fixed with a fixative, dehydrated and dried at
room temperature. The slide was coated with 10ml CEP8+

antibody, sealed and hybridized at 37°C for 1.5 h. After
hybridization, removed the cover slide and eluted the probe for
15 min. The slides were washed twice in 2×SSC. Then, the
prepared CD45+ fluorescent antibody was added to the sample
area, and the slides were placed in a humid box and incubated in
an oven at 33°C for 1 hour. After incubation, fluorescent
antibody against CD45+ was absorbed and 10 ml DAPI+ was
added to the specimen area. Then, CTCs were observed and
counted under a fluorescence microscope.

Detection Standard of CTCs
Each cell was divided into three different color channels: blue,
orange and red. Among them, the nucleus was shown blue in
DAPI+ (Figure 2A), and the centromere was shown in orange by
CEP8+ (Figure 2B), and the white blood cells were stained by
CD45+ immunofluorescence (Figure 2C). The interpretation
criteria of CTCs count are: (1) eliminate the aggregation,
superposition and interference of nuclei or impurities,
Frontiers in Oncology | www.frontiersin.org 3
(2) positive for DAPI+, (3) negative for CD45+, (4) CEP8+

signal points >2. That is, cells are regarded as CTCs if they are
CD45-/DAPI+/CEP8≥3 (50, 51).

Image Preprocessing
The Python package openCV was used to handle CTCs images
(52), including color and shape conversions. To be specific, the
DAPI+ channel was first transformed into gray scale, and then the
Gaussian filter was used to denoise. After extracting the gradient of
the image, the regions with a high horizontal gradient and low
vertical gradient were left, and the Gaussian filter was used to
denoise. Then, the blurred image was binarization, that is, each
pixel was replaced by the average value of the surrounding pixels
in order to smooth and replace those regions with obvious
intensity changes. Due to the lack of details in the contour of
the obtained image, it may interfere with the subsequent contour
detection, so it is necessary to be expanded and perform four
morphological corrosion and expansion respectively. After the
contour of the nuclear region was found, the minimum matrix
coordinates of the contour were obtained, and the coordinates
were mapped to the CEP8+ channel and segmented.

Computational Identification of CTC
With the development of artificial intelligence, deep learning has
been widely used in medical image processing. CNN is one of the
FIGURE 1 | The protocol of whole process.
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representative algorithms of deep learning, which allows higher-
level feature extraction and higher-level data prediction. After
images were preprocessed, stratified sampling was used to divide
the data, the model was trained by 5-fold CV, and the down
sampling method was used for the training set to ensure the
balance of positive samples and negative samples. CTCs in a single
nucleus were identified through CNN. CNN includes input layer,
hidden layer and output layer, the hidden layer includes layer1,
layer2 and layer3, and each layer also includes convolution layer,
excitation layer and pooling layer. After the images were fed into
the input layer, it first enters the first intermediate hidden layer
with convolution layer is composed of 32 5x5 convolution cores,
and then fed to the pool layer through the ReLU excitation layer
for dimensionality reduction. After dimensionality reduction, data
was output from the first hidden layer to complete the feature
extraction process. Then, all features are extracted through layer2
and layer3 hidden layers in turn. Finally, it enters the output layer
and outputs the result of whether it is CTC or not. The CNN in
this study involved VGG16, VGG19 (53), ResNet18, ResNet50
(54) and AlexNet (55).

These pre-training models have consumed huge time resources
and computing resources when developing neural networks
Frontiers in Oncology | www.frontiersin.org 4
usually. In recent years, transfer learning has become a new
learning framework to solve this problem (56, 57). CNN model
is pre-trained using a large number of images, and the trained
model is distributed by its inventors for adoption. Transfer
learning relies on the pre-trained CNN model to realize the
knowledge transfer of different but related tasks, that is, using
the existing knowledge learned from the completed tasks to help
complete the new tasks. If the knowledge transfer is successful, it
will greatly improve the learning efficiency by avoiding expensive
data labeling. Transfer learning is defined as follows: a given
domain D consists of feature space X and edge probability
distribution P(X), a label space y and a prediction function f
consist a task T. DS and DT represent the source domain and the
target domain, respectively, may have different feature spaces or
different edge probability distributions, that is, XS ≠ XT or PS(X) ≠
PT(X), in addition, task TS and TT are subject to different label
spaces (58).

Statistical Analysis
Receiver operating characteristic (ROC) analysis was used to
evaluate the performance of the model to identify CTC, and the
area under the curve (AUC) at the 0.5 cut-off point was used to
FIGURE 2 | The imFISH result and CTC count results. (A–C) The channels (DAPI, CEP8+, CD45+) of each image by imFISH. (D) The cell was regarded as CTC
because the number of centromeres was 3 (>2). (E, F) The cell was regarded as non-CTC because the number of centromeres was 2.
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measure the prediction accuracy. At the same time, the confusion
matrix was used to observe the specificity and sensitivity. All of
the analyses were performed using python version 3.6.9 and
“sklearn” package version 0.23.2
RESULTS

Patient Characteristics
From Jan. 2017 to Jun. 2019, a total of 776 patients from Chifeng
Municipal Hospital were included in this study. All the sample
types were peripheral blood, and their ages ranged from 11 to 90
years old, with an average age of 65 years. Among the known
cancer types, lung cancer was the most common (20.7%),
followed by breast cancer and gastrointestinal cancer, and
thyroid cancer was the least with only 2 cases. The clinical
characteristic data of the enrolled patients were shown
in Table 1.

Thousands of CTC and Non-CTC Images
Were Segmented by openCV
The imFISH was performed on the samples from 776 patients. In
order to avoid the influence of human factors, Python package
OpenCV was used to process cell images. After the nuclear region
Frontiers in Oncology | www.frontiersin.org 5
contour was found in the blue channel (DAPI+), the minimum
matrix coordinates of the contour were obtained, mapped to the
orange channel (CEP8+) and segmented, and the number of
centromeres was observed. If there were more than 2
centromeres, the cell was considered CTC (Figure 2D).
Otherwise it was non-CTC (Figures 2E, F). Finally, we
obtained 14166 images, including 694 CTC images and 13472
non-CTC images. The details of data were shown in Table 2, in
original train set, the number of CTC and non-CTC were 555
and 10777, respectively, ensuring balanced positive and negative
samples, we performed down sampling method, at last, the
number of CTC and non-CTC after down sampling were
555, respectively.

The Computational Method Performed
Well in Identifying CTC
The CNN method was used to identify the segmented cell
images. The whole process was shown in Figure 3. Firstly, the
hierarchical sampling method was adopted for all images, 80%
of the data were used for training and 20% of the data were
used for testing. The CNN-based methods were used to train
the model, including VGG16, VGG19, ResNet18, ResNet50,
and AlexNet. Specifically, the traditional CNN model and
transfer learning model were respectively trained on the
training set based on 5-fold CV. The transfer learning
model relied on the pre-trained CNN model to realize the
task of CTC recognition. The trained traditional CNN model
and the transfer learning model were used to test sets and
output the final results. The results of 5-fold CV based on the
trainset were shown in Figure 4A, the best performance was
based on ResNet18 with AUC was about 0.98, in which 90.26%
of non-CTCs were successfully identified, 9.74%were
incorrectly identified as CTCs, while only 5.41% of CTCs
are misclassified (Figure 4B), the sensitivity and specificity
were 95.3% and 91.7% respectively. After training the model,
we used ResNet18 with the best performance on the test data
set, its ROC curve was shown in Figure 4C with AUC was
0.988, and the confusion matrix also shown that ResNet18
performed well (Figure 4D). In addition, in order to improve
the prediction performance and save computing resources,
transfer learning was also used to train the model. The results
of 5-fold CV based on transfer learning in train data set was
shown in Figure 5A, the results of confusion matrix showed
that the sensitivity and specificity of transfer learning were
97.2% and 94.0% respectively (Figure 5B). After training the
TABLE 1 | Summary of the general clinical information of patients.

Characteristics No. (%) of Participants

Age
0-39 30 (3.9)
40-69 313 (40.3)
>70 103 (13.3)
Unknown 330 (42.5)

Gender
Male 248 (42.0)
Female 199 (25.6)
Unknown 329 (42.4)

CTC number 9.9(0-318)
Cancer type
Lung cancer 161 (20.7)
Liver cancer 18 (2.3)
Gastrointestinal cancer 107 (13.8)
Breast cancer 91 (11.7)
Carcinoma of thyroid 2 (0.3)
NPC 30 (3.9)
Other 367 (47.3)
TABLE 2 | The number of images.

Original Down sampling

Train set Test set Total Train set Test set

No. of CTC 555 139 694 555 139
No. of Non-CTC 10777 2695 13472 555 2695
Total 11332 2834 14166 1110 2834
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model with transfer learning, we used VGG16 with the best
performance on the test data set, its AUC was 0.988
(Figure 5C), and the sensitivity and specificity were 98.6%
and 96.5% respectively (Figure 5D).

The experimental results showed that the deep learning
method based on CNN can accurately identify CTC and
provide a powerful reference for the prognosis of patients. In
addition, we also summarized some samples that were
discriminated incorrectly, such as samples that were originally
non-CTC but were predicted to be CTC (Figure 6A), and
samples that predicted CTC to be non-CTC (Figure 6B). The
reason for the misjudgment first considers the artificial or
instrumental noise in the process of negative enrichment
techniques. Secondly, the exposure during the photographing
process after imFISH processing resulted in us not getting the
original film data. The third is that the centromere was not
completely located in the nucleus due to the platform.
Frontiers in Oncology | www.frontiersin.org 6
DISCUSSION

More and more evidence showed that CTCs are closely related to
the prognosis of patients with advanced cancer. It has an
important reference value for determining the clinical results
and recurrence risk. In recent years, blood testing has been
widely used to monitor the CTC response of patients with
malignant tumors and evaluate the prognosis and recurrence
risk of patients since its high safety and low cost. It reduces errors
caused by manually setting interpretation standards and save
time and labor costs. The importance of CTC rapid automatic
recognition is increasing, and the research of the automatic
recognition process of CTCs is also accelerating. Deep learning
has been proved to be suitable for detecting CTC due to its high
sensitivity and specificity in CTC counting. In addition, image
interpretation using machine learning can capture important
image features.
FIGURE 3 | Process for identifying CTC. On the training set, the traditional CNN model and transfer learning model were respectively trained based on 5-fold CV.
The transfer learning model relied on the pre-trained CNN model to realize the task of CTC recognition. The trained traditional CNN model and the transfer learning
model were used to test sets and output the final results.
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In this study, we developed a CTCs recognition method based
on deep learning. After collecting the blood samples from
Chifeng Municipal Hospital, we conducted CTCs enrichment
and imFISH experiments on the samples, and screened the
fluorescent images according to the image quality. A total of
14166 images were used for downstream analysis, including 694
CTC images and 13472 non-CTC images. 80% of the images
were used for training models and 20% for test. In order to
reduce the error caused by manual intervention, we used
machines instead of manual screening. Firstly, images were
segmented by using the Python package openCV, and the
coordinate information of the nucleus was obtained after
image preprocessing. Then, we used CNN models such as
VGG16, VGG19, ResNet18, ResNet50 and AlexNet to identify
CTCs. The results of 5-fold CV showed that their AUC reached
0.98, and the sensitivity and specificity were 95.3% and 91.7%,
respectively. In order to overcome the shortcomings of
consuming a lot of time and computing resources when
Frontiers in Oncology | www.frontiersin.org 7
developing neural networks, transfer learning was used to train
the model. Finally, the AUC was improved to 0.99, and the
recognition sensitivity and specificity also reached to 97.2% and
94.0% based on transfer learning.

The method of transfer learning was proposed, which can
carry out image interpretation, capture important image features,
reduce the errors caused by subjective factors in manual
interpretation, and save computing time and computing
resources. In the process of 5-fold CV, the down-sampling
method was used to overcome the serious imbalance between
positive samples and negative samples, and the 5-fold CV results
of transfer learning shown higher sensitivity and specificity.
Nevertheless, this study still has some limitations. The CTC
images contained in the enrollment data do not cover the whole
film, but focus on a CTC positive area under the microscope. Due
to quality issues, some images in the enrollment data are
abandoned. How to expand the image scope is the focus of
attention in the future.
A B

C D

FIGURE 4 | The results of CTCs identify based on traditional CNN. (A) ROC curve of 5-fold CV in train data set. (B) Confusion matrix of 5-fold CV in train data set.
(C) ROC curve in test data set. (D) Confusion matrix in test data set.
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A B

C D

FIGURE 5 | The results of CTCs identify based on transfer learning. (A) ROC curve of 5-fold CV in train data set. (B) Confusion matrix of 5-fold CV in train data set.
(C) ROC curve in test data set. (D) Confusion matrix in test data set.
A

B

FIGURE 6 | Some misjudged images. (A) Non-CTC images, but they were identified as CTCs. (B) CTC images, but they were identified as non-CTCs.
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