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Objectives: To demonstrate the feasibility of developing machine learn-
ing models for the prediction of hearing impairment in humans exposed 
to complex non-Gaussian industrial noise.

Design: Audiometric and noise exposure data were collected on a 
population of screened workers (N = 1,113) from 17 factories located 
in Zhejiang province, China. All the subjects were exposed to complex 
noise. Each subject was given an otologic examination to determine 
their pure-tone hearing threshold levels and had their personal full-
shift noise recorded. For each subject, the hearing loss was evaluated 
according to the hearing impairment definition of the National Institute 
for Occupational Safety and Health. Age, exposure duration, equivalent 
A-weighted SPL (LAeq), and median kurtosis were used as the input for 
four machine learning algorithms, that is, support vector machine, neu-
ral network multilayer perceptron, random forest, and adaptive boost-
ing. Both classification and regression models were developed to predict 
noise-induced hearing loss applying these four machine learning algo-
rithms. Two indexes, area under the curve and prediction accuracy, were 
used to assess the performances of the classification models for predict-
ing hearing impairment of workers. Root mean square error was used to 
quantify the prediction performance of the regression models.

Results: A prediction accuracy between 78.6 and 80.1% indicated that 
the four classification models could be useful tools to assess noise-
induced hearing impairment of workers exposed to various complex 
occupational noises. A comprehensive evaluation using both the area 
under the curve and prediction accuracy showed that the support vec-
tor machine model achieved the best score and thus should be selected 
as the tool with the highest potential for predicting hearing impairment 
from the occupational noise exposures in this study. The root mean 
square error performance indicated that the four regression models 
could be used to predict noise-induced hearing loss quantitatively and 
the multilayer perceptron regression model had the best performance.

Conclusions: This pilot study demonstrated that machine learning algo-
rithms are potential tools for the evaluation and prediction of noise-induced 
hearing impairment in workers exposed to diverse complex industrial noises.

Key words: Complex noise exposure, Hearing impairment, Machine 
learning, Noise-induced hearing loss.
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INTRODUCTION

Hearing loss is a public health problem, and hearing dif-
ficulty usually leads to long-term defects in language and 
cognitive development, understanding, behavior, and social 
adaptation (Barker et al. 2009). Worldwide, it was estimated 
that approximately 16% of disabling hearing loss in adults is 
due to occupational noise, ranging from 7 to 21% in various 
countries (Lie et al. 2016). Studies have indicated that noise-
induced hearing loss (NIHL) is a complex disorder influenced 
by genetic and environmental factors (Henderson et al. 1993; 
Mizoue et al. 2003; Nomura et al. 2005; Konings et al. 2009; 
Zhao et al. 2010; Pelegrin et al. 2015).

In real industrial noise environments, workers are not only 
exposed to continuous Gaussian noise, but often exposed to 
complex non-Gaussian noise as well. Complex noise refers to 
a non-Gaussian noise consisting of a steady or nonsteady state 
Gaussian noise that is punctuated by a temporally complex 
series of randomly occurring high-level noise transients. These 
transients can be brief high-level noise bursts or impacts. Com-
plex noise is very common in industry and the military. Experi-
mental and epidemiological data from animal and human noise 
exposures indicate that the current noise exposure criterion 
(ISO-1999 2013) underestimates the amount of NIHL acquired 
by workers exposed to complex industrial noises (Guberan et 
al. 1971; Atherley 1973; Hamernik & Qiu 2001; Hamernik  
et al. 2003; Qiu et al. 2007; Davis et al. 2009; Zhao et al. 2010; 
Qiu et al. 2013; Xie et al. 2016). These results emphasize the 
inadequacy of current methods of measuring and evaluating 
noise exposures for the purpose of hearing conservation. When 
NIHL is evaluated, noise characteristics must be taken into 
account.

An important goal in industrial health/hazard management 
and in applied NIHL research is the construction of a reliable 
model to predict NIHL from a set of given noise exposure 
parameters. Building a prediction model is a regression prob-
lem, that is, an estimation of an unknown continuous function 
from a finite set of noisy samples. ISO-1999 (2013) and other 
predictive schemes have applied the so-called “first-principle 
model” (Cherkassky & Mulier 2007). This approach is a distri-
bution-based statistical technique that tries to mechanically fit 
a prespecified function to some data set. Most NIHL research 
results are based on a first-principle approach. This approach 
works well when the number of samples is large relative to the 
model complexity. However, even when the number of samples 
is very large, this method can produce a large bias if the model 
complexity is incorrectly selected or the system under study is 
too complex to be mathematically described. The prediction of 
NIHL under various noise exposure conditions is just such a 
problem.
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New statistical approaches such as machine learning algo-
rithms, which can develop models from large, complex, and 
information-rich data sets, are available and have been suc-
cessfully used to solve complex nonlinear problems in science 
and engineering. Among the most attractive features of such 
approaches is that they are distribution-free models that learn 
directly from the input data. Machine learning algorithms could 
generate rules from data automatically and predict unknown 
data. Machine learning has been widely used and shown to be 
highly effective in predicting nonlinear and fuzzy information 
regarding complex issues (Chan & Paelinckx 2008), such as 
spam detection (Drucker et al. 1999), credit card fraud (Syeda, 
Reference Note 1), speech recognition (Graves et al. 2013), and 
face recognition (Mian et al. 2007). Therefore, they may be 
extremely useful in predicting the outcome of an exposure from 
the appropriate input parameters. However, little work has been 
done to predict NIHL from workers exposed to diverse complex 
industrial noises using machine learning algorithms.

In this study, four potential machine learning models based 
on a support vector machine (SVM) (Burges 1998), multilayer 
perceptron (MLP) (Basheer & Hajmeer 2000), adaptive boosting 
(Adaboost) (Settouti et al. 2016), and random forest (RF) (Brei-
man 2001) algorithms were investigated for predicting the hear-
ing impairment in workers. A database with subjects (N = 1,113) 
exposed to a diverse set of complex noise exposures was used in 
this investigation. The aim of this study was to demonstrate the 
feasibility of developing machine learning models for the predic-
tion of hearing impairment in humans exposed to complex indus-
trial noise using both classification and regression approaches.

MATERIALS AND METHODS

Data Collection
Subjects  •  Industrial workers were recruited from 17 factories in 
the Zhejiang province of China. Subjects (N = 1,644) were intro-
duced to the purpose and procedures to be followed in this study 
by an occupational physician and were asked to sign an informed 
consent form. The Institutional Review Boards for the protection 
of human subjects of the Zhejiang Provincial Center for Disease 
Control and Prevention approved the protocol for this study.
Questionnaire Survey  •  An occupational hygienist from the 
Zhejiang Provincial Center for Disease Control and Prevention 
administered a questionnaire to each subject in order to collect 
the following information: general personal information (age, 
sex, etc.); occupational history (factory, worksite, job description, 
length of employment, duration of daily noise exposure, and his-
tory of using hearing protection); personal life habits (e.g., smok-
ing and alcohol use); and overall health (including history of ear 
disease and use of ototoxic drugs). Before the data collection, the 
hygienist interviewed the administrators of the investigated fac-
tories to verify that the working environment remained constant. 
An occupational physician entered all information into a database.
Noise Data Collection  •  Shift-long noise recording files were 
obtained for each noise-exposed subject using an ASV5910-
R digital recorder (Hangzhou Aihua Instruments Co.). The 
ASV5910-R digital recorder is a specialized sound recording 
instrument that can be used for precision measurements and 
analysis of personal noise exposure. The instrument uses a 1/4-
inch prepolarized condenser microphone having good stability, 
high upper measurement limit, and wide frequency response 
(20 Hz–20 kHz). The sensitivity level of the microphone is 

−53 dB, and the measurement range is 40 to 141 dBA (the 
peak value upper limit is 144 dB). The ASV5910-R runs a self-
calibration program each time the power is turned on and can 
continuously run for over 20 hr. The shift-long noise for each 
subject was continuously recorded by the ASV5910-R at 32-bit 
resolution at a 48-kHz sampling rate, saved in a 32 GB micro 
SD card and downloaded to a computer for subsequent analysis. 
The recorder weighs only 85 g and was mounted on the shoulder 
of the subject using special clips.
Physical and Audiometric Evaluation  •  Each subject under-
went a general physical and an otologic examination. Otoscopic 
and tympanometric screening were conducted to each subject 
to rule out possible conductive hearing loss. Pure-tone hear-
ing threshold levels (HTLs) at 0.5, 1.0, 2.0, 3.0, 4.0, 6.0, and 
8.0 kHz were measured in each ear by an experienced physi-
cian. The testing was conducted in an audiometric booth (base-
line noise <30 dB SPL) using an audiometer (Madsen, OB40) 
calibrated according to the Chinese national standard (GB4854-
84). Audiograms were measured at least 16 hr after the subject’s 
last occupational noise exposure.

Definition of Hearing Impairment
In this study, the National Institute for Occupational Safety 

and Health (NIOSH) material hearing impairment definition 
was used, that is, the average HTLs at 1, 2, 3, and 4 kHz for the 
better ear exceeds 25 dB HL.

Data Analysis
Data sets were collected from 1,644 workers exposed to 

complex noises in 53 workshops of 17 factories in the Zhejiang 
province of China.
Feature Selection  •  Feature variables related to noise-induced 
hearing impairment were collected from three different data sources: 
(1) questionnaires, (2) shift-long noise records, and (3) audiogram 
tests. Features from the questionnaire survey included age, gender, 
the name of factory, the name of workshop, type of work in produc-
tion, length of service, and daily noise exposure time.

Recent results from animal experiments (Hamernik et al. 
2003; Qiu et al. 2006, 2007, 2013) and epidemiological studies 
(Zhao et al. 2010; Xie et al. 2016) have shown that, in addition 
to energy, a statistical metric of the noise amplitude distribution, 
the kurtosis, could order the extent of hearing and sensory cell 
loss from a variety of complex noise exposures. Thus, there is 
the possibility that the kurtosis, in combination with the energy, 
might be useful in evaluating a broad range of noise environ-
ments for hearing conservation purposes. The statistical met-
ric, kurtosis, was defined as a ratio of the fourth-order central 
moment to the squared second-order moment of the amplitude 
distribution. Note that the kurtosis of a Gaussian distribution is 
3. In this study, a median kurtosis of 4 or greater was used to 
identify a complex non-Gaussian noise exposure.

The kurtosis of the noise was computed over consecutive 
40-s time windows of each shift-long noise record using MAT-
LAB software (version 2015b, MathWorks), and the mean and 
median values were used to establish the kurtosis values for each 
noise record. The 8-hr equivalent A-weighted SPL (L

Aeq.8h
), the 

most important feature of the noise, was obtained from shift-
long noise record as well.

Features from the questionnaire survey and the noise expo-
sure were used as input variables. For the classification model, 
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the target variable was defined as a binary classification variable 
representing whether the average of HTLs of the better ear at 1 
to 4 kHz exceeds 25 dB HL, and for the regression model, the 
target variable was a continuous variable defined as the mean 
age- and gender-adjusted HTLs at 1, 2, 3, and 4 kHz.
Data Inclusion  •  For inclusion in the study, all subjects had to 
satisfy six criteria: (1) a minimum of at least 1 year employment 
at their current task; (2) consistently worked within the same 
job category and worksite (noise exposure area) for their entire 
career; (3) no history of genetic or drug-related hearing loss, 
head wounds, or ear diseases; (4) no history of military service or 
shooting activities; (5) no history of using hearing protection; and 
(6) exposed to complex non-Gaussian noise. It was confirmed by 

both the answers from questionnaires and the observation of a 
hygienist that the workers investigated rarely, if ever, used hear-
ing protection device. Accordingly, a total of 1,113 workers were 
included from the original pool of 1,664 subjects. Of the included 
workers, 221 were hearing impaired and 892 had normal hearing, 
as shown in Table 1. Table 1 summarizes the descriptive statistical 
information of the hearing loss of all workers in the study. Table 2 
provides a breakdown of average noise exposure level, duration 
of exposure, kurtosis, age, and sex, corresponding to the number 
of subjects exposed in each plant.

Figure 1 shows scatter plots of the relation between the quan-
titative independent variables and the average hearing thresholds 
of the better ear at 1 to 4 kHz for the workers included in the 
study. It can be seen from Figure 1A, C that the age and equiva-
lent A-weighted SPL (L

Aeq
) of the noise approximately obeyed 

normal distributions. Most workers were between 30 and 50 years 
old, and the exposure duration was between 1 and 20 years. The 
values of mean and median kurtosis were scattered in Figure 1D, 
E. It was noticed that the median kurtosis values were less than 25 
and the mean kurtosis values were less than 50 for most workers. 
The average HTLs of the better ear at 1 to 4 kHz for most workers 
were between 10 and 30 dB HL. It can be seen from Figure 1C 
that most of the subjects were exposed to complex noise with the 

TABLE 1.  Gender distribution of the hearing loss of all subjects 
in the study cohort

Qualitative  
Variables Category

Hearing  
Loss [n (%)]

Normal  
[n (%)]

Total  
[n (%)]

Gender Female 47 (15.1) 264 (84.9) 311
Male 174 (21.7) 628 (78.3) 802

Total number — 221 (19.8) 892 (80.2) 1113

TABLE 2.  Descriptive statistical information of characteristic of workers of each factory in the study cohort

Factory Male (n) Female (n) Age (yr) Duration (yr) LAeq (dBA) Median Kurtosis

Machinery plant 10 15 22–44 1–21 83.01–93.60 4.43–19.90
36.16 ± 5.09 12.80 ± 7.31 88.22 ± 2.62 11.04 ± 4.44

Steel net rack plant 49 0 23–49 1–16 87.28–109.13 4.49–91.20
36.61 ± 6.03 6.02 ± 3.91 94.98 ± 4.14 27.25 ± 20.56

Kitchen and bath factory 7 15 24–60 1–19 68.34–89.00 5.55–33.57
43.45 ± 9.63 8.32 ± 5.30 80.46 ± 4.82 18.36 ± 8.55

Assembly plant 130 66 23–47 1–30 69.77–106.45 3.92–118.90
35.86 ± 4.44 14.59 ± 5.36 90.79 ± 4.96 12.55 ± 12.24

Heavy truck engine factory 40 2 19–60 1–33 81.84–113.03 3.93–22.09
31.67 ± 11.01 8.40 ± 8.83 89.87 ± 5.83 7.33 ± 4.41

Pipeline factory 37 2 20–52 1–5 80.47–97.90 4.10–38.14
27.97 ± 6.94 3.15 ± 1.39 90.07 ± 3.79 18.21 ± 9.70

Auto fixture fastener plant 166 15 21–55 1–36 76.00–103.20 3.91–182.55
38.94 ± 6.81 18.83 ± 7.36 90.08 ± 5.16 14.15 ± 18.09

Machinery and electric co. 38 112 22–50 1–29 77.68–98.03 4.72–145.13
36.00 ± 7.34 7.76 ± 5.38 85.79 ± 3.40 20.08 ± 19.60

Pipe factory 32 3 21–56 1–35 73.85–92.95 4.21–23.64
36.20 ± 10.40 9.29 ± 8.19 84.60 ± 5.15 10.15 ± 4.43

Woven bag factory 13 11 24–46 1–20 68.90–96.33 3.99–13.03
38.88 ± 5.21 10.00 ± 3.55 87.94 ± 6.93 5.99 ± 2.27

Steel plant 71 0 20–53 1–33 74.15–99.83 3.91–18.03
39.99 ± 7.74 15.01 ± 7.77 88.66 ± 5.82 7.62 ± 3.74

Vehicle frame plant 46 16 27–51 3–34 77.29–104.85 3.93–37.60
39.21 ± 6.15 17.86 ± 7.47 90.97 ± 5.65 10.83 ± 7.02

Hardware factory 20 9 36–57 4–36 88.10–105.91 3.95–55.10
46.41 ± 5.46 20.69 ± 8.51 96.69 ± 4.27 11.65 ± 12.17

Cement plant 28 7 22–57 2–37 73.05–90.33 4.01–25.90
44.46 ± 7.77 19.69 ± 10.15 80.68 ± 4.76 8.59 ± 4.49

Automobile wheel Co. 30 21 30–48 2–29 81.75–102.12 3.95–40.05
36.45 ± 4.18 14.41 ± 5.24 89.79 ± 4.24 12.08 ± 7.76

Vehicle body factory 41 16 24–49 1–30 80.71–99.17 3.95–55.66
38.36 ± 5.35 17.18 ± 6.12 89.41 ± 4.30 12.40 ± 9.28

Steel rolling mill 44 0 22–52 2–30 92.27–109.20 4.00–20.74
39.86 ± 6.30 18.41 ± 5.78 99.11 ± 3.66 8.33 ± 4.10

LAeq, equivalent A-weighted SPL.
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L
Aeq

 >85 dBA, which exceeded the recommended exposure limit 
by NIOSH, that is, 85 dB, A-weighting, as 8-hr time-weighted 
average (NIOSH 1998).

Model Construction
Four potential machine learning algorithms were investigated 

in this study to build classification models for predicting hearing 
impairment and to build regression models for predicting NIHL 
quantitatively. Only the architecture of four machine learning 
classifiers is presented in this paper. The details of their classifi-
cation and regression algorithms can be found in the references 
listed below. To train and validate the algorithms, 10 experimental 
runs were conducted through 10-fold cross-validation.

	 1.	 RF model: The RF classifier uses the bootstrap resam-
pling technique to generate N new training sample sets. 
The new sample sets then are used to train N decision 
trees. The results of classification depend on the score 
formed by N decision trees voting. In general, an RF 
classifier consists of two modules: a training module 
and a classification module. The overall architecture is 
shown in Figure 2 (Breiman 2001).

	 2.	 Adaboost model: The Adaboost classifier is a highly 
accurate classifier that takes the single-layer decision tree 
as the base classification algorithm, training a number of 

weak learners based on the weight update for the same 
training set and finally combining these weak learners 
through weighted fusion to obtain the final strong clas-
sifier. The Adaboost classifier architecture is shown in 
Figure 3 (Freund & Schapire 1997; Nasrabadi 2007; Wit-
ten et al. 2016).

	 3.	 MLP model: The MLP classifier is a feed-forward neu-
ral network. It utilizes a supervised learning technique 
called backpropagation for training. The algorithm has 
the advantage of being able to approximate any nonlin-
ear function. In general, an MLP model consists of an 
input layer, at least one hidden layer, and an output layer. 
A schematic diagram of the MLP classifier is shown in 
Figure 4 (Basheer & Hajmeer 2000).

	 4.	 SVM model: The SVM classifier is based on establish-
ing a separating hyperplane having maximum distance 
from the closest points of the training set. This has the 
advantage of having a strong ability to generalize and 
can perform very well in solving nonlinear and high-
dimensional pattern recognition problems. The principle 
of an SVM classifier for linearly separable data is shown 
in Figure 5. For nonlinear problems, it is necessary to 
choose an appropriate kernel function. A polynomial 
function was used in this study (Burges 1998; Pontil & 
Verri 1998; Nasrabadi 2007).

Fig. 1. Scatter plots of the relation between the various quantitative variables and the average of hearing threshold levels of the better ear at 1 to 4 kHz 
(HTL1–4kHz) for all workers in the study cohort. A, Scatter plot of age vs. HTL1–4kHz. B, Scatter plot of exposure duration vs. HTL1–4kHz. C, Scatter plot of equivalent 
A-weighted SPL (LAeq) vs. HTL1–4kHz. D, Scatter plot of median kurtosis vs. HTL1–4kHz. E, Scatter plot of median kurtosis vs. HTL1–4kHz.
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Risk Factor Identification
The most predictive features for hearing impairment were 

identified by feature selection. The selected data values were 
normalized by min-max normalization technique, and then 
the p value of each variable was calculated using a t test. Finally, 
the features for building the SVM, Adaboost, and MLP mod-
els were selected based on a significance level of p <0.01. The 
RF algorithm can handle high-dimensional data and does not 
require features to be preselected by a t test.

Indices for Model Evaluation
In this study, the indices of (1) the area under the receiver oper-

ating characteristic (ROC) curve (AUC) and (2) prediction accu-
racy were used to measure the performance of the classifiers. A 
root mean square error (RMSE) was used to evaluate the perfor-
mance of the regression models. The RMSE is defined as follows:

	 RMSE =
−( )=∑ j

n

j jT Y

n
1

2

� (1)

Fig. 2. Schematic diagram of the random forest (RF) classifier consisting of a training module and a classification module.

Fig. 3. Schematic diagram of the adaptive boosting (Adaboost) classifier. Plus and minus signs represent two classes, respectively.
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where Tj and Yj are the measured and the predicted values of 
data j, respectively, and n represents the number of measure-
ments. The RMSE indicates the prediction accuracy of regres-
sion model. The lower the value of RMSE, the better predictive 
ability of the regression model.

RESULTS

Risk Factor Identification
It can be seen from Figure 1 that some of the risk factors 

appear to be related to hearing loss. Analysis of normalized 
values by t test revealed that age, exposure duration, L

Aeq
, and 

median kurtosis were significantly associated with hearing loss 
(p < 0.01) (Table 3). These variables were used for building the 
three of the prediction models; as noted above the RF model 
does not require preselection of variables.

Performance Evaluation of Different Hearing 
Impairment Prediction Models

In this study, 10-fold cross-validation was used to conduct 
the modeling and evaluation for both classification and regres-
sion analysis of hearing impairment. Each model was built by 
calling the Scikit-learn library (Pedregosa et al. 2011) which 
is one of the well-developed machine learning libraries based 
on NumPy, SciPy, and Matplotlib. The models were optimized 
using the grid search method by fine-tuning the parameters of 
models in the grid (Woodford & Phillips 1997).
The performance of Classification Models  •  The average 
ROC curve and the average AUC value of the cross-validation 
for all models are shown in Figure  6A. It can be reasonably 
assumed that the models did not over fit the data because the 
ROC curve corresponding to each model was smooth. How-
ever, the ROC curves could not directly reveal which classi-
fier is the best one. Instead, the classifier corresponding to the 
largest AUC can be considered to have the best function. Thus, 
the AUC value was used to evaluate the performance of each 
model in this study. As shown in Figure 6B, the SVM model had 
the best performance compared with the other models, with an 
AUC value of 0.808.

In addition, the performance of the machine learning clas-
sifier could also be evaluated by the prediction accuracy. The 
classification accuracies of four models are shown in Figure 7. 
It can be seen from Figure 7 that SVM had a slightly higher 
prediction accuracy than the other three models, though the 
predictive abilities of four models were not significantly 
different.

In real applications of machine learning and data mining, the 
AUC is usually used as the single value for evaluating the pre-
dictive performance of a model. The study of Huang and Ling 
indicated that the AUC is a better measure than accuracy and 
should replace accuracy when comparing the performance of 
machine learning algorithms (Huang & Ling 2005). In the pres-
ent study, both AUC and accuracy indexes showed that the SVM 
model was the best hearing impairment prediction model.
The Performance of Regression Models  •  NIHL can be 
quantitatively predicted by using the regression models with 
machine learning algorithms. In this study, Adaboost, RF, MLP, 
and SVM regression models were built to predict NIHL using 
the features of L

Aeq
, exposure duration, and median kurtosis. 

Measured HTL at each frequency was adjusted by subtracting 
the median age- and gender-specific HTL from Annex A (ISO-
1999 2013), and then the mean age- and gender-adjusted HTLs 
at 1, 2, 3, and 4 kHz were calculated and used as the definition 
of NIHL. The RMSE was used to quantify the prediction perfor-
mances of the regression models. The prediction performances 
of the four regression models are shown in Table 4. The MLP 
regression model had the best performance because its RMSE 
value was the lowest. Therefore, the MLP model was chosen 

Fig. 4. Schematic diagram of the multilayer perceptron (MLP) classification 
model. Here, x represents sample input, h represents hidden layer, and y 
represents output layer. The transfer function of the hidden layer vector is 
h w x = +( )f b1 1 , and the output layer neurons is y f b= +( )w h2 2 , where w1 
is the weight matrix between x and h, b1 is the bias vector of h, w 2 is the 
weight matrix between h and y, and b2 denotes the bias vector of y. The 
activation function is f x x( )= ( )max ,0 .

Fig. 5. A linear hyperplane learned by training support vector machine 
(SVM) in two dimensions (D = 2). Squares and circles represent class −1 
and class 1, respectively. wx + =b 0 represents separating hyperplane, 
wx + =b 1 and wx + = −b 1 represent margin boundaries, where w  and b are 
the unknown weights and bias, x represents sample input.

TABLE 3.  p values in the study cohort that reflect the relation­
ship between the constructed feature variables and hearing 
impairment

Feature  
Variables Gender Age Duration LAeq

Mean  
Kurtosis

Median  
Kurtosis

p value 0.013 1.6 × 10−6 5.0 × 10−7 5.7 × 10−12 0.011 9.7 × 10−4

LAeq, equivalent A-weighted SPL.
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to demonstrate the prediction ability of the developed machine 
learning regression models. The results are shown in Table 5. 
Because all audiometric data in this study were collected with 
a step size of 5 dB using the ascending technique, it is reason-
able to assume that the prediction was correct if the difference 
between predicted and measured NIHL values was less than or 
equal to 2.5 dB. Comparing the mean predicted NIHL with the 
measured NIHL from 17 factories in Table 5, it can be seen in 
Table 5 that the MLP regression model could predict NIHL in 
all but three factories, that is, the woven bag factory, the hard-
ware factory, and the cement factory.

DISCUSSION

Although machine learning algorithms have been widely 
applied, little work has been done to predict NIHL from work-
ers exposed to diverse complex industrial noises using these 
algorithms. Aliabadi et al. (2015) and Farhadian et al. (2015) 
reported their work of developing NIHL prediction models 
using neural network algorithms. Using a database with 210 
subjects from a steel factory, their results showed that the perfor-
mance of prediction models was satisfactory. However, it may 
not be suitable to show the feasibility of the prediction models 
with such a small size of sample. In this study, four hearing 

Fig. 6. Hearing impairment predictive performance of four machine learning classification models. Training and testing of all models were conducted with 
10-fold cross-validation. A, The mean receiver operating characteristic (ROC) curves of 10-fold cross-validation for four machine learning classification mod-
els. B, The average area under the curve (AUC) value of 10-fold cross-validation for four machine learning classification models. Wilcoxon signed-rank test 
was used to compute p values for AUC of two classifiers using 10-fold cross-validation. The error bars represent the standard deviations of the 10-fold cross-
validation. *p < 0.01, **p < 0.001.

Fig. 7. Classification accuracy of various machine learning prediction models. Adaboost, adaptive boosting; MLP, multilayer perceptron; RF, random forest; 
SVM, support vector machine.
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prediction models based on machine learning algorithms, using 
a noise database with 1,113 subjects from 17 factories, were 
investigated.

A univariate feature selection method, the t test method, was 
used in the present study. The p value can be used to rank the 
input variables according to the degree of correlation with the 
output variable. It can be seen in Table 3 that the p values of 
L

Aeq
 and duration were the smallest. It is not surprising that the 

equivalent A-weighted SPL and exposure duration are the most 
important risk factors for noise-induced hearing impairment. 
Because the definition of hearing impairment by NIOSH is not 
age and gender adjusted, age and gender were also considered as 
the risk factors. The kurtosis was used in this study to quantify 
the impulsiveness of the noise exposure. Because kurtosis was 
calculated over consecutive 40-s time windows of each shift-
long noise record, there were 720 kurtosis values for an 8-hr 
noise record. The two metrics, mean and median kurtosis, were 
selected as candidates for risk factors. It can be seen in Table 3 
that the importance of all the feature variables was ranked as 
follows: L

Aeq
, duration, age, median kurtosis, gender, and mean 

kurtosis. Based on a significance level selected (p < 0.01), four 
risk factors, that is, L

Aeq
, duration, age, and median kurtosis, 

were used in building the noise-induced hearing impairment 
prediction models.

Despite the large variation of worker’s ages, noise levels, and 
exposure durations as shown in Figure 1, a prediction accuracy 
between 78.6 and 80.1% indicated that the four classifiers could 
be useful tools to assess hearing impairment of workers exposed 
to various complex occupational noises. A comprehensive 

evaluation using both the AUC and prediction accuracy showed 
that the SVM model achieved the best score in classification 
and thus should be selected as the best tool for predicting hear-
ing impairment from occupational noise exposures in this study.

Although this work was based on the NIOSH hearing impair-
ment definition at 1 to 4 kHz, the approaches mentioned above 
are universal and could be used to predict hearing impairment 
under different definitions. For example, applying the models to 
predict hearing impairment based on the Occupational Safety 
and Health Administration definition, that is, the average HTL 
of both ears exceeding 25 dB at 1, 2, and 3 kHz, prediction 
accuracies between 76.6 and 83% were achieved as shown in 
Table 6. The results in Table 6 verified that the SVM classifi-
cation model produced the best performance with the highest 
prediction accuracy of 83%.

The results displayed in Table  5 indicated that the MLP 
regression model could correctly predict the mean NIHL 
except in three factories marked with an asterisk. Evaluating 
the noise data from these three failed factories, the sample 
sizes of these factories were small, indicating that the regres-
sion model might not be well trained with small size samples. 
Among these three failed factories, the cement factory showed 
the largest prediction error (6 dB). It was noticed that the work-
ers of the cement factory were working in open fields, while the 
workers of other factories worked in closed workshops. Unlike 
the subjects working at a fixed position in a closed workshop, 
the working position for most workers in the cement factory 
was mobile. Thus, one noise recording for these workers may 
not be suitable to approximate the noise exposure over the life-
time of work.

In this pilot study, four machine learning algorithms were 
used to build both classification and regression models for 
noise-induced hearing impairment prediction. Although the 
SVM and MLP algorithms demonstrated their appropriate-
ness for classification and regression analyses, Adaboost and 
RF algorithms also performed well in solving classification 
and regression problems. As shown in Figure  7, Adaboost 

TABLE 4.  RMSE of four regression models with 10-fold cross-
validation

Performance Metric Adaboost RF MLP SVM

Mean RMSE (dB) 2.894 2.858 2.727 2.942

MLP, multilayer perceptron; RF, random forest; RMSE, root mean square error; SVM, sup-
port vector machine.

TABLE 5.  Average predicted NIHL of each factory using multilayer perceptron regression model

Factory n Duration (yr) LAeq (dBA)
Median  
Kurtosis

Measured  
NIHL (dB)

Predicted  
NIHL (dB)

Machinery plant 25 12.80 ± 7.31 88.22 ± 2.62 11.04 ± 4.44 17.13 ± 7.93 18.21 ± 5.90
Steel net rack plant 49 6.02 ± 3.91 94.98 ± 4.14 27.25 ± 20.56 20.57 ± 10.10 19.80 ± 8.19
Kitchen and bath factory 22 8.32 ± 5.30 80.46 ± 4.82 18.36 ± 8.55 15.14 ± 6.80 16.93 ± 5.79
Assembly plant 196 14.59 ± 5.36 90.79 ± 4.96 12.55 ± 12.24 18.49 ± 9.21 19.42 ± 7.77
Heavy truck engine factory 42 8.40 ± 8.83 89.87 ± 5.83 7.33 ± 4.41 18.70 ± 8.71 17.42 ± 6.03
Pipeline factory 39 3.15 ± 1.39 90.07 ± 3.79 18.21 ± 9.70 11.47 ± 5.27 12.73 ± 4.98
Auto fixture fastener plant 181 18.83 ± 7.36 90.08 ± 5.16 14.15 ± 18.09 17.92 ± 9.07 17.80 ± 8.73
Machinery and electric co. 150 7.76 ± 5.38 85.79 ± 3.40 20.08 ± 19.60 19.10 ± 7.68 18.00 ± 6.98
Pipe factory 35 9.29 ± 8.19 84.60 ± 5.15 10.15 ± 4.43 16.16 ± 5.74 16.58 ± 3.94
Woven bag factory* 24 10.00 ± 3.55 87.94 ± 6.93 5.99 ± 2.27 21.87 ± 12.10 18.12 ± 7.68
Steel plant 71 15.01 ± 7.77 88.66 ± 5.82 7.62 ± 3.74 18.87 ± 5.89 17.53 ± 4.52
Vehicle frame plant 62 17.86 ± 7.47 90.97 ± 5.65 10.83 ± 7.02 16.97 ± 8.64 17.99 ± 7.47
Hardware factory* 29 20.69 ± 8.51 96.69 ± 4.27 11.65 ± 12.17 25.78 ± 11.34 22.70 ± 8.73
Cement plant* 35 19.69 ± 10.15 80.68 ± 4.76 8.59 ± 4.49 7.05 ± 5.29 13.05 ± 4.61
Automobile wheel Co. 51 14.41 ± 5.24 89.79 ± 4.24 12.08 ± 7.76 16.47 ± 6.76 18.95 ± 4.32
Vehicle body factory 57 17.18 ± 6.12 89.41 ± 4.30 12.40 ± 9.28 17.17 ± 8.05 18.53 ± 7.06
Steel rolling mill 44 18.41 ± 5.78 99.11 ± 3.66 8.33 ± 4.10 22.54 ± 10.87 20.56 ± 6.76

*Factory with prediction error larger than 2.5 dB.
LAeq, equivalent A-weighted SPL; NIHL, noise-induced hearing loss.
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and RF could achieve a similar classification accuracy as 
SVM and MLP. In the regression study, the Adaboost and 
RF even scored smaller RMSE than SVM. Thus, Adaboost 
and RF may also have potential value in predicting hearing 
impairment.

Though the classification and regression models using the 
four machine learning algorithms performed well in predicting 
hearing impairment, the performance could be further improved 
by acquiring more data from a larger number of subjects with 
well-documented and diverse exposures. In addition to the fea-
ture variables used in the above prediction models, more infor-
mation relating to hearing loss, such as the octave band noise 
level, kurtosis in frequency domain, smoking history, blood 
pressure, and genes related to susceptibility of hearing loss, 
should be collected. Another possible method to enhance per-
formance would be to develop a prediction model for exposure 
groups that share very similar noise characteristics, thus pro-
ducing a more homogeneous group of cohorts. With more noise 
data being collected and more relevant risk factors being con-
sidered, NIHL evaluation using machine learning can be very 
useful to hearing conservation practices.

CONCLUSIONS

This pilot study demonstrated that machine learning algo-
rithms are potential tools for the prediction of noise-induced 
hearing impairment in workers exposed to diverse complex 
industrial noises.
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