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Purpose of Study: The aim of this study was to characterize the central-autonomic inter-
action underlying the multifractality in heart rate variability (HRV) of healthy humans.
Materials and Methods: Eleven young healthy subjects participated in two separate
∼40 min experimental sessions, one in supine (SUP) and one in, head-up-tilt (HUT), upright
(UPR) body positions. Surface scalp electroencephalography (EEG) and electrocardiogram
(ECG) were collected and fractal correlation of brain and heart rate data was analyzed
based on the idea of relative multifractality. The fractal correlation was further examined
with the EEG, HRV spectral measures using linear regression of two variables and princi-
pal component analysis (PCA) to find clues for the physiological processing underlying the
central influence in fractal HRV. Results: We report evidence of a central-autonomic frac-
tal correlation (CAFC) where the HRV multifractal complexity varies significantly with the
fractal correlation between the heart rate and brain data (P = 0.003). The linear regression
shows significant correlation between CAFC measure and EEG Beta band spectral com-
ponent (P = 0.01 for SUP and P = 0.002 for UPR positions). There is significant correlation
between CAFC measure and HRV LF component in the SUP position (P = 0.04), whereas
the correlation with the HRV HF component approaches significance (P = 0.07).The corre-
lation between CAFC measure and HRV spectral measures in the UPR position is weak.
The PCA results confirm these findings and further imply multiple physiological processes
underlying CAFC, highlighting the importance of the EEG Alpha, Beta band, and the HRV
LF, HF spectral measures in the supine position. Discussion and Conclusion:The findings
of this work can be summarized into three points: (i) Similar fractal characteristics exist
in the brain and heart rate fluctuation and the change toward stronger fractal correlation
implies the change toward more complex HRV multifractality. (ii) CAFC is likely contributed
by multiple physiological mechanisms, with its central elements mainly derived from the
EEG Alpha, Beta band dynamics. (iii) The CAFC in SUP and UPR positions is qualitatively
different, with a more predominant central influence in the fractal HRV of the UPR position.
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1. INTRODUCTION
Heart rate regulation in healthy humans is known to exhibit com-
plex variability over an extensive dynamic range. Specifically in the
beat-to-beat RR interval (RRi) sequence, the underlying fluctua-
tion is intrinsic (Aoyagi et al., 2000, 2003; Amaral et al., 2001) and
exhibit scale-free characteristics of the multifractal type (Ivanov
et al., 1999; Sassi et al., 2009). The scale-free component of the
heart rate variability (HRV) is of basic importance. Not only is
this dynamic feature broadly observed in diverse natural and arti-
ficial systems (Task Force of ESC and NASPE, 1996; Gisiger, 2001),
it also carry relevant information in the clinical context, where
a diminishing fractal HRV was consistently reported in various
heart disease processes (Task Force of ESC and NASPE, 1996;
Komatsu et al., 1997; Lombardi, 2000; Mahon et al., 2002), and
in old age (Makikallio et al., 2001; Kors et al., 2007). Although the
HRV scale-free dynamics has been a subject of intense study, its
dynamic origin and possible functional correlates remain largely
unclear.

The sympathetic (SNS) and parasympathetic (PNS) branches
of the autonomic nervous system (ANS) are known to have
strong influence on the pace maker cells of the heart (Aksel-
rod et al., 1981; Task Force of ESC and NASPE, 1996; Malliani
et al., 1997). However, the complex interaction between SNS and
PNS does not provide an immediate characterization of the frac-
tal HRV. For example, via pharmaceutical means, SNS blockade
is known to have a minor effect on the multifractal property
of HRV, but PNS blockade can dramatically change the HRV
scale-free dynamics into one characterized by a much narrower
range of scaling exponents (Amaral et al., 2001; Gisiger, 2001).
In passive head-up-tilt (HUT), where there is a SNS activation
and PNS withdrawal caused by the reduced baroreflex afferent
input (Tulppo et al., 2001), the change of the HRV multifractal
property may not follow these pharmaceutical effects interpreted
separately (Lin and Sharif, 2010). It is thus plausible, at least in pas-
sive HUT, that other factors exist to influence the HRV scale-free
dynamics.
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One potential source that could provide further insights of
fractal HRV is the central nervous system (CNS). While fractal
fluctuation can emerge from the spontaneous activity of cultured
cardiac myocytes (Kucera et al., 2000), the changing fractal HRV
properties reported in sleep (Bunde et al., 2000; Brandenberger
et al., 2001; Van den Berg et al., 2005; Togo et al., 2006; Pereda
and Gonzalez, 2008) and mental exercise (Lucini et al., 1997; Peng
et al., 1999; Kubota et al., 2001; Phongsuphap et al., 2008) provide a
stronger support for a central-autonomic interaction in the HRV
scale-free dynamics. In general, the central influence on cardiac
functions is well known (Loewy and Spyer, 1990; Dampney et al.,
2002). Despite the brainstem centers that interact with the afferent
inputs, “direct” central command can trigger efferent responses to
influence heart rate and blood pressure in such events as antici-
pation of threat (Loewy and Spyer, 1990; Dampney et al., 2002),
onset of exercise (Goodwin et al., 1972; Loewy and Spyer, 1990;
Dampney et al., 2002). However, specific to the fractal compo-
nent of HRV, the potential role of CNS, whether anatomical or
functional, is mostly unclear.

The objective of the present study is to examine and charac-
terize the central link in fractal HRV. The presence of the central
component implies that the fractal properties of the heart rate
and brain activity data should be correlated to each other. But
fractal correlation of time series should be interpreted differ-
ently from the commonly used two-point correlation based on
the second order statistics. There are at least two reasons to make
such a distinction. First, fractal characterizes the property of a
distribution and cannot be fully described using only the sec-
ond order statistics (Falconer, 1990). For example, the two-point
cross correlation of fractal signals is self-similar and qualitatively
the same. Secondly, physiological data are not purely fractal sig-
nal and can exhibit rhythmic oscillation in a narrow frequency
band. Such Fourier modes can lead to a false impression of the
two-point cross correlation that has little to do with the fractal
component. A novel solution to the fractal correlation problem
in general was independently developed by Riedi and Scheuring
(1997), and Lévy-Léhel and Vojak (1998). Among others, their
main idea implies the scaling exponents of the time series is not
sufficient to describe the fractal correlation and the need for a mul-
tivariate approach. Indeed, time series can be coupled to exhibit a
wide range of fractal correlation without changing the underlying
scaling exponents (Lin and Sharif, 2007; Appendix A). It is thus
believed that a bi-variate multifractal approach is necessary for the
current investigation.

The main goals of the paper are to report evidence of a central-
autonomic fractal correlation (CAFC) in the heart rate and brain
data from the passive head-up-tilt (HUT) experiment. The CAFC
was further examined based on the regression with HRV and EEG
frequency domain measures. Both linear regression of two vari-
ables and principal component analysis (PCA) were employed to
gain insights of the physiological processes underlying CAFC.

2. MATERIALS AND METHODS
2.1. SUBJECTS AND EXPERIMENTS
Eleven subjects (eight males and three females; age: 25.72 ± 4.3-
year-old; weight: 69.48 ± 12.2 kg; height: 173.83 ± 8.2 cm)
without known cardiovascular, pulmonary, and neurological

conditions participated in the study. Our experiment is a pas-
sive HUT body maneuver, which is sufficient to exert measurable
effects on the ANS and the fractal HRV property (Tulppo et al.,
2001). All subjects were fully explained about the goal and detail
of the test reviewed and approved by the University Ethic Board,
and signed an informed consent form.

The pre-test protocol requires the subject to maintain normal
daily activity and routine, and have sufficient sleep. Heavy exercise
and alcohol consumption were not allowed before the test. The
subjects were asked to stay calm and remain steady on a tilt table
with foot rest and to keep their eyes open. Moreover, only sponta-
neous breathing protocol was considered. For the tilt test, subjects
were first in the SUP position for 10–20 min before tilted up to
a 75˚ UPR position. The test was conducted in a temperature-
controlled and shielded room of slightly dim lighting condition
(≤200 lx). No syncope event occurred in the tilt test.

Standard electrocardiogram ECG (five-lead) recording and
electroencephalography EEG bipolar measurement (International
10-20 system) were taken simultaneously via a 16-bit ADC ambu-
latory recorder at a 256 Hz sampling rate (g.MobiLab, GTEC Inc.,
Austria). The recorder has a hardcoded passband of 0.01–100 Hz
for the ECG recording and 0.01–30 Hz for the EEG recording. The
R wave in ECG was examined and any skip beat or erroneous
detection (due mostly to a significant P wave in ECG) was manu-
ally corrected. These problematic beats account for a small portion
of the entire record. On average, there are 3,849 uninterrupted
RRi in SUP (mean ± SD: 0.965 ± 0.079 s) and 5,308 RRi in UPR
(mean ± SD: 0.662 ± 0.055 s). All data analyzed below are based
on the frontal site recordings (FP1-FC3, FP2-FC4). Neighboring
frontal sites (AF3-F3, AF6-F4) were also recorded and showed
similar results.

2.2. RELATIVE MULTIFRACTALITY BETWEEN TIME SERIES
The traditional multifractal analysis of a time series is achieved
in two technical steps: first, estimate the singularity exponent, α,
which quantifies the fluctuation strength from one sample to the
next, and, second, calculate the multifractal spectrum, f(α), of the
intervals in which α is observed. The value of f(α) is also pro-
portional to the number of intervals that exhibit the fluctuation
strength α (Falconer, 1990). Hence, the larger the f(α) is, the more
frequent the fluctuation strength α is observed. The width of f(α)
is an important indicator for fractal complexity and one of the
primary variables used in this work. When the fluctuation is char-
acterized by one single α = α0, such as the fractional Brownian
motion, f(α) reduces to a singleton: i.e., f(α0) = 1 at α = α0 and
f(α) = 0 for α �= α0 (Falconer, 1990). In this case, the width of
f(α) is 0 and the fluctuation is considered relatively simple since
it is uniformly “the same.” This is to compare to the case where
α spans an interval, such as the binomial cascade (Falconer, 1990;
Riedi and Scheuring, 1997; Lin and Sharif, 2007 and Appendix A).
In this case, f(α) has a finite width and the fluctuation is consid-
ered complex since it consists of a mixture of different fluctuation
strengths. The width of f(α) can therefore properly measure the
fractal complexity of a time series.

Riedi and Scheuring (1997), and Lévy-Léhel and Vojak (1998)
made an important extension to the multifractal analysis. These
authors introduced the idea of relative multifractality (RM) by
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using the fractal property of one time series to measure that of the
other. While the technical details remain similar, one now focuses
on the relative singularity exponent, denoted as αRM. It is in this
setting that the fractal correlation is addressed. In particular, for
identical fractal time series, αRM = 1, which simply reflects the
same fluctuation of the time series. Having a constant αRM also
implies the corresponding f(αRM) is a singleton of zero width. In
general, strongly correlated fractal properties imply a small αRM

range and a small f(αRM) spectrum width. As the difference of
fluctuation in time series widens, in both the αRM value and the
interval scale in which αRM is observed, the αRM range increases
and f(αRM) attains a finite width (Lévy-Léhel and Vojak, 1998;
Lin, 2008; Lin and Sharif, 2010; Lin and Sharif, 2007; Riedi and
Scheuring, 1997). Hence, the width of f(αRM) of two time series
measures a different property from the width of f(α) of a sin-
gle time series; namely, a smaller (larger) f(αRM) width implies a
stronger (weaker) fractal correlation between the time series.

To employ RM in the present work, we first constructed the
aggregated EEG sequence based on the RRi. Let the EEG be e(t ),
and RRi, and its time stamp be r(n), t (n) = �nr(i), respectively.
The aggregated EEG sequence is defined by: y(n) = �e(t ′)/Mn for
t ′ in [t (n − 1), t (n)], n = 1,2, . . ., where Mn denotes the number
of EEG samples in [t (n − 1), t (n)]. To perform RM analysis, the
method of joint wavelet transform modulus maxima (JWTMM)
was used to determine the relative singularity exponent, denoted
as αR/E, and the corresponding f(αR/E) spectrum (Lin and Sharif,
2007, 2010; Lin, 2008). The JWTMM consists in the following four
steps (Appendix B):

(i) Calculate the wavelet transforms of R(n), E(n) where
R(n) = �nr(n′), E(n) = �ny(n′), and identify the corre-
sponding modulus maxima lines in the time scale plane. The
issues of using other wavelets or higher order Gaussian deriv-
ative wavelet have been discussed in the past (Lin and Sharif,
2007). We used the first order Gaussian derivative wavelet in
this work as it shows more robust scaling [see (1) below].

(ii) Estimate the scaling exponent τ (q, p) in the power law
relationship

Z (a; q, p) =
∑

CR(a)qCE (a)p ∼ aτ(q, p) (1)

where a represents the scale, CR, CE are, respectively, the
wavelet modulus maxima of R(n), E(n), of the nearest maxima
lines.

(iii) Extract the (q∗, p∗) values from the level set L = {(q∗, p∗),τ (q∗,
p∗) = 0} and, by considering p∗ as a function of q∗, p∗(q∗),
calculate

αR/E = (d/dq∗)(−p∗(q∗)),

f (αR/E ) = q∗αR/E + p∗(q∗)
(2)

where the derivative term is approximated using finite
difference.

(iv) Estimate the width of f(αR/E), W λ
R/E , λ = SUP, UPR, for q∗ in

the interval (Appendix B).

The background of these calculations are rooted in the mathe-
matics of multifractal theory and has a statistical physics analog

(Falconer, 1990). It should be noted that the level set extracted in
step (iii) above was designed to capture the exact idea of “using
the fractal of one time series to measure that of the other” in the
RM analysis. We will leave these background and technical details
in the references for interested readers (Falconer, 1990; Riedi and
Scheuring, 1997; Lévy-Léhel and Vojak, 1998; Lin, 2008; Lin and
Sharif, 2007, 2010). In order to distinguish from the traditional
multifractal spectrum, f(αR/E) will henceforth be called the RM
spectrum.

The RM spectrum width W λ
R/E estimated in (iv) above will

be used to measure the fractal correlation between the r(n) and
y(n) sequences. In addition, the UPR-SUP width-ratio UR/E =
W UPR

R/E /W SUP
R/E were calculated to examine the changing fractal

correlation in HUT. Thus, UR/E < 1 (>1) implies the transition
toward a stronger (weaker) fractal correlation in the UPR position.
Note, a superscript λ = SUP, UPR is added hereafter to the variable
when it is necessary to reference the body position. Separately, we
also estimated the spectrum width of the RRi sequence and cal-
culated the UPR-SUP width-ratio, U RRi, to address the changing
fractal complexity of HRV in HUT. Here, U RRi > 1 (<1) implies
the transition toward a more (less) complex RRi fluctuation in the
UPR position.

2.3. SURROGATES
Two types of surrogates were generated from the r(n), y(n)
sequences to test the fractal correlation result: shuffle and iter-
ated amplitude adjusted Fourier transformed (IAAFT) surro-
gates. While the shuffle surrogates completely change the original
data into uncorrelated random noise, IAAFT surrogates preserve
both the 1/f-like power spectra and the amplitude distribution
(Schreiber and Schmitz, 2000). We followed the algorithms docu-
mented in the literature (Schreiber and Schmitz, 2000) and verified
these properties. Once the surrogates of r(n), y(n) were gener-
ated, their RM spectrum width was estimated and compared to
the original data.

2.4. HRV AND EEG SPECTRAL COMPONENTS
Normalized LF (0.04–0.15 Hz) and HF (0.15–0.4 Hz) spectral
components (in unit nu) of HRV were calculated to character-
ize the SNS-PNS interaction and PNS activities in the autonomic
control of the heart rate (Akselrod et al., 1981; Task Force of ESC
and NASPE, 1996; Malliani et al., 1997). To track the changing
ANS activities, these calculations were carried out in segments of
B heart beats: Kj = {r((j − 1) B + 1), . . ., r(jB)}, j = 1, . . ., NB. For
each Kj, the corresponding EEG segment over the time interval of
B heart beats was obtained: Yj = {e(mj�t ), . . ., e(nj�t )}, where �t
denotes the sampling time, mj�t = t ((j − 1) B + 1), nj�t = t (jB).
We then estimated the spectrum based on the segment Yj in Theta
(4–7 Hz), Alpha (8–13 Hz), and Beta (13–30 Hz) bands and the
result is normalized by the total EEG spectral power of the seg-
ment. Since RRi is unevenly spaced, the Lomb periodogram (Press
et al., 2007) was used to estimate the normalized LF, HF com-
ponents. The spectral measures for each EEG segment Yj was
estimated using the Welch method. Results reported in this work
are based on the intervals of B = 128 beats with 50% overlap (64-
beat). Using B = 64,256 and/or using non-overlapping segments
yield similar results (Figure A1).
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2.5. REGRESSION ANALYSIS
To examine the underlying physiological processing in fractal cor-
relation, regressions were performed between the RM spectrum
width and the HRV, EEG spectral measures. There are a total of
six variables of interest:

A = { W λ
R/E , μλ

LF, μλ
HF, μλ

Theta , μλ
Alpha , μλ

Beta} , (3)

where μλ
η for η = LF, HF, Theta, Alpha, Beta are, respectively, the

mean HRV and EEG spectral measures averaged over all segments
in λ = SUP, UPR positions.

Two approaches were adopted. The first is a standard linear
regression between W λ

R/E and any one of the remaining five vari-
ables in A. Motivated by the possibility of multiple physiological
processes influencing fractal HRV, principal component analy-
sis, PCA, was also conducted to achieve a higher dimensional
regression (Jolliffe, 2002).

In PCA, we first built a 11 × 6 data array with the variables
in A arranged from column i = 1–6. Hence, each row of this data
array contains the subject’s response in RM and spectral measures.
Conceptually, one could also imagine the data in a six dimen-
sional Euclidean space spanned by the coordinate X1 = W λ

R/E ,

X2 = μλ
LF, . . ., X6 = μλ

Beta (following the order listed in A).
We then applied PCA to seek an optimal coordinate transforma-
tion of X i to best capture the data scattering in the six dimensional
space. The transformed axes, denoted as Z i, i = 1, . . . 6, are known
as the principal axes and are given by the linear combination
of the X i’s:

Zi =
6∑

j=1

djiXj (4)

where dji are the coefficients that measure the contribution of the
coordinate X j in the ith principal axis. Each Z i is also associated
with a principal value, PVi, that measures the data scattering along
the Z i. Arranging PVi in descending order, we used the cumulative
PVi

�PV (k) =
k∑

i=1

PVi/

6∑

i=1

PVi . (5)

and report only the first NP principal axes that satisfy the criterion
�PV (NP) < Th, Th ∼ 1. The remaining principal axes are of little
importance since they capture only a minute fraction of the data
scattering. Geometrically, it means the data scatter in almost the
perpendicular directions of these remaining principal axes.

2.6. STATISTICS
Standard methods were used to calculate the mean and SD of
the EEG, RRi spectral measures. Normal distribution was veri-
fied using the Kolmogorov-Smirnov test. Differences between the
spectral measures were tested for significance using the, two-tail,
paired t -test. Pearson’s product moment correlation coefficient
was used in the regression analysis between the spectrum width
estimates and the HRV, EEG spectral measures.

3. RESULTS
Our results will be given using two sets of variables. The first is
the spectrum width. They include the width of the RM spectrum
of the r(n), y(n) sequences and the width of the RRi multifractal
spectrum. The width-ratios UR/E and U RRi will be used to com-
pare the response between the SUP and UPR positions. The second
set of variables are the HRV and EEG spectral measures and their
regression results.

3.1. RM AND RRI SPECTRUM WIDTH
Figure 1 shows the RRi, EEG data, the spectral measures, as well
as the multifractal property of the r(n), y(n) sequences from two
subjects. The power law (1) estimated in the RM analysis is given
in Figure 2A. Most subjects exhibit robust scalings, ranging from
one to two heart beats to about 102 heart beats (Table 1). This
scaling range may be of interest as it could give a rough idea of the
time scale associated with the fractal correlation.

The main result of this work is given in Figure 2B, which
shows the width-ratios UR/E versus U RRi. It is evident that the
HUT maneuver stimulates a range of different “fractal reaction”
in the subjects. In particular, we identify a subgroup of subjects
G = (S2, S5, S9, S10) that are characterized by U RRi > 1; i.e., these
subjects exhibited more complex fractal fluctuation in the UPR
position. These subjects are also characterized by a much smaller
UR/E � 1, indicating a stronger fractal correlation in their RRi and
EEG sequences. The remaining seven subjects are characterized
by U RRi < 1, showing less complex RRi fluctuation in the UPR
position.

The overall negative trend is observed in this empirical relation-
ship and it is significant (P = 0.003). To this end, it is important to
emphasize that the fractal property of the individual sequence does
not dictate the outcome of the fractal correlation. As shown in the
past, fractal time series can be coupled to result in a wide range of
fractal correlation without changing their scaling exponents (Lin
and Sharif, 2007; Appendix A). Hence, the empirical relationship
between UR/E and U RRi represents a non-trivial result that suggests
the change toward a more correlated EEG, RRi fractal fluctuation
is associated with the change toward a more complex fractal HRV.

The above result was further examined using shuffle and IAAFT
surrogates. The null hypothesis of the shuffle surrogates is to test
whether there is any dynamics at all; namely, would the underly-
ing phenomenon be simply reproduced by independent identically
distributed random variates. The shuffling serves to achieve this
purpose by destroying the temporal correlation of the original
data. As a result, shuffle surrogates exhibit completely indepen-
dent fluctuations, which, in the present context, means weaker
fractal correlation, or a large RM spectrum width. The IAAFT
surrogate, on the other hand, is to test the null of a linear gauss-
ian process under (static) non-linear transformation, say, from
the measurement device (Schreiber and Schmitz, 2000). The sur-
rogate preserves both the amplitude distribution and the second
order scaling property of the original sequence, e.g., the power law
power spectrum. Hence, a relatively stronger fractal correlation
with a smaller RM spectrum width is expected. Our result is based
on the ensemble of 80 pairs of such surrogates from the original
r(n), y(n) sequences.
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The fractal correlation results of the surrogates are consistent to
the characteristics described above; i.e., the RM spectrum width
of the shuffle surrogate is consistently larger than the IAAFT’s
and the original data (Figures 2C,D). Using the group-mean sta-
tistic, the averaged RM spectrum width of the shuffle surrogate
is significantly larger than the original sequences’ (P < 1E−5 for
both SUP, UPR positions). It implies that destroying the temporal

correlation in r(n), y(n) sequences can result in a qualitatively
different outcome and suggests the importance of fractal dynam-
ics in the fractal correlation result. For the IAAFT surrogate, the
RM spectrum width is seen to lie in a noticeably narrower range
compared to the original data. But the group-mean statistic is
not significant in the UPR position and only approaches signif-
icance in the SUP position (P = 0.07). The non-rejection of the

FIGURE 1 | Continued
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FIGURE 1 | Data segments from a subject (S5) in the group G: (A) Left

column: RRi in SUP (top), UPR positions (middle), and their

multifractal spectra f (αr) (bottom). Right column: EEG in SUP (top), UPR
positions (middle), and the multifractal spectra of y (n), f (αy) (bottom). The
multifractal spectra were estimated using WTMM with the third Gaussian
derivative wavelet and q ∈ [−2, 2]. (B) The LF/HF spectral component ratio

(sympathovagal index), Sλ
LF(j)/Sλ

HF(j) in λ = SUP (“◦”) and λ = UPR
positions (“•”). (C) Top to bottom rows: normalized EEG spectral
components in Theta, Alpha, Beta bands, Sλ

Theta(j), Sλ
Alpha(j), Sλ

Beta(j),
respectively, in λ = SUP (left column) and λ = UPR (right column) positions
from the same subject. (D–F) Show the same set of plots for a different
subject (S11).

null hypothesis means, either the width estimate fails to discrimi-
nate against the alternative in the data, or the non-linear property
in r(n), y(n) may not be essential for CAFC.

3.2. HRV, EEG SPECTRAL MEASURES
Typical segment-to-segment spectral components from two sub-
jects have been shown in Figure 1. The expected SNS activation
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FIGURE 2 | (A) Scaling relationship (1): log Z (a; q, p) versus log(a) in the
SUP position from the same subject (S5) shown in Figure 1A; (q,
p) = (−1.4, −1.4), (2.6, −1.4), (0.6, 0.6), (2.6, 2.6), (−1.4, 2.6) from bottom
to top. The curves are separated for clarity purpose. The scaling range is
indicated by the vertical long-dash lines. The scaling exponent τ (q, p) is
estimated from the best-fit line shown as the solid line in the figure. (B)

URRi versus UR/E relationship. The filled circle indicates the result from the
subjects in group G. The solid line is the regression line (ρ = −0.80,

P = 0.003). The spectrum width was calculated for q in [−2, 2] (Appendix
B). (C) The RM spectrum width of the shuffle surrogates (“•”) and IAAFT
surrogates (“�”) in the SUP position. (D) The RM spectrum width of the
shuffled surrogates (“•”) and IAAFT surrogates (“�”) in the UPR position.
The width estimates of the original data are also included (“◦”) for
comparison. The error bars represent one SD. The results for the IAAFT
surrogates are shifted slightly to the right for clarity. The insets in (C,D)

show the group-mean RM spectrum width.

and PNS withdrawal due to the reduced baroreflex afferent input
in HUT (Tulppo et al., 2001) is indicated by the consistently
higher LF and HF spectral components ratio (sympathovagal
index) in the UPR position (Figures 1B,E). The HRV spectral
measures, μλ

η , η = LF, HF, along with their EEG counterparts:

μλ
η , η = Theta, Beta, Alpha, are summarized in Figure 3, and

are mostly significantly different between the λ = SUP and UPR
positions (see also group averaged statistics in Table 2).

Table 1 |The mean ± SD of the lower (amin) and upper (amax) scales of

the scaling range in (1) (unit: heart beat).

Body position amin amax

SUP 6.23 ± 1.70 76.21 ± 11.54

UPR 6.24 ± 1.46 107.10 ± 28.46
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FIGURE 3 | Averaged LF, HF spectral components μλ
LF

(“•”), μλ
HF

(“◦”) in (A)

λ = SUP, (B) λ = UPR positions, and the averaged EEG spectral

components (C) μλ
Theta , (D) μλ

Alpha , (E) μλ
Beta , λ = SUP (“◦”), UPR (“•”).

Significant difference (P < 0.05) between the SUP and UPR positions is

indicated by the asterisk (*). Note that the HF components in (A,B) and the
EEG spectral components in the SUP position are shifted slightly to the left
for clarity. The error bar represents 1 SD of the segment-to-segment variation
of the spectral components.

Table 2 | Group averaged EEG, HRV spectral components: mean ± SD,

μλ
η , η =Theta, Alpha, Beta, LF, HF, λ = SUP, UPR.

λ = SUP λ = UPR

μλ
Theta 0.17 ± 0.03 0.15 ± 0.05

μλ
Alpha 0.31 ± 0.12 0.28 ± 0.13

μλ
Beta 0.18 ± 0.06 0.20 ± 0.07

μλ
LF 0.47 ± 0.12 0.77 ± 0.11*

μλ
HF 0.43 ± 0.11 0.15 ± 0.10*

*P < 1E−5, SUP versus UPR.

Since their physiological correlates, better understanding of
the relation between these spectral measures and the RM spec-
trum width could shed lights into the physiological processing
underlying CAFC. A standard linear regression of two variables
and a multivariate PCA were conducted for this purpose. The
correlation coefficient (ρλ) and the associated P value from the

linear regression are reported in Table 3 and described in the
next two subsections. The results from the PCA are reported
last. To avoid confusion, we shall use the term correlation here-
after to refer to the two-point correlation in the linear regression
result. We shall always specify fractal correlation or CAFC wherever
necessary.

3.3. LINEAR REGRESSION WITH EEG SPECTRAL MEASURES
Figure 4 shows the scatter plots between the RM spectrum width
W λ

R/E and the EEG μλ
Theta, μλ

Alpha, and μλ
Beta in λ = SUP, UPR posi-

tions. It is observed that W λ
R/E is significantly and negatively corre-

lated with μλ
Beta (P = 0.01 for λ = SUP, P = 0.02 for λ = UPR), fol-

lowed by the weaker correlation with μλ
Theta (P = 0.42 for λ = SUP,

P = 0.26 for λ = UPR), and μλ
Alpha (P = 0.18 for λ = SUP, P = 0.40

for λ = UPR). Further of note is the generally larger μλ
Beta for the

subjects in G (inset of Figure 4C).

3.4. LINEAR REGRESSION WITH HRV SPECTRAL MEASURES
Figure 5 shows the scatter plots between RM spectrum width W λ

R/E

and HRV spectral components, μλ
LF, μλ

HF, λ = SUP, UPR. For the
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Table 3 | Regression results between averaged EEG, RRi spectral components and W λ
R/E .

Theta band Alpha band Beta band LF HF

ρSUP, P −0.27, 0.42 −0.43, 0.18 −0.73, 0.01 0.63, 0.04 −0.56, 0.07

ρUPR, P −0.37, 0.26 −0.28, 0.40 −0.70, 0.02 −0.11, 0.74 0.28, 0.40

FIGURE 4 | W λ
R/E versus μλ

η
scatter plot for λ = SUP (“◦”), UPR

(“�”) in the (A) η =Theta band, (B) η =Alpha band, and (C)

η = Beta. The regression lines for the SUP (UPR) data are shown as
solid (long-dashed) lines. The subgroup of subjects G are

highlighted using filled symbols (“•” for SUP and “�” for UPR
data). The inserts show the comparisons of the average of μλ

η

between the group G and the rest. The symbol follow the same
description given in (A–C).

SUP position, strong correlations with the LF (P = 0.04), HF com-
ponents (P = 0.07) are observed (Table 3). In addition, different
regression trends are noted: LF component is positively correlated
and HF component is negatively correlated. For the UPR posi-
tion, weak correlation with the LF (P = 0.74) and HF components
(P = 0.40) are observed. Observe also the larger difference of LF,
HF components for subjects in G (insets of Figures 5A,B).

3.5. MULTIVARIATE REGRESSION: PRINCIPAL COMPONENT ANALYSIS
RESULTS

The PCA results are summarized in Figure 6. Using Th = 0.95,
most of the data scattering can be captured by the first three prin-
cipal axes (Figure 6A). The actual �PV value sums up to a Th value
of ∼0.97, meaning that 97% of the data scattering is captured by
the selected principal axes.

The importance of the coordinate composition of a particu-
lar principal axis is determined by the dji value in (4). We will
focus mainly on the ones with a large d1i coefficient since it
corresponds to the coordinate associated with W λ

R/E , and thus
CAFC. They are Z1, Z3 for the SUP position and Z1 for the
UPR position (Figure 6B). Two unique features can be found in
these principal axes. The first is the relatively comparable dji val-
ues. The only exception is the much smaller d4i related to the EEG
Theta band spectral measure. These principal axes also share the
common characteristic of having significant d5i , d6i coefficients
that are associated to the EEG Alpha, Beta band spectral mea-
sures. The second feature is the difference between the SUP, UPR
positions. For Z1, Z3 of the SUP position and Z1 of the UPR
position, it can be seen the different compositions associated with
the HRV spectral measures: those for the SUP position are sig-
nificantly larger than those for the UPR position. In this regard,
the UPR position is qualitatively different in that the HRV spectral

measures play a less significant role in CAFC than those in the SUP
position.

4. DISCUSSIONS
The main finding of this work is the CAFC in fractal HRV. The
surrogate testing quickly confirms that the fractal dynamics in
r(n), y(n) sequences are indeed crucial for CAFC. The result from
IAAFT surrogates suggests that the non-linear characteristics in
r(n), y(n) sequences may not be essential for CAFC, although
there is always the possibility that the RM spectrum width does
not provide the discriminative statistics necessary to reflect CAFC.
Further examination on other surrogate types and alternative sta-
tistic should lead to deeper insights. The potential physiological
processing underlying CAFC was examined using regression on
various spectral measures. These results are discussed below.

4.1. Wλ
R/E

AND EEG SPECTRAL MEASURES
In the context of postural change, Cole reported elevated EEG Beta
band activity in the SUP to UPR transition as a result of a pro-
posed arousal factor (Cole, 1989; see also Nikulin and Brismar,
2004). Consistent to Cole, Schneider and co-workers reported
decreased Beta band activity in the zero gravity phase of the
parabolic flight (Schneider et al., 2008). Lipnicki pointed out a
baroreflex induced cortical inhibition contributing to the phe-
nomenon, and further suggested reduced activity in the locus
coeruleus noradrenergic system of the brainstem (Lipnicki, 2009).
The activation/inhibition of this area of the brain is interesting.
Not only does it have widespread projections through out the brain
(Berridge and Waterhouse, 2003), neural pathways to the region
where preganglionic parasympathetic cardiac neurons are located
were also found in the animal study (Ter Horst et al., 1991, 1996).
Given the known PNS effect on fractal HRV (Aoyagi et al., 2000,
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FIGURE 5 | W λ
R/E versus μλ

η
scatter plot for λ = SUP (“◦”), UPR (“�”) and

(A) η = LF, (B) η = HF. The regression lines for the SUP (UPR) data are shown
as solid (long-dashed) lines. The subgroup of subjects G are highlighted using

filled symbols (“•” for SUP and “�” for UPR data). The inserts show the
comparisons of the average of μλ

η
between the group G and the rest. The

symbol follow the same description given in (A,B).

2003; Amaral et al., 2001; Makikallio et al., 2005; Heffernan et al.,
2008), it is plausible that the link between the EEG Beta band
activity and HRV scale-free dynamics could exist.

In the current result (Figure 3E), we did not observe a consis-
tent Beta band elevation in the subjects. The length of the UPR test
in the protocol could explain this variation. The UPR test in this
work lasted mostly above 40 min and some degree of fatigue in the
subject is expected to dampen the effect. But the two-point corre-
lation between μλ

Beta and W λ
R/E was indeed significant (P = 0.01

for λ = SUP and P = 0.02 for λ = UPR; Table 3), suggesting the
possible link between EEG Beta band activity and fractal HRV.
However, we were not able to further imply an arousal factor as
suggested in the literature. This is because not all subjects exhib-
ited elevated Beta band activity, notably the lower μλ

Beta of S5,
S10 in the UPR position (Figure 3E). The underlying matter is
likely more complex due to the multiple processes contributing
to CAFC. The PCA result provides the support of this view. In
particular, the principal axes with a large W λ

R/E component all
share the similar feature of having, not only a large d6i coefficient
related to the Beta band spectral measure, but also a relatively
large d5i coefficient related to the Alpha band spectral measure. If
one restricts to the subspace spanned by the coordinates X 1, X 5,
X 6 (associated with W λ

R/E , μλ
Alpha , μλ

Beta), i.e., the group with

large dji coefficients in the selected principal axes, the subgroup
G can again be singled out, as it was by using the width-ratios in
Figure 2B. The same characterization achieved separately by these
spectral measures suggests the importance of the EEG Alpha, Beta
dynamics in CAFC.

4.2. Wλ
R/E

AND HRV SPECTRAL MEASURES
We will first discuss the results of the SUP position. The linear
regression shows strong correlation between W SUP

R/E and the LF, HF
HRV spectral measures. The underlying characteristics are consis-
tent to the known SNS, PNS effects on fractal HRV. In particular,

concurrent SNS activation and PNS withdrawal were found to lead
to relatively simpler HRV fractal pattern (Aoyagi et al., 2000, 2003;
Amaral et al., 2001; Makikallio et al., 2005; Heffernan et al., 2008).
These past studies and the link between CAFC and the HRV fractal
complexity (Figure 2A) are consistent to the current finding. In
particular, the increase or decrease of the HRV fractal complexity
can be separately predicted from the two different sets of vari-
ables, one from the known fractal effects based on the changing
HRV spectral measures, and one from the empirical relationship
between UR/E and U RRi. For example, the HF component is neg-
atively correlated with W SUP

R/E , indicating a large HF component
enhances CAFC (toward more complex fractal HRV), and the LF
component is positively correlated with W SUP

R/E , indicating a large
LF component weakens CAFC (toward less complex fractal HRV).
These results imply that a strong CAFC in the SUP position can in
part be attributed to the strength of the PNS activity.

The linear regression result from the UPR position, however,
shows quite a different picture. Here, a much weaker correlation
between W UPR

R/E and the HRV spectral components are found. In
addition, there is a dramatic increase of the P value from the SUP
to the UPR positions (Table 3). The known autonomic effects on
fractal HRV no longer seems to hold (Figure 2A). For example,
not all subjects exhibit “simpler” fractal HRV pattern with the SNS
activation and PNS withdrawal in the UPR position (Figure 2B).
This is most evident from the subjects in group G, who are charac-
terized by the transition toward more complex HRV fractal pattern
(U RRi > 1), stronger CAFC (UR/E � 1) in the UPR position. We
do not have further insights as to why these group exhibit quali-
tatively different behavior from the rest, except that three of them
are trained athletes that participate in the University sport teams.
Reports separately on the fractal HRV and EEG spectral pow-
ers did indicate that intense exercise can have a marked effect,
such as resulting in a smaller scaling exponent in HRV (Tulppo
et al., 2003; Karavirta et al., 2009) and higher EEG spectral powers
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FIGURE 6 | Principal component analysis results. (A) The principal values
PVi in SUP (“◦”) and UPR position (“•”). The inset shows the cumulative
�PV (k ) as given by (4). (B) The principal axis coefficients dji, i = 1, . . ., 6, (top
to bottom) in SUP (left column) and UPR (right column) positions. The x -label,
j = 1,. . .,6, specifies the coordinate number associated with Wλ

R/E , μλ
LF, μλ

HF,

μλ
Theta , μλ

Alpha , and μλ
Beta , respectively. The first three principal axes selected by

the criterion �PV (3) < 0.97 are shown with gray bars. (C) The projection of
the data 11 × 6 data array into the subspace spanned by Wλ

R/E , μλ
Alpha , μλ

Beta in
SUP (left) and UPR (right) positions. The data correspond to the subgroup of
subjects G are shown as filled circles.

(Lardon and Polich, 1996). However, one of the subjects (S5) in G
does not engage in the same level of exercise as the other three.

The PCA results imply similar interpretations. In particular,
considering the principal axes with a large d1i coefficient (related

to W λ
R/E ), the coefficients d2i , d3i associated with HRV spectral

measures are much more significant in the SUP position than in
the UPR position (Figure 6B). This may be read in parallel to
the stronger correlation between the W SUP

R/E and the HRV spectral
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measures from above, and implies a more substantial central-
autonomic interaction contributing to the fractal HRV in the SUP
position.

The main implications from the PCA are the multiple physio-
logical processes underlying CAFC and the important roles of the
EEG Alpha, Beta band dynamics. The qualitative difference of the
HRV spectral measure composition reported above implies the
predominant central influence in CAFC in the UPR position.

LIMIT OF STUDY
The current study is limited by the number of participants and
some aspects of the protocol. Particular to the ∼40 min tilt test, it
is expected that certain degree of stress and fatigue could develop
during the test. However, these factors were not directly measured
in this study. We should also remark the intrinsic limit on the
methodology, which has affected the protocol used in the study.
We held the view that a “free running” of the mind in wakeful-
ness could facilitate the RM analysis, albeit the subject’s mental
state was influenced by being physically constrained on the tilt
table. This is because certain rhythmic patterns can emerge in
the more specific brain state, such as the Alpha rhythm in med-
itation or Theta rhythm in cognitive processing. Such rhythmic
patterns typically manifest into few dominant Fourier modes
in the EEG that will inevitably “mask” the underlying fractal
pattern (Lin et al., 2006) and limit one’s ability to characterize
CAFC.

CONCLUSION
Although cardiovascular dynamics has long been a subject of
intense interest, the importance and implication of its fractal

dynamics are only realized in recent decades. By the general
framework of RM and the autonomic perturbation induced
by the postural change, we found the empirical support of a
central component in fractal HRV, i.e., the CAFC. The regres-
sion analysis further implies the importance of the EEG Alpha,
Beta band dynamics in CAFC, and thus fractal HRV. Evi-
dently, such central components introduce additional factors to
be included in the fractal HRV analysis. It is thus not sur-
prising to learn the difficulty of finding a consistent “base-
line” scaling property in HRV (Tan et al., 2009). The current
result may offer a reasonable explanation since other psycho-
physiological factors may come into play and affect the fractal HRV
property.

The PCA results provide us much insight into the potential
physiological processing in CAFC. Qualitatively different behav-
iors between the SUP, UPR position imply the importance of
considering central component in fractal HRV. Additional tests on
larger ensemble size and demographic differences, as well as with
specifically designed protocol to provoke the Alpha, Beta band
activities, are warranted to assess the robustness of these findings.
In conclusion, we believe CAFC could play the key role in the man-
ifestation and interpretation of fractal HRV. In application, CAFC
may also hold the key for the state of reduced HRV, with further
implications on the “simpler” HRV pattern witnessed in certain
heart diseased conditions.
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APPENDIX A
Fractal time series can be coupled together in various ways,
while maintaining the same set of scaling exponents. This has
been demonstrated by using binomial cascades (Falconer, 1990).
Albeit being a phenomenology model, the binomial cascade is
used extensively to simulate multifractal property in many nat-
ural processes. It is constructed iteratively from coarse to fine
scales. Each iterative step produces a version of the time series
according to the scale of resolution. As this process continues ad
infinitum, the time series so generated exhibits power law power
spectrum and multifractal property (Falconer, 1990), the styl-
ized facts of fractal HRV (Ivanov et al., 1999;Sassi et al., 2009).
By coupling two binomial cascades systematically can produce a
wide range of fractal correlation property, while maintaining the
same set of scaling exponents of the individual cascades. This was
shown for the binomial cascade built by using random placement
scheme and deterministic weights [equations (10, 16, 17) in Lin

and Sharif, 2007]. It is an important fact since it implies the need
to adopt a bi-variate approach to analyze the brain-heart fractal
interaction.

APPENDIX B
Equation (1) is generally known as the partition function in the
literature; (see, e.g. Falconer, 1990). The relative scaling expo-
nent estimated in (2) follows the multifractal formulism using the
Legendre transform (Falconer, 1990). In theory, the width estimate
of the multifractal spectrum is defined for q in the entire real line
(−∞, ∞). But this requires accurate statistics of the very small
and large αR/E exponents, which in turn demands very long time
series. For this reason, only a finite interval q ∈ [−q0, q0] could be
used to estimate the width since we are limited by the time a HUT
test can be performed. The width estimated turns out to be robust
in that the ratio UR/E does not vary sensitively with the range of q
(Lin et al., 2006).
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FIGURE A1 | Spectral measures of y(n) using different aggregation: 64 beats (red), 128 beats (black), and 256 beats (blue). The error bar corresponds
to 1 SD.
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