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Pre-mRNA-splicing and adenosine to inosine (A-to-I) RNA-editing occur mostly cotranscriptionally. During A-to-I editing,

a genomically encoded adenosine is deaminated to inosine by adenosine deaminases acting on RNA (ADARs). Editing-com-

petent stems are frequently formed between exons and introns. Consistently, studies using reporter assays have shown that

splicing efficiency can affect editing levels. Here, we use Nascent-seq and identify∼90,000 novel A-to-I editing events in the

mouse brain transcriptome. Most novel sites are located in intronic regions. Unlike previously assumed, we show that both

ADAR (ADAR1) and ADARB1 (ADAR2) can edit repeat elements and regular transcripts to the same extent. We find that

inhibition of splicing primarily increases editing levels at hundreds of sites, suggesting that reduced splicing efficiency ex-

tends the exposure of intronic and exonic sequences to ADAR enzymes. Lack of splicing factors NOVA1 or NOVA2 chang-

es global editing levels, demonstrating that alternative splicing factors can modulate RNA editing. Finally, we show that

intron retention rates correlate with editing levels across different brain tissues. We therefore demonstrate that splicing ef-

ficiency is a major factor controlling tissue-specific differences in editing levels.

[Supplemental material is available for this article.]

Adenosine to inosine editing (A-to-I editing) deaminates adeno-
sines in double-stranded RNAs leading to nucleotide differences
between RNA and DNA (Licht and Jantsch 2016; Eisenberg and
Levanon 2018). Inosine is primarily interpreted as guanosine by
cellular machines (Basilio et al. 1962; Licht et al. 2019). Hence,
adenosine deamination has a profound impact on the affected
RNAs, changing their coding potential, base-pairing abilities, fold-
ing, mRNA-translation efficiency, or proteins associated with the
targeted RNAs (Bass 2002; Tajaddod et al. 2015; Nishikura 2016;
Licht et al. 2019).

A-to-I editing is mediated by adenosine deaminases acting on
RNAs (ADARs). In mammals, two catalytically active ADAR
enzymes, ADAR (ADAR1) and ADARB1 (ADAR2) are known.
Both enzymes have overlapping, yet distinct substrate specificities
(Bass 2002). Mice lacking Adar die at embryonic day 12.5, accom-
panied by liver disintegration, hematopoietic defects, and an in-
crease in interferon signaling (Hartner et al. 2004, 2009; Wang
et al. 2004). Lethality can be rescued when sensors of viral
dsRNAs (Ifih1 or Mavs) are also deleted (Mannion et al. 2014;
Liddicoat et al. 2015; Pestal et al. 2015). Together, this suggests a
role for Adar in innate immunity, possibly helping in discriminat-
ing self from nonself RNA (Mannion et al. 2014; Liddicoat et al.
2015; Pestal et al. 2015). Adarb1 null mice die within 3 wk after

birth but are rescued when a pre-edited Gria2 allele is
coexpressed (Brusa et al. 1995; Higuchi et al. 2000).

ADAR and ADARB1 require double-stranded RNA structures
(dsRNA) for substrate recognition and editing (Higuchi et al.
1993; Herb et al. 1996). The sequence opposing the editing site
is called the editing-complementary site (ECS). For exonic editing
sites with an intronic ECS, editing needs to take place before
mRNA-splicing (Higuchi et al. 1993; Herb et al. 1996). Consistent-
ly, Nascent-seq inDrosophila or human cells shows that themajor-
ity of editing takes place cotranscriptionally (Rodriguez et al. 2012;
Hsiao et al. 2018). The efficiency of intron-removal has a direct im-
pact on the level of editing and less efficient splicing generally
leads to increased editing at sites that depend on an intronic ECS
(Licht et al. 2016). Vice versa, editing can cause changes in alterna-
tive splicing: Intronic editing in the Adarb1 transcript leads to the
inclusion of a premature termination codon (Rueter et al. 1999).
Moreover, splicing of the glutamate receptor is seemingly regulat-
ed by A-to-I editing (Higuchi et al. 2000; Schoft et al. 2007; Penn
et al. 2013). Finally, loss of ADARs causes transcriptome-wide alter-
native splicing changes (Solomon et al. 2013; St Laurent et al.
2013; Mazloomian and Meyer 2015; Hsiao et al. 2018).

Editing levels increase during development and vary between
tissues, a phenomenon that cannot be explained by differential ex-
pression of RNA editing enzymes alone (Wahlstedt et al. 2009;
Stulic ́ and Jantsch 2013; Huntley et al. 2016; Tan et al. 2017). For
instance, editing of some but not all protein-coding sites is partic-
ularly high in human arteries (Tan et al. 2017). The possible5These authors contributed equally to this work.
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underlying mechanisms are poorly un-
derstood but likely involve substrate-spe-
cific regulation but also global regulation
at different levels (Marcucci et al. 2011;
Garncarz et al. 2013; Tariq et al. 2013;
Oakes et al. 2017; Tan et al. 2017).

A-to-I editing sites have beenmostly
identified in different human tissues
(Levanon et al. 2004; Li et al. 2009b;
Peng et al. 2012; Ramaswami et al.
2012, 2013; Bazak et al. 2014; Picardi
et al. 2015). Most of the sites locate to
noncoding regions of transcripts, espe-
cially UTRs and introns, and are depos-
ited in various editing databases (Kiran
et al. 2013; Ramaswami and Li 2014; Pic-
ardi et al. 2017). REDIportal, for instance,
contains a collection of over 4.5 million
human A-to-I editing sites (Picardi et al. 2017). In contrast, only
∼8000 editing sites have been deposited for mice (Ramaswami
and Li 2014). Here, we used Nascent-seq to identify mouse editing
sites. Moreover, by manipulating splicing, we unravel how A-to-I
editing is regulated during transcript maturation and by mRNA-
splicing.

Results

Nascent-seq identifies over 90,000 novel editing sites

Most mouse A-to-I editing sites known today locate to exonic re-
gions. To explore the intronic editome, we used Nascent-seq
(Menet et al. 2012; Rodriguez et al. 2012). To allow high fidelity
editing-site identification, we aimed to compare wild-type and
editing-null mice. To achieve this, Adarb1−/− mice were rescued
by a pre-edited version of the glutamate receptor (Adarb1−/−,
Gria2R/R) (Higuchi et al. 2000) and crossed withmice heterozygous
forAdar (Hartner et al. 2004) carrying a homozygousMavs deletion
(Adar−/+, Mavs−/−). After crossing the heterozygous offspring, we
selected for F2 mice of genotype Adarb1−/−, Gria2R/R, Adar−/+,
Mavs−/−which are fully viable. Crossing of thesemice to each other
resulted in 25% mice carrying a homozygous deletion for Adar.
These mice are smaller when compared to their heterozygous
Adar−/+ littermates and have a high mortality around day 15 after
birth. For editing site determination, we isolated RNA at postnatal
day 14 from editing-positive mice expressing ADAR and ADARB1:
Adar+/+, Mavs−/−, Adarb1+/+, Gria2R/R (termedwildtype in this study).
Secondly, we isolated RNA from editing-null mice (double-knockout
or dko mice) where Adar and Adarb1 have been deleted: Adar−/−,
Mavs−/−, Adarb1−/−, Gria2R/R. Thirdly, we analyzed RNA from
mice where only Adarb1 (Adar2) had been deleted: Adar+/+,
Mavs−/−, Adarb1−/−, Gria2R/R (called Adarb1−/− mice for simplicity).

We extracted nascent RNA in triplicate from brains of wild-
type and dko mice followed by depletion of polyadenylated tran-
scripts and removal of rRNA to enrich for nascent transcripts.
Nascent RNA was sequenced (125-bp, paired-end) yielding be-
tween 113 mio and 247 mio uniquely mapped reads per replicate
and mapped to the mm10 RefSeq genome. Comparison with
poly(A)-mRNA-seq shows an increased intronic coverage
(Supplemental Fig. S1). Editing site detection was done using the
RDDpred package (Kim et al. 2016). RNA-DNA differences
(RDDs) were counted and plotted according to the type of differ-
ence resulting in the raw RDDpred output (Fig. 1A).

The majority of RDDs were A-to-G/T-to-C mismatches
indicating A-to-I editing followed by C-to-T/G-to-A mismatches,
suggesting C-to-U editing. All other transitions were found in rel-
atively low numbers, demonstrating the reliability of the pipeline.
Still, to further improve the quality, we removed all sites that were
also detected in the double-knockout (Adar−/−, Adarb1−/−) or that
could not be unambiguously aligned to one strand. This resulted
in the wild type-only set (“wt/stranded”). Here, we almost exclu-
sively observed A-to-G mismatches, suggesting enrichment for
true A-to-I editing events. Using Sanger sequencing, we validated
21 out of 22 editing sites; i.e., 95% (Fig. 1B; Supplemental Fig.
S2; Supplemental Tables S1, S2). As expected, we did not detect
anyA-to-Gpeak in theAdar−/−,Adarb1−/− set. This supports the no-
tion that ADAR and ADARB1 are the only active editing enzymes.
Subsequently, only A-to-G transitions exclusively detected in the
wild type were considered for further analysis. Thereby, we identi-
fied almost 100,000 A-to-I editing sites, whichwe submitted to the
REDIportal (http://srv00.recas.ba.infn.it/atlas/search_mm.html)
(Picardi et al. 2017).

Nascent editing sites primarily locate to introns and are associated

with repeat elements

Compared to previous studies, we identified over 90,000 novel ed-
iting sites (Supplemental Fig. S3; Supplemental Table S3). Of
97,416 identified editing sites, approximately 50,000 are not edit-
ed in the Adarb1−/− mice, suggesting that they are primarily edited
by ADARB1 (Fig. 2A), and ∼47,000 sites can be edited by ADAR. To
estimate the overall ADAR and ADARB1 “editing activity”, we
compared the editing level averaged across all sites in wild-type
and Adarb1−/− mice (Fig. 2B).

The editing level in Adarb1−/− mice is more than threefold
lower compared to wild type, suggesting that ADARB1 is the dom-
inant editase in the mouse brain. Eighty-six percent of the editing
sites map to intronic regions (Fig. 2C). The increased intronic cov-
erage also fostered the identification of many lowly edited sites
(Supplemental Fig. S4). Using the Ensembl variant effect predictor
(VEP), we predicted the effect of editing events separately for exon-
ic, intronic, and UTR sites (Fig. 2C; McLaren et al. 2016). The ma-
jority of exonic sites, for instance, are predicted to impact
noncoding transcripts, followed by regulatory regions and mis-
sense (nonsynonymous) variants. Intronic editing sites frequently
locate to noncoding transcripts and transcripts predicted to be
NMD-targets. It should be noted that “noncoding transcript”

BA

Figure 1. Nascent-seq identifies almost 100,000 mouse editing sites. (A) Nascent-RNA was prepared
from brains of wild-type mice and subjected to Illumina sequencing (n =3). After mapping to the mouse
genome (mm10), potential RNA-DNA differences (RDDs) were determined using RDDpred (Raw
RDDpred). To improve the identification of true RDDs, we removed all RDDs that either could not be
mapped unambiguously to one strand, only occurred in one replica, or were also detected in an edit-
ing-deficient mouse line (Adar−/−, Adarb1−/−; A−/−, Ab1−/−). Thereby, we enriched for A-to-G RDDs indic-
ative of A-to-I editing (wt stranded). (B) For validation, we used Sanger sequencing. Twenty-two editing
sites were tested, and representative cDNA plus corresponding gDNA sequencing traces are shown (all
traces are shown in Supplemental Fig. S2).
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also covers transcript variants that overlay with protein-coding
genes. Themajority of UTR editing occurs in 3′ UTRs. Some predic-
tions appear to clash with the overlying genomic annotation (e.g.,
2.2% of the exonic variants are predicted to have an effect on in-
trons). This can be explained by multiple VEP annotations for
one genomic site (see Methods). The proportions of genomic loca-
tions and effects predicted by VEP did not change when plotted
separately for ADAR and ADARB1 sites. The majority of editing
sites are associated with repeat elements, in particular, short inter-
spersed nuclear elements (SINEs), long interspersed nuclear ele-
ments (LINEs), and long terminal repeats (LTRs) (Fig. 2D). Both
ADAR and ADARB1 exhibit similar preferences toward different
classes of repeat elements. Only SINEs are slightly enriched for
ADARB1 editing, whereas LINEs are enriched for ADAR-mediated
editing. Subsequently, we analyzed the nucleotides enriched
or underrepresented around editing sites separately for ADAR

and ADARB1 and split these into re-
peat-associated and nonrepeat-associat-
ed sites (Fig. 2E,F). The sequence-motif
strongly differs with respect to repeat sta-
tus but exhibits only small differences for
ADAR and ADARB1 sites. This suggests
that substrate preferences for both edi-
tases differ only slightly. However, based
on the VEP prediction and repeat status,
this only moderately impacts the overall
preference for specific transcript features.

Editing-complementary sequences
(ECSs) oppose editing sites and form a
dsRNAwith the editing region. To identi-
fy ECSs regions, we calculated the ener-
getically most favorable hybridization
site between the region ±15 nt around
all editing sites identified in the Na-
scent-seq data and the extended sur-
rounding region of ±2500 nts around
the editing sites. Thereby, we predicted
∼50,000 ECSs (Supplemental Fig. S5A;
Supplemental Table S3). To test the qual-
ity and significance of the predicted pair-
ing, several assays were performed. First,
we deduced an empirical P-value by com-
paring hybridization energy of the pre-
dicted ECSs to the energies calculated
for 1000 input sequences with shuffled
dinucleotides. An ECS was accepted at a
P-value ≤0.001. As a control, we repeated
the analysis with randomly selected
adenosineshaving the samegenomic fea-
tures (e.g., “intronic” plus “repeat”). In
contrast to trueeditingsites, randomlyse-
lected genomic regions did not allow
identification of ECSs of similar quality
(Supplemental Fig. S5B). Next, to inde-
pendently confirm the predictions, we
analyzed the sequence spanning the edit-
ing site to the predicted ECS using the
RNA folding prediction tool RNAfold
and the structure visualization tool forna
(Lorenz et al. 2011; Kerpedjiev et al.
2015). The structures predicted for all 10
randomly selected transcripts again iden-

tified the proposed ECS (Supplemental Data Set S1). Lastly, for ex-
perimental validation, we cloned the genomic DNA coding for 10
editing sites with or without the corresponding predicted ECS
into pcDNA3.1− (Supplemental Data Set S1, Supplemental Table
S4). Following cotransfection with a plasmid expressing FLAG-rA-
DAR2, RT-PCR, and Sanger sequencing, we validated 10 out of 10
ECSpredictions (Supplemental Fig. S6; SupplementalTableS5; Sup-
plemental Methods).

Themany intronic editing sites identified byNascent-seq sug-
gest that the majority of editing happens cotranscriptionally as
seen before (Rodriguez et al. 2012; Hsiao et al. 2018). When we
grouped editing sites according to the ratio of editing site coverage/
ECS coverage (number of reads mapping to the editing site/num-
ber of reads mapping to the ECS), we saw that editing sites with
a lower ratio generally have a higher editing level and vice versa,
suggesting that the co-occurrence of the ECS within the same

CBA

D

E F

Figure 2. Both ADAR- and ADARB1-mediated editing is primarily associated with intronic regions and
repeat elements. (A,B) Adarb1 deletion leads to an ∼60% reduction in editing activity. (A) The total num-
ber of editing sites is shown separately for wild type and Adarb1−/− (sites edited by ADAR). (B) The average
editing level of all identified editing sites is plotted for wild type and Adarb1−/− (overall ADAR editing ac-
tivity). Error bars = standard deviation. n=3. (C ) The genomic annotation for all sites (dark blue), ADAR
sites (blue), and ADARB1 sites (light blue) is given (Exon, Intron, UTR, [n.a.] not annotated/intergenic). In
addition, for the subgroups Exon, Intron, and UTR, the predicted effect of editing is given using
Ensembl’s variant effect predictor (VEP). VEP terms: intron variant (intron); noncoding transcript variant
(noncoding); noncoding transcript exon variant (noncoding exon); NMD transcript variant (NMD); reg-
ulatory region (regulatory); 5′ or 3′ UTR variant (5′ or 3′ UTR); missense variant (missense); synonymous
variant (synonymous). (D) The percentage of editing sites associated with a particular repeat as identified
by RepeatMasker is shown. Colors as in C. (E,F ) Sequences enriched close to editing sites not associated
with repeat elements (upper panel) or associated with repeat elements (lower panel) depicted separately
for (E) ADAR or (F ) ADARB1. The height of the nucleotide indicates either the degree of overrepresenta-
tion (above the line) or the degree of underrepresentation (below the line).
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transcript is a major determinant of editing levels. Such co-occur-
rence is likely modulated by transcription speed and processing ef-
ficiency (Fig. 3). This effect was particularly strong for editing sites
within repeat elements (Supplemental Fig. S7).

Editing levels are cotranscriptionally modified by the efficiency

of splicing

By studying a selected set of exonic editing sites, we previously
showed that splicing efficiency is a major factor controlling the
level of editing (Licht et al. 2016). To determine the impact of splic-
ing on editing on a transcriptome-wide scale, we used the splicing
inhibitor meayamycin (Gao et al. 2013). Meayamycin inhibits
SF3b, a part of spliceosomal U2 snRNP at low nM concentrations.
Meayamycin was used on short term cultures of two primary cell
types. Firstly, we used bonemarrowof 6-wk-oldmice and inhibited
splicing using a concentration of 5 nM meayamycin for 6 h.
Secondly, we treated primary neuronal cultures established from
brains of mice at embryonic day e11.5 with 15 nM meayamycin
for 6 h.

For isolation of poly(A)-selected RNA and cDNA library prep-
aration, 5 +5 or 6 +6 (untreated plus treated) biological replicates
of primary neurons and bone marrow, respectively, were used.
Libraries were sequenced in a paired-end 125-bp mode, and reads
were mapped to the mouse genome (mm10). Each replicate yield-
ed between 63 mio and 279 mio uniquely mapped reads.

Splicing inhibition works in both systems as evidenced by
the larger proportion of reads mapping to intronic regions in
the meayamycin-treated compared to control cells (Fig. 4A).
Next, we quantified the number of reads at known editing sites
(our Nascent-seq data plus known sites from the RADAR and
DARNED databases [Kiran et al. 2013; Ramaswami and Li 2014]).
We defined the editing level as the number of reads supporting ed-
iting divided by the total number of reads. We analyzed the bone
marrow and the primary neuronal replicates (treated or untreated)
separately and only considered editing sites that were supported by
a minimum of five reads in each replicate of either the primary
neuronal cultures or the bonemarrow samples. Uponmeayamycin

treatment, 571 and 943 sites were found differentially edited (P-
value < 0.05) in bone marrow and neuronal cultures, respectively
(Fig. 4B; Supplemental Table S6). Editing generally increased
upon treatment, most likely because splicing inhibition leads to
a prolonged persistence of editing-competent dsRNA-structures
formed within introns or between exons and introns (Fig. 4C).
Consistently, the effect of splicing inhibition on editing is most
pronounced for intronic and internal exonic sequences. In con-
trast, editing sites in UTRs are onlymodestly affected in the prima-
ry neuronal samples. Editing levels in bone marrow UTRs even
decrease. A possible explanation could be that ADAR enzymes ac-
cumulate at intronic sequences and are depleted from UTRs under
treatment conditions. This idea is supported by the analysis of the
mean editing levels in meayamycin- and DMSO-treated cells (Fig.
4D). The basal editing levels (DMSO conditions) are lower in bone
marrow (about 5%) than in primary neurons (about 10%). Under
treatment conditions, the lower and thus potentially limiting edit-
ing activity in bone marrow may cause a shift of ADAR activity
from UTR and not annotated sites to intronic and exonic sites.
To further analyze this, we applied more stringent filtering using
a cut-off of 10 reads minimum coverage and split editing sites
into repeat-associated and nonrepeat-associated sites (Supplemen-
tal Fig. S8). Under these conditions, a similar shift in editing levels
was observed, albeit the changes were stronger for repeat-associat-
ed sites. The position of the ECS played only a minor role, but the
increase in editing was particularly strong for exonic sites in the
bone marrow when the ECS was located in an intron, consistent
with the notion that, in this scenario, the impact of splicing on ed-
iting levels should be particularly high (Supplemental Fig. S9). We
validated the NGS results using Sanger sequencing with a valida-
tion rate of 83% (Fig. 4E; Supplemental Fig. S10). In sum, reduced
splicing efficiency is associated with an increase in editing levels.

Alternative splicing factors are a potential novel class

of editing regulators

Next, wedeterminedwhether alternative splicing factors can affect
editing levels. To this end, we analyzed RNA-seq data from cortices
of Nova1−/− and Nova2−/− knockout mice (Saito et al. 2016). Both
NOVA1 and NOVA2 are brain-specific alternative splicing factors
(Ule et al. 2006). After mapping the reads to the mouse genome,
we again called editing levels at all known sites, requiring a
minimum of five reads in each replicate. Using these criteria, we
detected 15,103 sites that were edited in any of the genotypes
(Supplemental Table S7). In Nova1−/− and Nova2−/− mice, 385
and 520 editing sites, respectively, were differentially edited as
compared to wild type (P-value < 0.05) (Fig. 5A). Depending on
the location of the NOVA-binding motif in the pre-mRNA,
NOVA proteins can act as silencers or enhancers of splicing (Ule
et al. 2006). Consequently, the overall level of editing was not
shifted, suggesting that NOVA proteins rather modulate editing
in a target-specific way, unlike in meayamycin-treated cells (Fig.
5B). To test this idea further, we next analyzed if the change in ed-
iting levels for individual sites (where we had identified an ECS)
corresponded to the change in splicing efficiency. As a measure
of splicing efficiency we determined the intron-specific read-cov-
erage (more coverage = less efficient splicing; less coverage=more
efficient splicing). To achieve this, we used DEXSeq (Anders et al.
2012) and applied a P-value of 0.1 (Fig. 5C). As expected, when
the splicing efficiency was reduced as compared to wild-type
mice, editing levels increased (and vice versa). Still, this general
trend cannot be observed for all editing sites, suggesting that

Figure 3. The persistence of the ECS increases editing levels. Box plot
showing binned editing sites according to their log10 ES/ECS coverage
(red: log10 ES/ECS coverage< 0→ ES saturated with ECS; blue: log10 ES/
ECS coverage> 0→ ES deprived of ECS) and the respective editing level
(left side).
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NOVA1 and NOVA2 also indirectly influence editing levels.
Moreover, consistent with a binary role of NOVA1 and NOVA2
in alternative splicing, we did not observe a general increase in
the rate of intron retention in the Nova1−/− or Nova2−/− knockout
mice (Supplemental Fig. S11).

Splicing controls tissue-specific editing

levels

Alternative splicing and intron retention
levels vary between tissues and are im-
portant for defining tissue-specificity
(Braunschweig et al. 2014; Baralle and
Giudice 2017). Alternative splicing is en-
riched in the brain and regulated by
brain-specific splicing factors including
NOVA1 or NOVA2 (Raj and Blencowe
2015). We therefore reasoned that splic-
ing efficiency may contribute to ob-
served differences in editing between
tissues. The impact of splicing on editing
is particularly high when the editing site
is coordinated with an intronic ECS
(Licht et al. 2016). Most editing targets
with an intronic ECS like GRIA2 or
HTR2C are primarily expressed in differ-
ent brain regions (Li et al. 2009b; Her-
aud-Farlow et al. 2017). Therefore, we

collected all RNA-seq data for 13 different
brain regions available from the Geno-
type-Tissue Expression (GTEx) Con-
sortium (The GTEx Consortium 2013).
From these, we calculated the editing
level for all exonic human editing sites
available through the RADAR database
that are conserved between human and
either chimp, rhesus, or mouse (Ramas-
wami and Li 2014). As a measure of splic-
ing efficiency, we calculated the level of
intron retention by dividing the exonic
by intronic read coverage. Next, we re-
moved all editing sites where no editing
was detected or no reads mapped to the
intron. Moreover, we required both edit-
ing levels and splicing efficiency values
to be calculated for at least 10 tissues sup-
ported by a minimum of two samples,
leaving a total of 45 editing sites. Subse-
quently, editing sites were classified ac-
cording to the location of the ECS as
either intronic or exonic. We defined
an ECS as intronic when the editing-
competent duplex was formed between
the edited exon and the downstream
or upstream intron, whereas an exonic
ECS contains an editing-competent
dsRNA-stem solely within the edited
exon (Fig. 6A,B). If the location of the
ECS was not known, we identified the
ECS using RNA secondary structure pre-
diction tools (Lorenz et al. 2011; Kerped-
jiev et al. 2015). Subsequently, we

compared our structures to published predictions (if available)
and found that all of them match (Supplemental Table S8). In
sum, we classified 16 sites as intronic and 29 sites as exonic (Sup-
plemental Table S8; Supplemental Data Set S2).

The expected negative correlation between editing levels and
splicing efficiency was observed for editing sites with an intronic

CBA

D
E

Figure 4. Reduced splicing efficiency globally increases exonic and intronic editing. (A) Either bone
marrow cells or primary neurons were treated with the splicing inhibitor meayamcyin (MEA) or vehicle
control (DMSO). RNA was isolated after treatment, and poly(A)-selected RNA was subjected to RNA-
seq. The relative intronic coverage over editing sites after treatment with MEA is shown. Bone marrow:
n=6, primary neurons: n=5, error bars = SEM. (B) Bar plot displaying the overall number of significantly
changed editing sites for bonemarrow and primary neurons. (C) Box plots showing the log2 fold change
(log2FC) for editing levels in untreated (DMSO) and treated (MEA) primary cells (bonemarrow: left panel,
primary neurons: right panel) separated into different genic locations (exonic, intronic, UTR, [n.a.] not
annotated, i.e., intergenic). Dots represent single editing sites. Significantly changed sites are highlighted
in red (P-value < 0.05). (D) Mean editing levels in bonemarrow (left panel) or primary neurons (right pan-
el) for grouped editing sites (intron, exon, UTR, n.a.) under DMSO conditions (blue dots) or meayamycin
treatment (red dots). The blue (DMSO) or red (meayamycin) line is drawn at the mean editing level of all
sites. Gray arrows indicate the shift in mean editing levels upon meayamycin treatment. (E) Validation of
changed editing levels by Sanger sequencing. The editing site is marked by an arrow. The change in ed-
iting determined by RNA-seq is given below the chromatograms (+ or− indicates an increase or decrease
upon treatment as determined by RNA-seq).

CBA

Figure 5. The alternative splicing factors NOVA1 andNOVA2modulate editing levels. (A) Re-analysis of
publicly available RNA-seq data from the cortices of six wild-type and threeNova1−/− and threeNova2−/−

mice (Saito et al. 2016). The reads have been mapped to the mouse genome (mm10), and the editing
level of known editing sites was determined. The total number of significantly changed editing sites is
given (P-value <0.05). (B) Editing levels in cortices of wild-type and either Nova1−/− (left panel) or
Nova2−/− (right panel) knockout mice were determined, and the change in editing levels was plotted.
Dots represent single editing sites. Significantly changed sites are highlighted in red (P-value < 0.05). A
separate box plot is given for different genic locations (exonic, intronic, UTR, [n.a.] not annotated/inter-
genic). (C ) Box plot showing the log2 fold change of editing levels for editing sites with up-regulated
splicing efficiency (increase) or down-regulated splicing efficiency (decrease) for wild-type versus
Nova1−/− (green) or wild-type versus Nova2−/− (blue) mice. Splicing efficiency is determined by a
decrease (up-regulated splicing efficiency) or increase in intron-specific coverage (down-regulated splic-
ing efficiency) as determined by DEXSeq (P-value < 0.1).
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ECS like FLNB or GRIK2 (Fig. 6C). In contrast, no correlation was
observed at sites with an exonic ECS like GABRA3 (Fig. 6D).
Other editing sites with an intronic or exonic ECS exhibit a similar
trend (Fig. 6E,F). This clearly indicates that editing levels in a par-
ticular tissue largely depend on splicing efficiency when the ECS is
formed with the intron and identifies tissue-specific splicing as a
major factor controlling editing.

Discussion

In the mouse, only about 8000 A-to-I editing sites are known and
cataloged (Ramaswami and Li 2014). Still, mice are an indispens-
able model system to study editing—for instance, to delineate
the role of ADAR editing in innate immunity (Mannion et al.
2014; Liddicoat et al. 2015; Pestal et al. 2015). Using mice devoid
in all active ADAR enzymes, we performed Nascent-seq to obtain
a comprehensive set of nearly 100,000 A-to-I editing sites, most
of which are novel. To our knowledge, this is the first study where
a complete editing-null mouse has been used as a negative control
to filter against false-positive editing sites.

ADARB2 (ADAR3) is a third member of the ADAR proteins
(Chen et al. 2000). While the presence of a deaminase domain
suggests that ADARB2 may have deaminating activity, no
editing activity could be detected so far (Chen et al. 2000;
Schneider et al. 2014). Still, it cannot be excluded that ADARB2
acts on unknown substrates. Here, we show on a transcriptome-
wide scale that mice without both, ADAR and ADARB1, lack
any significant mRNA-deamination activity, indicating that
ADARB2 is not an active deaminase (see Fig. 1B). Transitions

detected in the double-knockout mouse mostly reflect C-to-U
editing but may also indicate RDDs that emerge due to unknown
biological activity shortly after transcription (Wang et al. 2014).

Nascent-seq performed on brain tissue lacking only Adarb1
showed an approximately threefold drop in editing in Adarb1−/−

mice. This is consistent with previous findings showing higher ex-
pression of ADARB1 in the mouse brain as compared to ADAR
(Heraud-Farlow et al. 2017). Apparently, ADAR can only partially
compensate for the lack of ADARB1 editing activity. The analysis
of ADAR- and ADARB1-mediated editing in the human GTEx
data suggested that ADAR primarily edits repetitive sequences
whereas ADARB1 is the primary enzyme targeting nonrepetitive
coding sequences (Tan et al. 2017). In contrast, we show here
that both ADAR and ADARB1 act on repeat elements. As we focus
on themouse brain, where ADARB1 is highly expressed, we cannot
exclude that ADAR is primarily acting on repeats outside the ner-
vous system. A potential drawback of our Nascent-seq approach
is the lack of Nascent-seq data for the Adar−/− genotype. Therefore,
we cannot clearly distinguish editing sites that could be edited by
either ADAR or ADARB1with equal efficiency. Such sites would be
falsely identified as exclusive ADAR sites in our study. Also, if
ADAR and ADARB1 needed to form heterodimers at particular
sites, such sites would be falsely identified as exclusive ADARB1
sites. Thus, while we are confident that most sites are properly
assigned as substrates of one of the two ADAR enzymes, our anal-
ysis clearly underestimates the number of sites where ADARB1
could act.

Using a mutational approach, we had shown previously
that the efficiency of splicing is a key mechanism to control

B

A D

C E

F

Figure 6. Splicing controls tissue-specific A-to-I editing for intron-dependent sites. (A,B) Exonic editing sites either depend on an (A) intronic editing com-
plementary site (intronic ECS) or (B) exonic ECS. Exons are shown as blue bars, introns as thin lines. The editing site (A→ I) is depicted. (C,D) Representative
graphs for the correlation between average editing level and average exon/intron coverage at the downstream intron (as a measure of splicing efficiency)
are shown for sites with a (C) intronic ECS like FLNB and GRIK2 or (D) exonic ECS like GABRA3 across different brain regions (RNA-seq data from GTEx).
(E,F ) The correlation (r= Pearson correlation coefficient) between average editing levels and average exon/intron ratio for conserved editing sites
(Coordinates: hg19; [Chr.] chromosome; [Str.] strand) is plotted when the read coverage allowed calculation of editing levels and exon/intron ratio for
at least 10 tissues (n=number of tissues) with minimum of two samples. Color code ranges from blue = strong negative correlation over white = no corre-
lation to red=positive correlation. The significance is indicated by one or two asterisks: (∗) P-value < 0.05, (∗∗) P-value < 0.01.
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the level of editing at several selected sites (Licht et al. 2016).
Here, using transcriptome-wide analysis, we can show that inhi-
bition of splicing leads to a general increase of editing in intron-
containing transcripts and mRNAs. The increase in editing upon
splicing inhibition is particularly strong for exonic editing sites
with adjacent intronic ECSs. Editing in UTRs does not follow a
general trend, as a decrease was observed in bone marrow where-
as UTR-editing in primary neurons was not shifted. Differences in
basal editing activity between both primary cell systems may ex-
plain this. While the mean editing level in bone marrow is ∼5%,
the level in primary neurons is almost twice as high. Moreover,
ADARB1 is the primary editase in brain, while in bone marrow
only ADAR is expressed at significant levels (Heraud-Farlow
et al. 2017).

Consistent with the role of splicing on editing, altered editing
patterns were detected in RNA-seq data fromNova1−/− or Nova2−/−

knockout mice. NOVA1 and NOVA2 can either enhance splicing
or silence splicing (Ule et al. 2006). Consistently, both increased
and decreased editing levels were observed in Nova1−/− or
Nova2−/− knockout mice. For most sites an increase in editing
was accompanied with a drop in splicing efficiency and vice versa.
Still, as this was not observed at all editing sites, NOVA1 and
NOVA2 may also indirectly influence editing, for instance, by
competing with other RNA-binding proteins. The splicing factor
SRSF9was found to repress ADARB1-mediated editing of brain-spe-
cific sites (Huang et al. 2018; Shanmugam et al. 2018; Quinones-
Valdez et al. 2019). Moreover, a recent survey for the impact of
RNA-binding proteins on editing levels revealed that alternative
splicing factors have a great impact on editing levels (Quinones-
Valdez et al. 2019). Together with our data, this suggests that alter-
native splicing factors are important editing regulatory factors that
fine-tune editing levels similarly as establishedmodulators of edit-
ing like AIMP2 and PIN1, or the E3 ligase WWP2 (Marcucci et al.
2011; Tan et al. 2017). Alteration of ADAR levels or its catalysis
rate would obviously affect all substrates in one cell or tissue to
the same extent. However, it is known that editing levels can
vary in a substrate-specific manner between tissues. This is most
clearly exemplified for the two RNAs encoding the paralogous pro-
teins filamin A (FLNA) and filamin B (FLNB). While editing of the
Flna transcript is highest in the cardiovascular system and the large
intestine, editing of Flnb is low (Stulić and Jantsch 2013). Instead,
Flnb editing levels are highest in the cartilaginous tissue and mus-
cle (Czermak et al. 2018). Therefore, substrate-specific regulation
must occur in these cases. RNA-binding proteins may compete
with ADARs in a substrate-specific manner (Garncarz et al. 2013;
Tariq et al. 2013; Quinones-Valdez et al. 2019). Our finding that
splicing efficiency is a major factor in regulating editing levels
may explain substrate-specific and tissue-specific regulation of ed-
iting levels. However, not all edited substrates follow the same
trend. For instance, the editing level of the Gria2 Q/R editing site
does not correlate with reduced splicing efficiency. In contrast to
other editing sites, editing of the Gria2 Q/R site is close to 100%
and required to support mammalian life (Higuchi et al. 2000).
Seemingly, only edited Gria2 pre-mRNA can be spliced efficiently
to release the mature transcript (Higuchi et al. 2000; Schoft et al.
2007; Penn et al. 2013). This suggests a specific regulation of
Gria2Q/R site editing and splicing that does not follow the general
trend described here.

In sum, our study highlights the importance of cotranscrip-
tional coordination between RNA editing and mRNA splicing
and shows that splicing efficiency and splicing factors are major
factors for the regulation of editing levels.

Methods

Isolation of nascent RNA and library preparation

Mavs+/− mice were acquired from Jackson Laboratory and crossed
with Adar+/− and subsequently with Adarb1−/−, Gria2R/R (stock
#008634, allele:Mavstm1Zjc). For Nascent-seq,mice of desired geno-
types were sacrificed at p14, and nascent-RNA was isolated from
brain tissue (Menet et al. 2012). After treatment with DNase I
(Thermo Fisher Scientific), contaminating polyadenylated RNA
was removed using the NEBNext poly(A) Isolation Module (New
England Biolabs). Ribosomal RNA was removed using Ribo-Zero
(Illumina). cDNA libraries were generated from 1 µg of nascent-
RNA using NEBNext Ultra Directional RNA Library Prep kit for
Illumina (New England Biolabs) and sequenced in paired-end
mode with 125-bp read length on a HiSeq 2500 (Illumina).

Splicing inhibition in bone marrow or primary neuronal cells

Bone marrow cultures were established as described (Kroeger et al.
2009; Licht et al. 2016). Bone marrow from one mouse was split
and either treated with 5 nM meayamycin for 6 h or DMSO as
vehicle control (Gao et al. 2013). Primary neuronal cultures were
established from mouse embryos at e11.5. Each embryo isolate
was split into twowells of a six-well dish coated with poly-D-lysine
and cultured as established previously (Licht et al. 2016). One well
was treatedwith 15nMmeayamycin for 6 h,while the correspond-
ing well was treated with DMSO as control. RNAwas isolated using
TriFast (VWR Peqlab) and DNase I treated (Thermo Fisher
Scientific). Libraries were generated as described above but from
polyadenylated RNA isolated using the NEBNext poly(A) mRNA
Magnetic Isolation Module (New England Biolabs).

Nascent-seq data analysis

Sequenced reads were quality-trimmed and adapter-clipped using
Trimmomatic (version 0.33) (Bolger et al. 2014) with default pa-
rameters. Quality was monitored using FastQC (version 0.11.3).
Reads were mapped against the mouse reference genome (assem-
bly mm10) using STAR (version 2.5.2b). RDDpred (Kim et al.
2016) was utilized for the detection of editing sites. MES-sites
(Mapping Error-prone Sites; negative reference set) are provided
for mm10 (http://epigenomics.snu.ac.kr/RDDpred/prior_data/
Mouse.MES.txt.gz). Annotated editing sites from the databases
DARNED (Kiran et al. 2013) and RADAR (Ramaswami and Li
2014) served as positive reference sites. DARNED and RADAR sites
were converted to the mm10 coordinates using liftOver (Kuhn
et al. 2013). Only RNA-DNA differences with a score ≥0.98 were
considered. Subsequently, all sites overlapping with an annotated
SNP, based on the variant annotation provided by the Mouse
Genome Project (version 5) were removed (Keane et al. 2011). ES
candidates exhibiting edited reads in at least two out of three
WT samples, but in none of the dko samples, were classified as
“WT only”. Conversely, sites with edited reads in at least two
dko but none in WT samples were classified as “DKO only”.
Editing sites were filtered and classified according to their strand
topology. To this end, mapped paired-read files were split into sep-
arate half-samples containing only the first or second read in each
pair. For each potential editing site, each half-sample was queried
for observed substitution types considering the deriving strand.
A substitution event was considered if it was observed in more
than one read in more than two half-samples. We, and others be-
fore us (Levin et al. 2010), observed library-specific systematic error
in the strand assignment of the reads (antisense shadow).
Therefore, for sites with a relative antisense signal less than four
times the global deduced antisense shadow, the signal from the
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less productive strand was ignored. To deduce the global antisense
shadow, we applied the same strategy as described in Amman et al.
(2018) for each chromosome and merged the single values by
forming the averageweighted by the chromosome length. The ob-
served antisense shadows range between 0.34% and 1.74%.
Integrating all this information, candidate editing sites were as-
signed a specific stranded substitution event or removed due to
ambiguity (indicative of sequencing/mapping artifacts) or obser-
vation of corresponding substitutions on the opposing strand (in-
dicative of a genomic variant). Finally, only unambiguous A→G
events that occurred in the WT samples only were considered as
true editing events. For all editing sites, the editing level was calcu-
lated using bam-readcounts (https://github.com/genome/bam-
readcount). For follow-up analysis, editing sites supported by less
than five reads were omitted. For ADARB1 knockout samples, edit-
ing sites were treated as edited if edited reads could be observed in
more than one (out of three) samples or had a cumulative editing
level greater than 1%. The obtained editing sites were characterized
with respect to their genomic context (GENCODEbasic annotation;
release 17). Each ES was assigned to be either located in an UTR,
exon, intron, or intergenic. If more than one classification applied
to one ES, the higher ranked (UTR> exon> intron> intergenic) was
selected. Subsequently, the potential impact of the observed A→G
substitution was interrogated using Ensembl’s variant predictor
tool (VEP). If multiple effects for one substitution were predicted,
only one variant was reported according to the following rank-
ing: missense_variant > synonymous_variant > stop_lost > stop_
retained_variant > splice_acceptor_variant > splice_donor_variant
> splice_region_variant > TF_binding_site_variant > regulatory_
region_variant >mature_miRNA_variant > 5_prime_UTR_variant
> 3_prime_UTR_variant >non_coding_transcript_exon_variant >
non_coding_transcript_variant>NMD_transcript_variant> intron_
variant > downstream_gene_variant > upstream_gene_variant >
intergenic_variant. For a description of the variants see: www
.ensembl.org/info/genome/variation/prediction/predicted_data
.html#consequences.

To characterize the repeat status of an ES, RepeatMasker was
used (Smit et al. 2013–2015) (www.repeatmasker.org; mm10;
Repeat Library 20140131).

To calculate hybridization energies between an editing site
and a potential editing complementary site (ECS), the program
RNAplex was used (Tafer et al. 2011). To determine the read cover-
age of editing sites that are supported by at least five reads in all
samples and their respective ECS, BEDTools multicov was used
(Quinlan and Hall 2010).

To test for sequence motifs, all sites were separated according
to their repeat association and their ADAR, ADARB1 preference.
For each subset, a region ±5 nucleotides around the editing site
was analyzed using pLogo generator (https://plogo.uconn.edu/)
(O’Shea et al. 2013). To construct a sequence background that re-
flects the underlying base composition as closely, for each editing
site a random100-nt sequence stretch randomly drawn fromwith-
in the surrounding ±200 bases around the editing site was used.

Validation of editing events using Sanger sequencing

For validation of editing events, Sanger sequencing on cDNA li-
braries and corresponding genomicDNA from the same individual
was used. Editing sites with at least 10% editing (Deffit et al. 2017)
were validated, as low levels of editing are difficult to discern in
Sanger sequencing chromatograms (Eggington et al. 2011).
Similarly, for the validation of the splicing inhibition data, only
editing sites with a minimum of 20% difference in editing were
considered for validation. The validation was done on previously
generated cDNA libraries. One-half microliter of the library (or ge-

nomic DNA) was amplified in a 25-µL reaction using OneTaq
Quick-Load 2× Master Mix with Standard Buffer (New England
Biolabs) using the following PCR protocol: Initial denaturation:
1 min at 94°C, followed by 35 cycles of 94°C (30 sec), 58°C
(30 sec), 68°C (30 sec), and a final elongation for 5 min. PCR
products were separated using gel electrophoresis and purified by
gel-elution. Sanger sequencing was done using the eluted PCR
products and the reverse primer (oligonucleotide sequences:
Supplemental Table S1). Geneious v11 (Biomatters) was used to
analyze Sanger chromatograms. The percentage of editing is de-
fined as the height of the G peak divided by the sum of the A+G
peaks (in the case of the reverse primer: the height of the T peak
divided by the sum of the T+C peaks).

Analysis of the splicing inhibition and Nova1/2 knockout cortices

Mapping and editing level detection was done as described above.
Editing sites which are not supported by at least five reads in all
samples were omitted. Differentially edited sites were determined
applying a t-test with the Welch approximation for the degrees
of freedom on the log10 values of the observed levels. Sites
with an editing level of zero were set to 0.001 before applying
the log10. Unmapped reads for Nova1 and Nova2 knockout
mice (cortex) and corresponding wild-type controls were down-
loaded from the Gene Expression Omnibus (GEO) repository
(GSE69711). Reads were adapter-trimmed using Trimmomatic
(Bolger et al. 2014) and subsequently mapped to the mouse ge-
nome (mm10) using Bowtie 2 (Langmead and Salzberg 2012)
with sensitive parameters (-L 20, -N 1). Finally, the output was pro-
cessed using SAMtools to generate sorted and indexed BAM files (Li
et al. 2009a). The level of editing for previously identified editing
sites (Nascent-seq) was determined by counting the percent of
G-reads (+strand) or C-reads (−strand) using a custom script relying
on SAMtools. Differential editing was calculated with the same pa-
rameters as described for the meayamycin treatment.

To determine the effect of NOVA1 or NOVA2 deletion on
splicing efficiency for individual introns, DEXSeq (Anders et al.
2012) was used. The original DEXSeq workflow was designed to
test for differential exon usage between different conditions. To in-
clude also intron retention events, wemodified the first step of the
analysis pipeline in which a nonoverlapping exon reference anno-
tation is produced from the gene annotation with DEXSeq’s own
dexseq_prepare_annotation.py Python script.We forced the script
to include also intron regions by providing for each annotated
transcript (i.e., exon chain) additionally a complementary intron
chain. In this step, theparameter“–aggregateno”wasset toprevent
genes sharing exons from being merged into aggregated genes.
Furthermore, transcript parts shorter than 10 bases were removed.
From there, the standard DEXSeq workflow was used of counting
reads and testing for differential transcript part usage (in the origi-
nal pipeline called “exon usage”) between the WT and the respec-
tive mutant. Eventually, this information was linked with the
information on differential editing levels between the two condi-
tions for all editing sites that exhibit significant differential editing
(P-value <0.1). The distribution of the log2FC of editing levels was
plotted separately for editing sites located in an up- or down-regu-
lated transcript part, according to the DEXSeq analysis.

GTEx data

GTEx datawere downloaded from theNCBI database ofGenotypes
and Phenotypes (dbGaP; https://www.ncbi.nlm.nih.gov/gap; ac-
cession number phs000424.v6.p1). For each RNA editing site, ge-
nomic coordinates of the exon including the editing event as
well as coordinates of the flanking intron were extracted by using
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RefSeq annotations (downloaded from UCSC) and custom scripts.
Such coordinates were provided in input (in SAF format) to the fea-
tureCounts tool (Liao et al. 2014) in order to compute the number
of reads supporting individual exons and introns in 329 GTEx
RNA-seq experiments from 13 different brain locations. RNA-seq
reads were downloaded from the dbGaP database and aligned
onto the human reference genome (hg19 assembly) by means of
STAR (Dobin et al. 2013). Exonic and intronic read counts were
used to calculate an intron retention (IR) score that takes into ac-
count the exon to intron expression ratio. Finally, for each RNA ed-
iting site, IR scores and editing levels were correlated across brain
locations. RNA editing levels for GTEx brain tissues were down-
loaded fromREDIportal database (Picardi et al. 2017). Calculations
were performed using custom Python scripts. Coordinates in the
REDIportal are from the hg19 assembly. Consistently, we used
hg19 for GTEx data analysis. Protein-coding genes used for our
analysis are well annotated in this release. Consequently, the use
of hg38 does not improve the analysis.

Data access

RNA-seq data from this study have been submitted to the Europe-
an Nucleotide Archive (ENA; https:// www.ebi.ac.uk/ena) under
accession number PRJEB27264. A-to-I editing sites identified using
Nascent-seq have been submitted to REDIportal (http://srv00.recas
.ba.infn.it/atlas/search_mm.html). Sanger sequencing chromato-
grams and Python scripts are available as Supplemental Material
(Supplemental_Chromatograms.zip; Supplemental_Scripts.zip).
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