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Abstract: The amplitude information (AI) of echoed signals plays an important role in radar target
detection and tracking. A lot of research shows that the introduction of AI enables the tracking algorithm
to distinguish targets from clutter better and then improves the performance of data association.
The current AI-aided tracking algorithms only consider the signal amplitude in the range-azimuth
cell where measurement exists. However, since radar echoes always contain backscattered signals
from multiple cells, the useful information of neighboring cells would be lost if directly applying those
existing methods. In order to solve this issue, a new δ-generalized labeled multi-Bernoulli (δ-GLMB)
filter is proposed. It exploits the AI of radar echoes from neighboring cells to construct a united
amplitude likelihood ratio, and then plugs it into the update process and the measurement-track
assignment cost matrix of the δ-GLMB filter. Simulation results show that the proposed approach
has better performance in target’s state and number estimation than that of the δ-GLMB only using
single-cell AI in low signal-to-clutter-ratio (SCR) environment.

Keywords: δ-GLMB filter; amplitude information; neighboring cells; multi-target tracking

1. Introduction

The multi-target tracking (MTT) [1,2] is an important capability for modern radar data processing.
Taking the pulsed radar as an example, the pulse compression and clutter suppression are first used
to remove clutter and jamming signals from received echoes. Then we can extract target information
via integration and detection. A threshold is usually set in detection algorithms according to the
Newman-Pearson discipline, and the echo signal beyond the threshold is extracted as plots. Due to the
limitations of clutter suppression or detection, these plots may originate from not only targets but also
clutter. Moreover, the missed detection of targets can also occur. The plots are then put into the data
preprocessing (such as plots centroid, etc.) for the preparation of target tracking. The objective of MTT
is to estimate the unknown and time-varying number of targets as well as their individual states from
the observation sequence. It improves the radar sensing of moving targets in current search area.

The traditional multi-target tracking paradigms, such as Joint Probabilistic Data Association
(JPDA) [3] and Multiple Hypotheses Tracking (MHT) [4], implement data association followed by
the Kalman filter for single target. When targets are spatially close or a large number of false alarms
are present, the data association becomes very complex. Therefore, Mahler proposes the multi-target
filtering theory based on Random Finite Sets (RFS) [5]. In the framework of this theory, multi-target
states and sensor measurements are modeled as random finite sets, and the recursive estimation of
multi-target posterior density is achieved by Bayesian multi-target filtering. The early implementations
of RFS paradigm, such as probability hypothesis density (PHD) [6], cardinalized probability hypothesis
density (CPHD) [7] and Multi-Bernoulli [8] filters, ignore the data association in order to reduce the
computational complexity. Hence they cannot produce target tracks. On the basis, δ-generalized
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labeled Multi-Bernoulli (δ-GLMB) [9,10] and labeled Multi-Bernoulli (LMB) [11] filters incorporate
track labels into target state and take data association as part of multi-target state estimation to realize
the output of target tracks.

The traditional radar signal processing procedure is first detection and then tracking. Nevertheless,
when the detection performance is unsatisfactory, the tracking accuracy will decline. In this case,
the track-before-detect (TBD) strategy [12–16] is proposed. It gets rid of the detection in any single
frame, but accumulates the likelihood ratio of continuous multiple frames. This strategy provides
an effective way for detecting low observable targets. It should be noted that the tracking also
carries out likelihood ratio accumulation, and the difference between them is: (1) the likelihood ratio
accumulated by TBD approaches contains both dynamic states and amplitude information (AI) of the
target, while the tracking approaches only contains the dynamic states; (2) TBD deals with the original
echoes, and traverses all range-Doppler-azimuth cells over the observation area, while the tracking
only needs to process the data after thresholding. Thus, more information amount and computational
burden are involved in the TBD. This disadvantage leads to the fact that TBD is currently difficult to
replace the traditional detection-and-tracking procedure in real-time radar data processing. However,
it outperforms the traditional procedure in low signal-to-clutter-ratio (SCR) conditions due to the
full use of amplitude difference between target and clutter. Therefore, we can see that the tracking
performance in low SCR conditions could be improved by using AI.

Many works in the literature have introduced AI into tracking algorithms. In [17], the detection
process of echoed signals with slow Rayleigh fluctuation in narrowband Gaussian background is
analyzed. It incorporates the likelihood ratio of amplitude into the calculation of measurement-track
association weights for improving performance of the tracking filter. Based on the AI aided
measurement-track association (AIA-MTA) approach in [17], more studies have further been carried
out. In [18], Lerro combines the AIA-MTA with the interactive multiple model (IMM), and improves
the performance of track formation and maintenance in clutter environment. To solve the track
initiation problem of low observable target, Cai introduces AI into the adaptive sliding window
expectation-maximization algorithm combined with maximum likelihood [19]. By analytically
assessing the benefits of AIA-MTA in several simple cases, Ehrman points out that the method is
unsuitable for multiple targets although it is good at tracking single target in dense clutter environment.
The reason is that AIA-MTA always favors the measurement with high amplitude, but ignores the
measurement states [20]. Then he proposes that the normalized target amplitude likelihood function
instead of the likelihood ratio should be introduced into AIA-MTA. In [21], the error probabilities of
measurement-track association for Rayleigh target, fixed amplitude and Rician target are calculated.
In [22,23], Ehrman further presents that the blind use of AI in the measurement-track assignment may
actually reduce the association performance, because no method can be applied to all scenarios. In [24],
the performance loss in heavy-tailed clutter environment is analyzed quantitatively by simulation.
In [25], a modified Riccati equation is used to predict the performance of probabilistic data association
filter with AI in heavy-tailed K distributed clutter. In [26,27], the amplitude likelihood ratio proposed
in [17] is introduced to the PHD filter (simplified as PHD-AI). For situations of high resolution and low
grazing angle, an AI assisted PHD filter in Weibull clutter background is proposed by Li [28]. In [29],
Liu proposes to improve the association performance with AI in complex ground target tracking.
In [30], Yuan gives an improved multi-Bernoulli filter with AI.

However, one obvious disadvantage of these existing researches is that when constructing, only
the AI of the measurement cell is used for constructing the amplitude likelihood function, while that
of surrounding cells is ignored. In some cases, for example, when the size of the target is large or
the sampling interval of range and azimuth is small, the target echoes may occupy multiple adjacent
cells. After detection process, the plots are likely to be distributed in multiple adjacent cells. This
phenomenon is called spread [12] or spillover [16] of target energy. In order to reduce complexity,
most of target tracking approaches require that one measurement is generated for a target in each
frame [5]. Therefore, the plots centroid technology is usually applied to handle the neighboring plots,
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and a central measurement is obtained according to certain principles. The central measurement would
be used as the only target measurement for tracking, while the other neighboring plots are discarded.
If AI of surrounding cells is preserved at the step of plots centroid, the amount of available information
for filtering will be greatly increased. It could help improve the tracking performance. By now, this
idea has been used in some TBD approaches [12,13,16].

Based on the above analysis, this paper proposes a new δ-GLMB filter with united likelihood ratio
of AI in neighboring cells in the complex Gaussian distributed clutter (simplified as GLMB-AI-UL).
First, using PHD-AI [27], a δ-GLMB filter with single cell AI (simplified as GLMB-AI) is derived.
Then the amplitude measurement is modeled with the point spread function employed in TBD
approaches. However, different from traversing all cells in TBD to calculate the amplitude likelihood
ratio, the method only considers cells around each measurement after plots centroid to obtain the
likelihood ratio. Thus, its calculation cost is significantly lower than that of TBD. Finally, the likelihood
ratio is introduced into δ-GLMB update process and measurement-track assignment cost matrix to
improve its filtering performance.

The remainder of this paper is organized as follows. A brief overview of RFS and the δ-GLMB
filter are provided in Section 2. PHD-AI is introduced in Section 3. On this basis the GLMB with
united likelihood ratio of AI in neighboring resolution cells is proposed in Section 4. Section 5 presents
simulation results. Conclusions are made in Section 6.

2. Bayesian Multi-Target Filtering

2.1. Basic Notations

The usage of notations in the paper follows the same way as those in [9,10]. Single-target states
are denoted by small letters (e.g., x) and multi-target states are denoted by capital letters (e.g., X).
In labeled RFSs, labeled target states are denoted by bold face letters (e.g., X). In addition, spaces are
usually denoted by blackboard bold letters (e.g., X represents the state space, and L represents the
label space). The group of all finite subsets of X is denoted by F (X). A labeled single-target state x
consists of a kinematic state x ∈ X and a label ` ∈ L. A single measurement is denoted by a small
letter (e.g., z), and a set of multiple measurements is denoted by a capital letter (e.g., Z).

The standard inner product of f (x) and g(x) is defined as

〈 f , g〉 ,
∫

f (x)g(x)dx.

The multi-target exponential function is defined as

hX , ∏x∈X h(x),

where h is a real-valued function, and it is usual to set h∅ = 1. The generalized Kronecker delta
function is defined as

δY(X) ,

{
1, if X = Y
0, otherwise

,

where X and Y can be arbitrary arguments such as sets, vectors and integers. Meanwhile, the inclusion
function is defined as

1Y(X) ,

{
1, if X ⊆ Y
0, otherwise

.
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2.2. Bayesian Multi-Target Filtering

Assume that there exist N(k) targets xk,1, . . . , xk,N(k) at time k. Each of them takes values from the
labeled state space X×L, and their measurements zk,1, . . . , zk,M(k) takes values from the observation
space Z. As a result, the collection of targets and measurements at time k can be modeled as [9]

Xk =
{

xk,1, . . . , xk,N(k)

}
,

Zk =
{

zk,1, . . . , zk,M(k)

}
.

The aim of multi-target tracking is to estimate the multi-target posterior density π0:k(X0:k|Z0:k)

based on the measurement until now. It can be realized recursively by

π0:k(X0:k|Z0:k) ∝ gk(Zk|Xk ) fk|k−1(Xk|Xk−1)π0:k−1(X0:k−1|Z0:k−1), (1)

where X0:k = (X0, . . . , Xk), Z0:k = (Z0, . . . , Zk), gk(·|· ) is the multi-target likelihood function at time k,
and fk|k−1(·|· ) is the multi-target transition density from time k− 1 to time k.

In order to obtain the multi-target posterior probability density at current moment k, we omit the
dependence on past measurements for simplicity. Thus, it can be realized from time k− 1 by prediction
and update formulations [4,5] as follows

πk+1|k(Xk+1) =
∫

fk+1|k(Xk+1

∣∣∣Xk)πk(Xk|Zk)δXk , (2)

πk+1(Xk+1|Zk+1) =
gk+1(Zk+1

∣∣∣Xk+1)πk+1|k(Xk+1)∫
gk(Zk+1

∣∣∣Xk+1)πk+1|k(Xk+1)δXk+1

, (3)

where the integral in Equation (2) is a set integral for any function f :F (X×L)→ R , and defined by

∫
f (X)δX =

∞

∑
i=0

1
i!

∫
f ({x1, . . . , xi})d(x1, . . . , xi). (4)

2.3. δ-GLMB Filter

Because of the paper length limit, only the update process of δ-GLMB filter is introduced herein.
For more details of the filter, readers can refer to [9,10].

Let the current multi-target prediction density has the δ-GLMB as

π(X) = ∆(X) ∑
(I,ξ)∈F (L)×Ξ

w(I,ξ)δI(L(X))
[

p(ξ)
]X

, (5)

where w(I,ξ) is the weight of the prediction component (I, ξ), and p(ξ) is the probability density
function (pdf) of a single target. Then the multi-target filtering density of current moment is also a
δ-GLMB given by

π(X|Z ) = ∆(X) ∑
(I,ξ)∈F (L)×Ξ

∑
θ∈Θ(I)

w(I,ξ,θ)δI(L(X))
[

p(ξ,θ)(·
∣∣∣Z)]X

, (6)

where
w(I,ξ,θ) ∝ w(I,ξ)

[
η
(ξ,θ)
Z

]I
, (7)

η
(ξ,θ)
Z (`) =

〈
p(ξ)(·, `), ψZ(·, `; θ)

〉
, (8)
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p(ξ,θ)(x, `|Z) = p(ξ)(x, `)ψZ(x, `; θ)

η
(ξ,θ)
Z (`)

, (9)

ψZ(x, `; θ) =


pD(x,`)g(zθ(`)|x,`)

k(zθ(`))
θ(`) > 0

1− pD(x, `) θ(`) = 0
, (10)

and Θ(I) denotes a subset of association maps at current time with domain I.

3. Amplitude Information Aided Multi-Target Filter

3.1. Amplitude Information Modeling

It is supposed that an augmented state including AI of the i− th target at time k is represented as

xi
k :=

[
x̃i

k; d
]
, (11)

where x̃i
k =

[
pi

1,k pi
2,k

.
pi

1,k
.
pi

2,k

]T
is the basic state including positions

(
pi

1,k, pi
2,k

)
and velocities( .

pi
1,k,

.
pi

2,k

)
, and d is the power ratio of target and clutter signals. For computational convenience, the

clutter power is usually normalized, and then 1 + d represents the mean normalized SCR, which is
typically expressed in a logarithmic form

SCR = 10 log10(1 + d). (12)

Each measurement contains a two-dimensional target position z̃ and amplitude a

zi
k :=

[
z̃i

k; a
]
. (13)

To simplify notations, we use x, x̃, z and z̃ to denote xi
k, x̃i

k, zi
k and z̃i

k, respectively.
Assuming that the amplitude is independent of the dynamic state, the measurement likelihood

function of the target g(z|x ) and that of the clutter c(z) can be given by

g(z|x ) = gz̃(z̃|x )ga(a|d), a ≥ 0, (14)

c(z) = cz̃(z̃)ca(a), a ≥ 0, (15)

where gz̃(z̃|x ) and cz̃(z̃) are dynamic state likelihoods for target and clutter, respectively. ga(a|d) and
ca(a) are amplitude likelihoods for target and clutter, respectively. Using these amplitude likelihoods
we can compute the detection probability pτ

D and false alarm probability pτ
FA as

pτ
D(d) =

∞∫
τ

ga(a|d)da , (16)

pτ
FA =

∞∫
τ

ca(a)da. (17)

Then the normalized amplitude likelihood function can be expressed as

gτ
a (a|d) = 1

pτ
D(d)

ga(a|d), a > τ, (18)

cτ
a (a) =

1
pτ

FA
ca(a), a > τ. (19)
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3.2. Amplitude Information Aided PHD Filter

The PHD-AI filter is derived in [27], and the main results are just listed as follows.
Let λ denote the expected number of Poisson distributed clutter before detection. Then the

expected number after detection is λpτ
FA, which is also Poisson distributed. The pdf of clutter after

detection is given by
fC(K) := exp(−λpτ

FA)∏
z∈K

λpτ
FAcτ

a (a)cz̃(z̃|x̃) . (20)

When pdf of clutter and AI of target are incorporated, the multi-target likelihood function is
modified as

fk+1(Zk+1|Xk+1 ) = fC(Zk+1) ·
n

∏
i
(1− pτ

D(di))×∑
θ

∏
i:θ(i)>0

pτ
D(di)gz̃(z̃θ(i)

∣∣∣x̃i)gτ
a (aθ(i)

∣∣∣di)(
1− pτ

D(di)
)
λpτ

FAcz̃(z̃θ(i))cτ
a (aθ(i))

, (21)

where the summation notation represents the sum over all possible associations θ between X and Z.
The difference between the above and the standard multi-object likelihood function is the introduction
of amplitude likelihood ratio, i.e.,

Λτ =
gτ

a (aθ(i)

∣∣∣di)

cτ
a (aθ(i))

. (22)

Therefore the PHD pseudo-likelihood is given by

LZ(x) = (1− pτ
D(d)) + pτ

D(d)× ∑
z∈Z

∏
i:θ(i)>0

pτ
D(d)gτ

a (a
∣∣d)gz̃(z̃

∣∣x̃)
λpτ

FAcz̃(z̃)cτ
a (a) +

〈
Dk+1|k, pτ

D(d)gz̃

〉 . (23)

4. δ-GLMB Filter Using Amplitude Information of Neighboring Cells

In this section, we firstly introduce AI into the δ-GLMB filter on the basis of PHD-AI, namely the
GLMB-AI. Compared with PHD-AI, an attractive advantage of GLMB-AI is the capability to output
target tracks. Secondly, the point spread model used in TBD approaches is exploited to model the
measurement set, and then the amplitude likelihood ratio of the neighboring cells in complex Gaussian
clutter is derived. Finally, the united likelihood ratio of the neighboring cells is incorporated into the
δ-GLMB update process and measurement-track assignment matrix. For simplicity, the new method is
called GLMB-AI-UL.

4.1. GLMB-AI

4.1.1. Update

According to [10], if only the dynamic state information is considered, the multi-target likelihood
function is given by

g(Z|X ) = e−〈k,1〉kZ ∑
θ∈Θ(L(X))

[ψz̃(·; θ)]X, (24)

where k = λ · cz̃(z̃) is the intensity function of clutter, and the likelihood is

ψz̃(x̃, `; θ) =


pτ

D(x̃,`)g(z̃θ(`)|x̃,`)
k(z̃θ(`))

, θ(`) > 0

1− pτ
D(x̃, `), θ(`) = 0

. (25)
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Substitute the pdf of clutter in Equation (20) into Equation (24), and the amplitude likelihood ratio
in Equation (22) into Equation (25). According to the Proposition 7 in [8], we can derive the posterior
pdf of GLMB-AI as

π(X|Z ) = ∆(X) ∑
(I,ξ)∈F (L)×Ξ

∑
θ∈Θ(I)

w(I,ξ,θ)δI(L(X))
[

p(ξ,θ)(·|Z)
]X

, (26)

where
w(I,ξ,θ) ∝ w(I,ξ)

[
η
(ξ,θ)
Z

]I
, (27)

η
(ξ,θ)
Z (`) =

〈
p(ξ)(·, `), ψτ

Z(·, `; θ)
〉

, (28)

p(ξ,θ)(x, `|Z) =
p(ξ)(x, `)ψτ

Z(x, `; θ)

η
(ξ,θ)
Z (`)

, (29)

ψτ
z (x, `; θ) =


pτ

D(x,d,`)gz̃(z̃θ(`)|x̃,`)gτ
a (aθ(`)|d,`)

λcz̃(z̃θ(`))c
τ
a (aθ(`))pτ

FA
, θ(`) > 0

1− pτ
D(x, d, `), θ(`) = 0

. (30)

4.1.2. Ranked Measurement-Track Assignment

In the update process, the ranked assignment algorithm proposed by Murty is used to calculate
the assignment cost of every measurement to track and seek the least cost assignment matrices [10].
Under the condition that only the target dynamic information is considered, each assignment cost is
given by

Ci,j = − ln


〈

p(ξ)(x̃, `i), pD(x̃, `i)g
(
z̃j
∣∣x̃, `i

)〉〈
p(ξ)(x̃, `i), 1− pD(x̃, `i)

〉
k(z̃j)

. (31)

Now we bring the target amplitude likelihood in Equation (14) and the clutter amplitude
likelihood in Equation (15) into g

(
z̃j
∣∣x̃, `i

)
and k(z̃j), and then obtain a new assignment cost as

Ci,j = − ln


〈

p(ξ)(x̃, `i), pτ
D(x, d, `i)gz̃(z̃j

∣∣∣x̃, `i)gτ
a (aj

∣∣∣d, `i)
〉

〈
p(ξ)(x̃, `i), 1− pD(x̃, `i)

〉
k(zj)

, (32)

where k(zj) = λpτ
FAcz̃(z̃j)cτ

a (aj) is the function of clutter intensity after detection. According to the
representation of each single target density, the above assignment cost can be computed by Gaussian
mixture or sequential Monte Carlo, and the specific calculation process can refer to [10].

4.2. GLMB-AI-UL

4.2.1. Spread Model of Target Amplitude

In this section, we model the amplitude spread phenomenon by taking Figure 1 as an example.
In Figure 1, there are three spread targets in complex Gaussian clutter background. We use the point
spread function hjl(xi

k
)

widely used in TBD approaches to describe this phenomenon [12], i.e.,

hjl
(

xi
k

)
= exp

−
(

rj
k − ri

k

)2

2R
Lr −

(
θl

k − θi
k

)2

2B
Lb

 (33)

where
(
ri

k, θi
k
)

is the distance and azimuth of the sampling cell with respect to the target xi
k, and

(
rj

k, θl
k

)
,

j = 1, . . . , Nr, l = 1, . . . , Nθ , is the distance and azimuth of any sampling cell in the observation
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area. Here Nr and Nθ are the total number of range bins and azimuth bins of the observation area,
respectively. R and B are constants with respect to sizes of range bins and azimuth bins, and Lr

and Lb are fading coefficients. The relationship between the target state in Equation (33) and that in
Equation (11) is given by

ri
k =

√(
pi

1,k

)2
+
(

pi
2,k

)2
(34)

θi
k = arctan

(
pi

2,k

pi
1,k

)
(35)

Figure 1. Spread phenomenon of target amplitude.

Suppose that the clutter in each unit is independent and identically distributed, and cjl
k denotes

the clutter in unit (j, l) at time k. Then the measurement of this unit can be represented as

zjl
k =

Nk

∑
i=1

Ai
k exp

(
ψi

k

)
hjl
(

xi
k

)
+ cjl

k (36)

where Ai
k denotes amplitude measurement of the i− th target at time k, ψi

k represents the phase of

the target echo signal, and cjl
k denotes zero mean complex Gaussian clutter. It should be noted that Ai

k
may be fixed or fluctuate according to Swerling types I~IV, and ψi

k is usually assumed to be uniformly
distributed in [0, 2π) . Because the target energy tends to spread only to adjacent units, let us suppose
that targets are spatially so far away that each unit is only affected by the target closest to it. Then
Equation (36) can be simplified to

zjl
k = Ai

k exp
(

ψi
k

)
hjl
(

xi
k

)
+ cjl

k (37)

When there is no target energy in unit (j, l), the measurement would be

zjl
k = cjl

k (38)

After detection, the points exceeding the threshold
{

z(j,l)
k |

∣∣∣z(j,l)
k

∣∣∣ > τ, j = 1, . . . , Nr, l = 1, . . . , Nθ

}
constitute the measurement set used for tracking at current scan. Herein the amplitude measurement∣∣∣z(j,l)

k

∣∣∣ is the a in Equation (13).
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4.2.2. Amplitude Likelihood of the Spread Unit in Complex Gaussian Background

In the situation of Swerling type I fluctuation, amplitudes of target and clutter are Rayleigh
distributed. The pdf of the clutter amplitude [16] is given by

ca(a) =
2a
σn

exp
(
− a2

σn

)
, a > 0 (39)

where σn is the covariance of the clutter amplitude. On the other hand, the pdf of the target amplitude
is given by

ga(Ak) =
2Ak
σt

exp
(
−Ak

2

σt

)
, Ak > 0 (40)

where σt is the covariance of the target amplitude. Then according to Equation (37) the amplitude of
the target spread unit is

Bk = |Ak exp(jϕk)h| = Akh (41)

By parameter transformation of Equation (40), its pdf can be obtained as follows

ga(Bk) =
2Bk
h2σt

exp
(
− Bk

2

h2σt

)
, Bk > 0 (42)

Therefore, the pdf of measured amplitude of target plus clutter a is the Rayleigh distribution, i.e.,

ga(a|xk) =
2a

σn + h2σt
exp

(
− a2

σn + h2σt

)
, a > 0 (43)

Let h = 1 in Equation (43). We can get the amplitude pdf of the target that produces amplitude
spread as

ga(a|xk) =
2a

σn + σt
exp

(
− a2

σn + σt

)
, a > 0 (44)

If the amplitude of one unit and its several neighboring cells is beyond the detection threshold
due to the spread, the point of this unit can be extracted as the central measurement for tracking by
using the points clustering. On the other hand, the AI of the neighboring cells is retained to construct
the united likelihood ratio for distinguishing target from clutter.

In Section 3.1, we use d to represent the ratio of target power to clutter power, i.e., d = σt/σn.
To simplify the calculation, we can get σn = 1 and d = σt by normalizing the clutter power [17]. Now
substituting σn and d into Equations (39) and (44), the simplified amplitude likelihood for clutter and
target respectively is represented as

ca(a) = 2a exp
(
−a2

)
, a > 0 (45)

ga(a|d) = 2a
1 + d

exp
(
− a2

1 + d

)
, a > 0 (46)

And the simplified amplitude likelihood for neighboring cells is

ga(a|d, h) =
2a

1 + h2d
exp

(
− a2

1 + h2d

)
(47)

Substituting Equation (45) into Equations (17) and (19), we obtain the probability of false alarm
and the normalized amplitude likelihood for clutter as

pτ
FA = exp

(
−τ2

)
(48a)
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cτ
a (a) = 2a exp

(
τ2 − a2

)
, a > τ (48b)

where τ is the detection threshold calculated by Equation (17) based on the specified false alarm
probability. Similarly, substituting Equation (46) into Equations (16) and (18), we obtain the probability
of detection and the normalized amplitude likelihood for target as

pτ
D = exp

(
− τ2

1 + d

)
(49a)

gτ
a (a|d) = 2a

1 + d
exp

(
τ2 − a2

1 + d

)
, a > τ (49b)

4.2.3. GLMB-AI-UL

The single target measurement likelihood including amplitude likelihood in the GLMB-AI update
process is given by Equation (30). Now we rewrite the amplitude likelihood in the form of united
amplitude likelihood of neighboring cells. In order to distinguish it from symbols in Equation (30),
the improved amplitude likelihood is expressed as

^
g

τ

a (aθ(`)|d, `) =
^
g

τ

a (
∣∣∣zjl

k

∣∣∣
θ(`)
|d, `) = gτ

a (
∣∣∣zjl

k

∣∣∣
θ(`)
|d, `)× ∏

(jm, ln) ∈ (N(j), M(l))
(jm, ln) 6= (j, `)

ga(
∣∣∣z(jm ,ln)

k

∣∣∣|d, `, h), aθ(`) > τ (50)

where N(j) and M(l) are range bins and azimuth bins adjacent to the range-azimuth cell where
zjl

k exists, and (jm, ln) is any range-azimuth cell affected by the amplitude spread of zjl
k . Similarly,

the improved amplitude likelihood of the clutter is expressed as

^
c

τ

a (aθ(`)) = cτ
a (aθ(`)) ∏

(jm, ln) ∈ (N(j), M(l))
(jm, ln) 6= (j, `)

ca(
∣∣∣z(jm ,ln)

k

∣∣∣), aθ(`) > τ (51)

Substituting both Equations (50) and (51) into Equations (30) and (32), the algorithm GLMB-AI-UL
can be obtained. The update operation of GLMB-AI-UL is summarized in Table 1 via pseudo code.

Table 1. Update of the GLMB-AI-UL.

input:
{(

I(h), ξ(h), w(h), p(h), T(h)
)}H

h=1
, Z

output:
{(

I(h,j), ξ(h,j), w(h,j), p(h,j)
)}(H,T(h))

(h,j)=(1,1)

for h = 1 : H

C(h)
Z := C(I(h) ,ξ(h))

Z according to Equations (32), (50) and (51){
θ(h,j)

}T(h)

j=1
:=ranked assignment

(
Z, I(h), C(h)

Z , T(h)
)

for j = 1 : T(h)

η
(h,j)
Z := η

(ξ(h) ,θ(h,j))
Z according to Equation (28)

p(h,j) := p(ξ
(h) ,θ(h,j))(·|Z) according to Equation (29)

w(h,j) := w(h)
[
η
(h,j)
Z

]I(h)

I(h,j) := I(h)

ξ(h,j) :=
(

ξ(h), θ(h,j)
)

end
end

normalize weights
{

w(h,j)
}(H,T(h))

(h,j)=(1,1)



Sensors 2018, 18, 1153 11 of 18

It should be noted that the united likelihood ratio of its nearest neighboring cells may be
comparable to that of the cell with only clutter when there is a non-spread target or no target in
a cell. The reason is that all the surrounding cells are clutter. In this case, the tracking performance of
GLMB-AI-UL is the same as that of GLMB-AI. On the contrary, when there is a spread target, not only
clutter but also the target are involved in the nearest neighboring unit. Therefore, a greater likelihood
ratio would be obtained by using GLMB-AI-UL, and the association weight is improved.

5. Simulations

In this paper, the performance of GLMB-AI-UL is compared with that of other two algorithms,
i.e., GLMB-AI and δ-GLMB (simplified as GLMB), by simulation data in three SCR scenarios. Table 2
shows the specific parameter settings.

Table 2. Scenario parameters.

Scenario SCR Mean Number of Clutter Before Detection λ False Alarm Probability Pfa

1 15 dB 800 0.1
2 10 dB 800 0.1
3 8 dB 800 0.1

Let the size of observation area be [−600, 600] m × [−600, 600] m, and the observation period be
100 frames in all. In scenarios 1 and 2, there are 12 moving targets following the nearly-constant-velocity
(NCV) model, and their trajectories are shown in Figure 2; while in scenario 3, there are 9 targets with
some of them following the coordinated turn (CT) model, and their trajectories are shown in Figure 3.
In both figures the circles denote the starting points of the target trajectories while the triangles denote
corresponding endpoints, and each target has different appearance and disappearance time. Hence
the target number is varying in each frame. Set the clutter number before detection to be Poisson
distributed with the mean value of 800. It can be seen that after detection it is also Poisson distributed
with the mean value of about 80. For GLMB without AI, the survival probability is set to be 0.9 and
the detection probability to be 0.95. For GLMB-AI-UL and GLMB-AI, the survival probability is set to
be 0.9, and the detection probability can be calculated by Equations (16) and (17) according to the SCR
and false alarm probability.

Figure 2. Target trajectories for scenario 1 and 2.
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Figure 3. Target trajectories for scenario 3.

To evaluate the performance of GLMB-AI-UL, all the targets are simulated to spread their
amplitude to neighboring cells. Due to the Rayleigh amplitude distribution, each target has different
amplitude, and accordingly its spread scope is distinct as well. For the convenience of calculation,
parameters of the point spread function in Equation (33) is set to be Lr = Lb = R = B = 1. When
calculating AI-UL with Equations (50) and (51), only the neighbor cells next to any central measurement
are considered. The OSPA metric [31] is used to evaluate the performance of three multi-target tracking
algorithms mentioned above, which is defined as follows

d
c
p(X, Z) :=

(
1
n

(
min

π∈∏ n

m

∑
i=1

d(c)(xi, zi)
p + cp(n−m)

)) 1
p

,

where we set p = 1 and c = 100 in simulations. In each scenario, we make 20 Monte Carlo runs for the
three algorithms, and their performance are compared and analyzed by calculating the mean error.

5.1. Results of Scenario 1

Figure 4 shows the filtering output of the three algorithms in a single operation, where Figure 4a
shows the true and estimated positions in x coordinate, while Figure 4b shows the true and estimated
positions in y coordinate. As can be seen that the GLMB produces some missed tracks and false tracks,
while the two filters using amplitude information, i.e., the GLMB-AI and GLMB-AI-UL give much
more accurate estimates.

Figure 5 shows the OSPA miss distance and Figure 6 shows the comparison of cardinality estimates,
and both are averaged over 20 trials. We can see from Figure 5a that the state estimation performance of
GLMB-AI-UL and GLMB-AI are similar to that of the standard GLMB which only uses target dynamic
information, and even at some times the GLMB performs slightly better than the GLMB-AI-UL and
GLMB-AI. A possible reason for this result is that the cardinality error is ignored when calculating
the location error of OSPA, which has been further discussed in [27]. GLMB may generate some false
tracks due to a poorer association performance, and these tracks may be close to the actual ones of
targets in space, which results in a smaller estimation error. However, in terms of the cardinality
estimation performance shown in Figures 5b and 6, GLMB-AI-UL and GLMB-AI are significantly better
than GLMB. This is due to the exploitation of amplitude information for calculating the measurement
to track association weight in the first two algorithms. In this scenario, the cardinality estimation
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performance of GLMB-AI-UL is almost same as that of GLMB-AI. The most possible reason for the
similarity is that the SCR is high enough for GLMB-AI to distinguish target from clutter.

Figure 4. Estimates and tracks for scenario 1. (a) in x coordinate; (b) in y coordinate.

Figure 5. Average OSPA distance for scenario 1. (a) time average OSPA location distance; (b) time
average OSPA cardinality distance.

Figure 6. Cardinality estimates for scenario 1.
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5.2. Results of Scenario 2

Figure 7 shows the filtering output of the three algorithms in a single run in x coordinate and y
coordinate respectively. Compared with Figure 3, it can be seen that with the decrease of SCR, the
state estimation performance of the three algorithms is significantly reduced. In particular, the GLMB
generates more missed tracks and false tracks, and the GLMB-AI also produces some missed tracks
and false tracks. Although the GLMB-AI-UL lost some plots, it still gives the most accurate state
estimation, because by taking advantage of the energy of the surrounding units, a more efficient
likelihood accumulation is realized.

Figure 7. Estimates and tracks for scenario 2. (a) in x coordinate; (b) in y coordinate.

Figures 8 and 9 are the comparison of averaged tracking results in scenario 2. As can be seen
from Figure 8a, the state estimation performance of the three algorithms is quite similar to that of
scenario 1, and the superiority of GLMB is more obvious. This is because when the SCR is lower,
GLMB may produce more false tracks, which can be closer to the target. Figures 6 and 8b show that the
performance of cardinality estimation of GLMB-AI-UL and GLMB-AI is still significantly better than
that of GLMB. However, different from scenario 1, the performance of GLMB-AI-UL is obviously better
than that of GLMB-AI. The potential reason is that it is difficult to distinguish the target from clutter
only by the amplitude characteristics of a single unit when the SCR is low. Nevertheless, it is possible
to improve the differentiation ability by using the combined likelihood ratio of multiple resolution
cells. In scenarios 1 and 2, we can also see that when the SCR is low, the deterioration degree of GLMB
is the largest, and followed by GLMB-AI, which uses only single unit amplitude information, whereas
GLMB-AI-UL with AI of multiple units is the most robust to strong clutter.

Figure 8. Average OSPA distance for scenario 2. (a) time average OSPA location distance; (b) time
average OSPA cardinality distance.
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Figure 9. Cardinality estimates for scenario 2.

5.3. Results of Scenario 3

Figures 10–12 are the comparison of tracking results in scenario 3. Unlike the previous two scenarios,
the motion of targets in this scenario is no longer linear, but rather maneuvering, and the SCR is set with
a very low value of 8 dB.

From Figure 10 we can see that in this scenario, the tracking performance of the three algorithms is
significantly reduced, and many missed tracks and false tracks are generated, but the GLMB-AI-UL still
outperforms the other two algorithms, which proves the validity of the proposed method once again.
From Figures 11b and 12 we can see that except for the initial 40 frames, the cardinality estimation
performance of the GLMB-AI-UL is always the best in the rest of the filtering time.

Figure 10. Estimates and tracks for scenario 3. (a) in x coordinate; (b) in y coordinate.
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Figure 11. Average OSPA distance for scenario 3. (a) time average OSPA location distance; (b) time
average OSPA cardinality distance.

Figure 12. Cardinality estimates for scenario 3.

Table 3 is the average running time of each algorithm in the three scenarios. As can be seen from
this table, in scenario 1, when the SCR is relatively high, the filtering performance of GLMB is good,
and its calculation speed is the highest. This is because the calculation of amplitude information results
in an increase in computational cost. However, when the SCR was reduced, in scenario 2, the GLMB’s
running time is only slightly reduced, but the elapsed time of the latter two algorithms with amplitude
information is greatly reduced. This is because as the SCR decreases, the number of target-generated
measurements decreases, and the utilization of amplitude information enhances the computational
efficiency of the measurement-track assignment matrix. When the SCR is further reduced, the running
time of the proposed GLMB-AI-UL continues decreasing, but that of the GLMB and GLMB-AI increase
a lot, and the GLMB-AI-UL outperforms the other two algorithms in terms of computational cost.
A reasonable explanation for this phenomenon is that, in this scenario, the SCR is such low that only
few target-generated measurements exceed the threshold. This will reduce the computational cost
on one hand, but on the other hand, the low SCR leads to a poorer computational efficiency of the
measurement-track assignment matrix for the GLMB and GLMB-AI. Especially, the exploitation of
amplitude information only of a single unit is less effective, which results in a poor performance for
GLMB-AI, even worse than that of GLMB without using amplitude information. However, using the
amplitude information of multiple adjacent units can evidently improve the performance. Thus, the
proposed method is of great value in practical radar applications, especially when the SCR is very low.
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Table 3. Running time averaged over 20 trials.

Scenario GLMB GLMB-AI GLMB-AI-UL

1 300.6724 s 403.6110 s 433.2928 s
2 293.0126 s 343.4141 s 355.5296 s
3 340.1094 s 379.4045 s 333.7122 s

The simulations of this paper are carried out with Matlab, and the proposed algorithm seems
time consuming. However, if the procedure is written in C language, the running time will be greatly
reduced. Therefore, this algorithm is suitable for real-time radar applications, particularly for low
SCR environments.

6. Conclusions

This paper proposes a new δ-GLMB filter using the united amplitude likelihood ratio of neighboring
cells. It can deal with radar target echoes from multiple range-azimuth cells in the background of
complex Gaussian clutter. The filter needs to retain the amplitude information of a few cells around
the central measurement in the plots centroid step, and then the information is exploited to construct
a united likelihood ratio. By combining this likelihood ratio into the δ-GLMB update process and
measurement-track assignment cost matrix, the ability of δ-GLMB to distinguish targets from clutter
can be improved. Compared with δ-GLMB using amplitude information of single cells, the proposed
algorithm can obtain more accurate target’s state and number estimation in low SCR environment. It is
known that δ-GLMB not only usually has better tracking performance than PHD and Multi-Bernoulli
filters, but also outputs target tracks. Therefore, compared with existing PHD and Multi-Bernoulli filters
with the amplitude information of single cells, the proposed algorithm could obtain more accurate
target’s state and number estimation as well as the output of target tracks.
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