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Abstract: A visible-light-active nickel oxide–graphitic carbon nitride (NiO@g-CN) hetero-structured
nanocomposite was synthesized for the first time by pulsed laser ablation in liquid and used as
a photoanode material in photoelectrochemical water-splitting reaction with a solar simulator.
It was found that the photoelectrochemical performance of PLAL synthesized NiO@g-CN
nanocomposite as photoanode, compared to g-CN as photoanode showed fourfold enhancements in
photocurrent density under visible light. FT-IR, XRD, FE-SEM, and EDX consistently showed
the proper anchoring of nano-sized NiO on g-CN. UV-DRS and the band gap estimation
showed the narrowing down of the band gap energy and consequent enhancement in the
visible-light absorption, whereas photoluminescence spectroscopy confirmed the reduction of the
recombination of photo-excited electron hole pairs as a result of the anchoring of NiO on g-CN.
The photoelectrochemical performance of g-CN and the NiO@g-CN nanocomposite photoanodes
was compared by linear sweep voltammetry (LSV), Chronoamperometry (I-t), and Electrochemical
Impedance Spectroscopy (EIS). All of these results of the characterization studies account for the
observed fourfold enhancement of photocurrent density of NiO@g-CN nanocomposite as photoanode
in the photoelectrochemical reaction.

Keywords: nanocomposites; pulsed laser ablation; visible-light-active photocatalyst; PEC
water splitting

1. Introduction

In the age of an ever-increasing need for energy and growing concern for the environment,
the realization and utilization of carbon-free hydrogen fuel remain as the hope for catering to the
global energy needs and mitigating the environmental damage caused by fossil fuels [1–4]. The current
method widely used for hydrogen production is steam reforming of the natural gas, which cannot be a
complete solution, as this method releases greenhouse gases in the atmosphere, and also the hydrogen
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production by electrolysis is not effective, as a lot of energy has to be expended to produce hydrogen.
The level of CO2 in the atmosphere has already reached an alarmingly dangerous level, and if it is
left unchecked, it will be very catastrophic for the environment and life on earth. The method of
carbon capture and sequestration to convert CO2 into value added hydrocarbon is quite cumbersome
and requires a huge amount of energy [5,6]. Hence, these methods of hydrogen production are not
only economically profitable but also cause huge damage to the already fragile environment [7,8].
A simple photoelectrochemical method using n-type TiO2 (rutile) semiconductor as a photoanode
and platinum as the counter electrode was successfully demonstrated by Fujishima et al., where the
electrons generated as a result of the irradiation of UV light on TiO2 caused a flow of a photo-current
to the counter electrode to photoanode, and this current was maintained even in the absence of bias
voltage [9]. This pioneering work triggered many environmental and energy applications, such as
photocatalytic water splitting [10], CO2 conversion into value added hydrocarbons [11,12], and water
purifications [13,14]. The major focus for the utilization of photo-catalytic and photoelectrochemical
methods has been the quest for the right materials, i.e., materials that are capable of harvesting the
naturally abundant solar radiation and improve the efficiency by hampering the undesired negative
reactions, like the inherent recombination of the photo-generated charge carriers.

Although TiO2 has been quite a ubiquitous photocatalyst for many photocatalytic and
photoelectrochemical applications, such as hydrogen production, CO2 reduction, and environmental
remediation [15,16], its wider band-gap energy restricts its use in UV region, and in addition to this,
the rapid recombination of photo-generated charge carriers is another disadvantage of this material.
Besides TiO2, other semiconductors, like NiO, WO3, ZnO, CdS, and CdSe, in pure, doped, and composite
forms, were developed by different groups that were aiming at improving the visible-light absorption
and also reducing the charge recombination [17]. The formation of a metal semiconductor junction
(Schottky junction) and a junction between two dissimilar semiconducting materials (heterojunction)
shrinks the band-gap energy of the material, due to the reshuffling of the density of states, and also
facilitates the spatial charge separation through the drifting of the charge carriers at the junction,
due to the junction-induced electric field. These two newly evolved features in the composite materials
ensure better visible-light-induced photocatalytic activity, with a reasonable enhancement of efficiency.
Another factor to be considered for the applications of these materials for the photoelectrochemical
water splitting, in particular, is that the conduction band energy should be more negative than the
hydrogen reduction potential, in order to facilitate the photo-generated electrons to spontaneously
migrate to the counter electrode, to carry out hydrogen reduction. However, in the absence of the above
energy compatibility, the external bias should be used in the photoelectrochemical cell. Moreover,
the electric field generated by the electrons impedes the reverse reaction, where the hydrogen and
oxygen in the photochemical reaction combine to form water through an explosive reaction.

In the pursuit of finding a heterogeneous photocatalyst, metal-free polymeric graphitic carbon
nitride g-CN has become the center of attraction in photocatalysis. Polymeric graphitic carbon nitride
(g-CN) is a visible-light-active n-type semiconducting material with the band-gap energy of 2.7 eV.
In addition to this, g-CN has other favorable features, such as an attractive electronic structure,
cost-effectiveness, nontoxicity, environmental friendliness, and thermal and chemical stability [18–20];
hence, this material has been used for many visible-light-driven photocatalytic applications, such as
water splitting and CO2 reduction [21]. In spite of the visible-light activity of g-CN close to the blue
spectral region, the use of pure g-CN is restricted by rapid photo-generated charge recombination,
small surface area, due to the characteristics two-dimensional layered structure [22,23]. In order to
minimize the rapid charge recombination and harness the positive features of g-CN, modifications
like doping with metal and non-metals and compositing with other co-catalyst have been tried, and
these kinds of material engineering have improved the photocatalytic activity of the material to a
certain extent, in different applications [24–26]. Particularly, compositing n-type g-CN with different
p-type semiconducting materials like BiOCl, CuS, and SnS2 has been tried, and it was reported that
the resultant p-n heterojunction facilitated the spatial charge separation and consequently resulted
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in the reduction of charge recombination, which was eventually manifested as the enhancement of
photocatalytic efficiency. Hence, the p-n heterojunction of g-CN with any compatible p-type material
is a proven method to enhance the photocatalytic activity [27,28].

NiO is a p-type semiconductor, showing a perfect lattice match with g-CN; it also shows a
compatible band energy structure to form type-II heterojunction with g-CN, which facilitates high
charge mobility across the junction. Both the conduction band (−1.95 eV) and valance band (1.35 eV)
of p-type NiO are at a higher energy position than the conduction band (−0.95 eV) and the valance
band (1.70 eV) of n-type g-CN; hence, upon junction formation, the electric field is directed from
g-CN side to NiO side, and this field drifts the electrons from the conduction band of NiO to that of
g-CN accompanied by the drifting of holes from the valance band of g-CN to that of NiO, thereby
establishing a spatial separation of photo-generated charge carriers and hence hinders the spontaneous
charge recombination process. This reduced charge recombination promoted by the junction formation,
coupled with the intactness of visible-light activity of g-CN, ensures that NiO is a good co-catalyst
with g-CN for the photocatalytic applications, and for this same reason, this composite material can be
a good material for the photoanode in photoelectrochemical applications [29,30].

Photocatalytic and photoelectrochemical activities of the semiconductor widely depend on
the shape size and morphology of the synthesized material, and these factors are decided by the
physical and chemical environment that prevails during the synthesis [31–35]. The well-established
methods of synthesis by solvothermal, hydrothermal, and photochemical reduction have some major
disadvantages, like the need for heavy instrumentation and post-purification, due to the use of various
chemical intermediates. In recent years, the method of pulsed laser ablation in liquid (PLAL) is
commonly used for the synthesis of pure and composite nano-structured materials, as the physical
and morphological characteristics materials can be controlled by the laser parameters, such as laser
wavelength and pulse laser duration, and by the pH, added surfactant, and the temperature of the
liquid medium used for the synthesis [16,36,37]. Moreover, unlike other conventional methods of
synthesis, PLAL does not require heavy instrumentation and purification of the material after synthesis.
In the PLAL method of synthesis, the plasma plume generated by the material laser interaction creates
a cavitation bubble in the liquid medium, and the expansion and the collapse of the cavitation bubbles
and the consequent formation of the shock wave critically contribute to the development of shape size
and morphology of the synthesized nanoparticles. The complex physical change brought about by
the shockwave and the cavitation bubble initiate a unique chemical reaction between the composite
partners, determining the chemical characteristics of the nanocomposite.

In the present work, we employed the PLAL method of rapid synthesis of hetero-structured
inorganic–organic nickel oxide–graphitic carbon nitride (NiO@g-CN) nanocomposite, and the optical,
morphological, and structural characteristics of this material used out in this study proved the resultant
composite material (NiO@g-CN) is visible-light active and imparts good inhibition to the recombination
of photo-generated charge carriers. The synthesized g-CN and the NiO@g-CN nanocomposite were
used as photoanodes in the photoelectrochemical water-splitting reaction, and it was found that
the photoelectrochemical performance of PLAL-synthesized NiO@g-CN nanocomposite photoanode,
compared to the g-CN photoanode, showed four-fold enhancement in photocurrent density under
visible light. The PEC performance of g-CN and the NiO@g-CN nanocomposite photoanodes was
compared by I-V, I-t characteristics, and EIS measurements. To the best of the knowledge, there is no
report on the fast synthesis of a hetero-structured inorganic–organic NiO@g-CN nanocomposite by
pulsed laser ablation in liquid technique as photoanode material for PEC water oxidation reaction.
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2. Experimental

2.1. Reagents and Chemicals

Nickel oxide (NiO) nanoparticles, Melamine, and other chemicals used in this study were
purchased from Merck, Darmstadt, Germany. The solvents, such as acetone, ethanol, and methanol,
were of high purity, and they were locally purchased. All the chemicals were used as purchased.

2.2. Synthesis of Graphitic Carbon Nitride

The g-CN powder was prepared by using a simple thermal pyrolysis technique. Melamine
powder was used as precursor for the synthesis of g-CN. Firstly, Melamine powder was calcined
for 2 h at 550 ◦C, in a heating furnace, at a ramp rate of 20 ◦C/min, and then the obtained powder,
containing tri-s-triazine units, was further calcined for 2 h at 550 ◦C, in a heating furnace, at a ramp
rate of 20 ◦C/min, to obtain the g-C3N4 powder.

2.3. Synthesis of Nickel Oxide–Graphitic Carbon Nitride Nanocomposite

A nickel oxide–graphitic carbon nitride nanocomposite (NiO@g-CN) was synthesized for the first
time via pulsed laser ablation in liquid (PLAL), in the liquid medium of de-ionized water. High-energy
laser radiations from the second harmonic of Q-Switched Nd:YAG laser (Brilliant B; λ = 532 nm) were
used. The pulse energy of the laser beam was maintained at 300 mJ/Pulse, the pulse duration was 5 ns,
and the pulse repetition was 10 Hz. The laser beam was routed to a glass beaker, where it was focused
into the liquid medium, using a lens of 50 cm focal length. The mixture of g-CN and NiO was dispersed
in 20 mL of de-ionized water, under ultrasonic vibrations, for 1 h, and then irradiated with a laser beam
for about 40 min. In order to ensure homogeneous ablation, the mixture was stirred continuously,
using a magnetic stirrer. After 40 min of irradiation, a NiO@g-CN nanocomposite solution was
obtained, and it was dried at 80 ◦C, in an oven, for 2 h, to obtain NiO@g-CN nanocomposite powder.
The graphic representation for the synthesis of NiO@g-CN nanocomposite by PLAL is shown in
Figure 1.
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2.4. Characterization

FE-SEM images were taken by using Filed emission electron microscope (Lyra3, Tescan, Brno,
Czech Republic), equipped with an energy dispersive EDX system. TEM and HR-TEM images
were taken, using a JEOL (JEM-2100F) Transmission Electron Microscope (JEOL USA Inc., Peabody,
MA, USA). X-ray diffraction (XRD 6000, Shimadzu, Kyoto, Japan) with Cu-Kα radiation instrument
was used for XRD studies. FT-IR spectra were obtained on a Nicolet 6700 FT-IR spectrometer IS50
(Thermo Electron Corp., Waltham, MA, USA), UV-DRS were obtained on a JASCO V-670 UV-VIS
spectrophotometer (JASCO, Pfungstadt, Germany), and the PL emission spectra were acquired by
Spectrofluorimeter (JASCO, FP-8500, Pfungstadt, Germany).

2.5. Fabrication of Photoanodes and PEC Measurements

The ink solution (2 mL) of the photocatalysts was prepared in a vial containing an ethanol-and-water
mixture (1:1). For the preparation of ink, 10 mg of the photocatalyst was taken in a vial containing
2 mL of water–ethanol mixture (1:1), followed by an addition of 8 µL of Nafion®. The dispersion was
homogenized by sonication for 1 h. The film was prepared by drop-casting the ink solution on FTO
kept on hot plate (60 ◦C). The ink solution on FTO covered an area of 1 cm2. The film was left on the
hot plate until it was completely dried. The electrochemical characterization of the film was carried
out in a 3-electrode assembly containing 0.5 M Na2SO4 electrolyte (pH 7.1). The film on FTO served as
a photoanode, while the Saturated Calomel Electrode (SCE) and Pt electrode served as reference and
counter electrode, respectively. The assembly was connected to an Autolab potentiostat supported
by NOVA 2.0 software (NOVA 2.0, Metrohm Autolab). A solar simulator (Oriel Sol-AAA Newport)
equipped with AM-1.5G and UV cut of filters providing simulated light (1 SUN) was used as the light
source. The LSV measurement was carried out by sweeping the potential from 0 to 0.7 V in dark and
light conditions.

3. Results and Discussion

3.1. FT-IR Spectroscopic and XRD Analysis

Figure 2a shows the comparative ATR-FTIR spectrums of g-CN, NiO, and the NiO@g-CN
nanocomposite. In the FT-IR spectrum of g-CN, the absorption band at around 802.25 cm−1 is attributed
to the breathing modes of s-triazine units. The absorption bands in the range of 1150 to 1650 cm−1 are
attributed to the stretching vibrations of aromatic C–N heterocycles of g-CN. The strong absorption
band, centered at around 3162.25 cm−1, was attributed to the N–H and O–H stretching vibration modes,
which arises due to incomplete polycondensation of melamine and water molecules adsorbed on the
g-CN surface [21]. In the FT-IR spectrum of NiO, the absorption band at 420.41 cm-1 was attributed
to the Ni–O bond, and the absorption band at 1363.93 cm−1 was attributed to the carbonate ions.
The absorption band at 3414.88 and 1628.13 cm−1 were attributed to the O–H stretching vibration and
O–H deformation mode of the water molecule, respectively [38]. Meanwhile, in the FTIR spectrum of
NiO@g-CN nanocomposite, the main absorption bands of g-CN and NiO were mostly shifted from
lower to higher wavenumbers. This shifting of absorption bands of g-CN and NiO showed the strong
interaction between g-CN and NiO and successful formation of NiO@g-CN nanocomposite, using the
PLAL technique.

XRD patterns were taken to analyze the crystal structure of g-CN, NiO, and the NiO@g-CN
nanocomposite. The XRD scans between 10 and 90 degrees in 2-theta scale (2θ) are shown in Figure 2b.
Diffraction planes of g-CN and NiO are indicated in the XRD patterns. In the XRD pattern of g-CN,
the peaks observed at around 13.0◦ and 27.4◦were unambiguously indexed to (100) and (002) diffraction
planes, respectively. The reflection (002) appeared due to interlayer-stacking of the graphitic-like
aromatic structure (out-of-plane diffraction), and the reflection (100) appeared due to in-plane ordering
of tri-s-triazine units (in-plane diffraction) [37]. The middle spectrum shown in Figure 2b showed the
characteristic reflections of cubic ((111), (200), (220), (311), and (222)) phases of the NiO nanoparticles,
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as identified by JCPDS 71-1179 [38]. The XRD pattern of the NiO@g-CN nanocomposite represents the
combination peaks of both individual g-CN and NiO, without any change in their positions, suggesting
that the individual components of the hybrid preserve their crystal structure during the PLAL process.
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3.2. Surface Morphology and Elemental Analysis

The surface morphology and elemental analysis of g-CN, NiO, and the NiO@g-CN nanocomposite
were evaluated by FE-SEM and FE-SEM coupled with an EDX system. The FE-SEM images of g-CN,
NiO, and the NiO@g-CN nanocomposite are depicted in Figure 3. The pristine g-CN exhibits a sheet-like
structure with wrinkles and folding, suggesting its thin nature (Figure 3a). On the contrary, the pure
NiO shows spherical-shaped nanometer-sized particles with agglomeration and cluster formations
(Figure 3b). In the FE-SEM image of the NiO@g-CN nanocomposite, the dispersion of NiO nanoparticles
can be seen on g-CN sheets (Figure 3c), suggesting the formation of the NiO@g-CN nanocomposite.
The thermal shock and the cavitations explosion in PLAL result in the formation of a new cationic and
anionic environment on the sample surface, without modifying the basic crystal structure and phase
composition. In fact, the defects in the photocatalyst are quite conducive for efficient photocatalytic
activity, and this can be a good alternative for adding a dopant. In particular, anion vacancies can
effectively regulate the electronic structure and energy band structure of photocatalysts, reduce atom
coordination numbers, and provide more active centers, which plays an important role in improving
photocatalytic efficiency.
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Energy-dispersive X-rays (EDX) spectroscopy was performed for the elemental analysis of the
synthesized NiO@g-CN nanocomposite, as shown in Figure 4. The low-magnification FE-SEM image
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of the NiO@g-CN nanocomposite prepared by pulsed laser ablation, with the corresponding EDX
spectrum, is shown in Figure 4a,b, respectively. The EDX spectrum (area is selected in Figure 4a) of the
NiO@g-CN nanocomposite displayed peaks of C, N, O, and Ni, confirming the successful loading of
NiO on g-CN sheets (Figure 4b). From corresponding elemental maps (Figure 4c–f), distribution of the
elements—carbon (C), nitrogen (N), nickel (Ni), and oxygen (O)—can be seen, indicating the equal
ratio of elements in the composite lattice. No peak was detected for the impurity elements in the EDX
spectrum, thus proving the pure preparation of nanocomposite and its good agreement with XRD
data (Figure 2b). Elemental analysis and EDX mapping images are showing the comparable results.
FE-SEM, EDX mapping, and EDX elemental results altogether confirmed the successful synthesis of
the NiO@g-CN nanocomposite via the PLAL route.
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and oxygen (f).

The detailed morphology of the NiO@g-CN nanocomposite synthesized via the PLAL technique
was evaluated by TEM and high-resolution TEM (HR-TEM) analysis. The TEM and HR-TEM images
of the NiO@g-CN nanocomposite at different magnification scales are depicted in Figure 5. From TEM
images of the NiO@g-CN nanocomposite (Figure 5a,b), it is clear that the NiO nanoparticles are
uniformly distributed and successfully anchored on the surface of the sheet-like polymeric g-CN
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surface. From HR-TEM images of the NiO@g-CN nanocomposite (Figure 5c,d), it is obvious that there
is close interaction between g-CN sheet and NiO nanoparticles after the formation of the NiO@g-CN
nanocomposite by using the PLAL technique. HR-TEM images also demonstrate that NiO nanoparticles
were closely connected with g-CN sheets, suggesting the strong interaction between the polymeric
g-CN sheets and NiO nanoparticles.
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3.3. UV-DRS and PL Spectroscopic Analysis

The optical absorption properties of g-CN, NiO, and the NiO@g-CN nanocomposite were measured
by UV-Vis diffuse reflectance spectroscopic (UV-DRS) analysis. The UV-DRS spectrum of g-CN in
Figure 6a displays a sharp absorption peak at around 380 nm wavelength. It is due to the electronic
transition of π–π* or n–π* in the tri-s-triazine ring structure of g-CN, which is in agreement with other
reports [21]. However, the typical absorption of NiO is in the UV region, due to its broader band-gap
energy. By anchoring NiO on the g-CN surface, we aimed to keep the absorption characteristics of
g-CN intact, and at the same time forming a heterojunction between NiO and g-CN to promote the
charge separation and consequent reduction of charge recombination, which is explained in the next
response. Our results show that, compared to pure g-CN and NiO, the NiO@g-CN nanocomposite
exhibits enhanced photo-absorption in the whole visible-light region. This can be attributed to the
strong interaction between the polymeric photocatalyst g-CN and the NiO nanoparticles, which has
been already suggested by other characterization results. The results of UV-DRS demonstrate that the
enhanced photo-absorption in the visible-light region by nanocomposite formation of g-CN and NiO,
which is good for visible-light-driven photoelectrochemical water oxidation reaction.
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Tauc plots of NiO nanoparticles and the NiO@g-CN nanocomposite are depicted in Figure 6b,c.
A Tauc plot of pure g-CN is depicted in Supplementary Materials Figure S1. The band-gap energies
of NiO nanoparticles and the NiO@g-CN nanocomposite were estimated from the Tauc plot,
by extrapolating the straight portion of (αhν)2 versus (hν) plot. The estimated Eg value of NiO
nanoparticles and the NiO@g-CN nanocomposite by extrapolating the straight portion of (αhν)2

versus (hν) plot are ~3.6 eV and ~2.85 eV, respectively, as shown in Figure 6b,c. The presence of
the g-CN in the NiO@g-CN nanocomposite has proved effectiveness in shifting the band gap of
NiO nanoparticles toward the visible-light range of the solar-spectrum. The decreased bandgap of
NiO@g-CN nanocomposite means that lower-energy radiation can stimulate the photocatalysts to
generate electron–hole pairs. Therefore, the better photocatalytic performance of the NiO@g-CN
nanocomposite can be expected by longer-wavelength electromagnetic radiation.

The electron–hole recombination behavior of the g-CN and NiO@g-CN nanocomposite
photocatalysts was examined by photoluminescence spectroscopy at an excitation wavelength of
320 nm. Figure 7 shows the PL spectra of g-CN and the NiO@g-CN nanocomposite photocatalysts
from 350 to 600 nm emission-wavelength range. For both g-CN and the NiO@g-CN nanocomposite
photocatalysts, the emission band was centered at ~450 nm. However, the emission intensity of the
pristine g-CN after anchoring of NiO nanoparticles via the PLAL technique was effectively decreased,
demonstrating the reduced electron–hole recombination rate and enhanced photocatalytic activity of
the NiO@g-CN nanocomposite photocatalyst. PL emission in g-CN is due to the photo-generated
electron–hole recombination that takes place, when the electrons in the conduction band transfer to the
valance band. When NiO is anchored on the polymeric surface of g-CN, this results in the formation of
a p-n heterojunction between the p-type NiO and n-type g-CN semiconductors, which promotes the
charge separation due to the electric field in the junction and consequently results in the reduction
of charge recombination. This reduced-charge recombination is reflected as a diminished PL-peak
intensity that is quite evident in our PL spectrum in Figure 7.
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3.4. Photoelectrochemical Measurements

The electrodes of g-CN and the NiO@g-CN nanocomposite photocatalyst were fabricated and
were used as photoanodes, to study the photoelectrochemical (PEC) water-splitting performance
under simulated one-sun-light irradiation. The PEC water-splitting performance of the g-CN and
NiO@g-CN nanocomposite photoanodes was evaluated by measuring the current density in LSV
measurements under dark and light exposure. The comparative I-V characteristics of g-CN and
NiO@g-CN nanocomposite photoanodes under dark and light irradiations are shown in Figure 8a.
It is clear from the I-V characteristics that the magnitude of photocurrent density increased with
increasing the voltage sweep for g-CN and NiO@g-CN nanocomposite photoanodes under dark and
light irradiations. Upon exposure to light, the current density of the g-CN photoanode was increased
from ~0.92 µA/cm2 (dark current) to ~2.0 µA/cm2, at 0.7 volt, versus SCE. Similarly, on exposure
to visible light, the current density of the NiO@g-CN nanocomposite photoanode was increased
from ~3.72 µA/cm2 (dark current) to ~8.65 µA/cm2, at 0.7 volt, versus SCE. The enhancement in
the current densities of g-CN and the NiO@g-CN nanocomposite photoanodes after exposure to
light demonstrates the photo-responsive feature of the synthesized catalysts. The findings of I-V
characteristics for PEC water-splitting demonstrate that, as compared to the g-CN photoanode,
the NiO@g-CN nanocomposite photoanode showed a four-fold enhancement in the photocurrent
density under visible-light irradiations and thus improved PEC performance. The lower photocurrent
response of pristine g-CN could be attributed to high photo-generated charge recombination in g-CN
and the improved photocurrent response of NiO@g-CN nanocomposite photoanode produced by
reduced photo-generated charge recombination in NiO@g-CN nanocomposite by anchoring of NiO
nanoparticles in the g-CN sheets via the PLAL technique, which is supported by PL results in Figure 7.

The photocurrent density of g-CN and the NiO@g-CN nanocomposite photoanodes was also
measured under a chopped light-irradiation condition (light on/off cycle), at a constant 0.7-volt
bias voltage. Chronoamperometric photocurrent–time responses of g-CN and the NiO@g-CN
nanocomposite photoanodes under periodically chopped visible-light irradiations (light on/off cycle)
are depicted in Figure 8b. The current density was measured for ~350 s, with 30 s of intervals
at an applied bias of 0.7-volt, vs. SCE. The result indicated that, upon exposure to visible light,
the photocurrent generated instantaneously and reached a steady state and fell sharply as soon as
the light was switched off. There was an initial slight decrease in the photocurrent, which became
stable with time, indicating good stability of photoanodes under visible-light irradiation and constant
applied potential.
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Figure 8. Linear-sweep voltammetric response of g-CN and NiO@g-CN nanocomposite photoanodes
under dark and visible-light irradiation (a). Chronoamperometric photocurrent–time responses of g-CN
and NiO@g-CN nanocomposite photoanodes under periodically chopped visible-light irradiations
(light on/off cycle) (b).

The photocurrent density of g-CN and NiO@g-CN nanocomposite photoanodes was also
measured under continuous visible-light irradiations condition, at a constant 0.7-volt bias voltage vs.
SCE, to measure the stability of the fabricated photoanodes in the PEC water-splitting experiment.
Chronoamperometric stability testing of g-CN and NiO@g-CN nanocomposite photoanodes in the
PEC water-splitting experiment under continuous visible-light irradiations is shown in Figure 9a.
After 2250 s of continuous visible-light irradiations, the photocurrent density of g-CN and NiO@g-CN
nanocomposite photoanodes was slightly decreased, and that decrease can be attributed to
photo-corrosion of the fabricated photoanodes in the electrolyte solution.

The charge-transfer behavior in g-CN and NiO@g-CN nanocomposite photoanodes was evaluated
by EIS (electrochemical impedance spectroscopy) measurements. Figure 9b shows the Nyquist plots of
g-CN and NiO@g-CN nanocomposite photoanodes. Generally, the smallest radius of the arc denotes
more effective separation and transport of photo-generated charge carriers. In Figure 9b, NiO@g-CN
nanocomposite photoanode displays the smallest radius of the arc compared with the pristine g-CN
photoanode, suggesting the fastest interfacial charge transport process and lowest charge-transfer
resistance of photo-generated charge carriers in the NiO@g-CN nanocomposite photoanode.
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Based on the PEC measurements, a schematic sketch of the photoelectrochemical working
mechanism of NiO@g-CN nanocomposite photoanode for the water-splitting experiment is presented
in Figure 10, showing the photo-oxidation and reduction processes taking place during the reaction,
where the NiO@g-CN nanocomposite is used as a photoanode under visible-light irradiations.
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4. Conclusions

A visible-light-active NiO@g-CN nanocomposite was synthesized by pulsed laser ablation in liquid,
using a focused beam of 532 nm pulsed laser source. The morphological, structural, and elemental
analyses carried out in this work confirmed the anchoring of NiO nanoparticles on g-CN sheets. The first
effect of this nanocomposite formation (anchoring of NiO nanoparticles on g-CN sheets) is manifested
as enhanced visible-light absorption of NiO@g-CN in the absorption spectra deduced from diffuse
reflectance spectra, and the second effect is manifested as reduced electron hole recombination observed
as the reduction of photoluminescence intensity of NiO@g-CN in the PL spectra. The improved material
characteristics in NiO@g-CN culminated in four-fold higher photocurrent generated by the NiO@g-CN
photo anode compared to the anchoring of NiO nanoparticles on g-CN sheets anchoring of NiO
nanoparticles on g-CN sheets by pure g-CN photoanode.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/6/1098/s1,
Figure S1: Tauc’s plot of g-CN.
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