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Abstract

Transposable elements (TEs) are repetitive nucleotide sequences that make up a large por-

tion of eukaryotic genomes. They can move and duplicate within a genome, increasing

genome size and contributing to genetic diversity within and across species. Accurate identi-

fication and classification of TEs present in a genome is an important step towards under-

standing their effects on genes and their role in genome evolution. We introduce TE-

LEARNER, a framework based on machine learning that automatically identifies TEs in a given

genome and assigns a classification to them. We present an implementation of our frame-

work towards LTR retrotransposons, a particular type of TEs characterized by having long

terminal repeats (LTRs) at their boundaries. We evaluate the predictive performance of our

framework on the well-annotated genomes of Drosophila melanogaster and Arabidopsis

thaliana and we compare our results for three LTR retrotransposon superfamilies with the

results of three widely used methods for TE identification or classification: REPEATMASKER,

CENSOR and LTRDIGEST. In contrast to these methods, TE-LEARNER is the first to incorporate

machine learning techniques, outperforming these methods in terms of predictive perfor-

mance, while able to learn models and make predictions efficiently. Moreover, we show that

our method was able to identify TEs that none of the above method could find, and we inves-

tigated TE-LEARNER’s predictions which did not correspond to an official annotation. It turns

out that many of these predictions are in fact strongly homologous to a known TE.

Author summary

Over the years, with the increase of the acquisition of biological data, the extraction of

knowledge from this data is getting more important. To understand how biology works is
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very important to increase the quality of the products and services which use biological

data. This directly influences companies and governments, which need to remain in the

knowledge frontier of an increasing competitive economy. Transposable Elements (TEs)

are an example of very important biological data, and to understand their role in the

genomes of organisms is very important for the development of products based on biolog-

ical data. As an example, we can cite the production biofuels such as the sugar-cane-based

ones. Many studies have revealed the presence of active TEs in this plant, which has gained

economic importance in many countries. To understand how TEs influence the plant

should help researchers to develop more resistant varieties of sugar-cane, increasing the

production. Thus, the development of computational methods able to help biologists in

the correct identification and classification of TEs is very important from both theoretical

and practical perspectives.

Introduction

Transposable elements (TEs) are DNA sequences that can move and duplicate within a

genome, autonomously or with the assistance of other elements. The field of TE annotation

includes various steps such as the identification and classification of TE families. In this article,

we focus on these activities since accurate identification and classification of TEs enable

researches into their biology and can shed light on the evolutionary processes that shape

genomes [1].

TEs in eukaryotes can be classified according to whether reverse transcription is needed for

their transposition (Class I or retrotransposons) or not (Class II or DNA transposons). A con-

sensus for a universal TE classification has not been reached yet [3], but this lack of consensus

does not affect the focus of our study. Here, we will follow the hierarchical system proposed by

Wicker et al. [2], which includes the levels of class, subclass, order, superfamily, family and

subfamily. Fig 1 presents an illustration of Wicker’s hierarchy considered in our study. Class I

is composed of five orders: LTR retrotransposons, DIRS-like elements, Penelope-like elements

(PLEs), long interspersed nuclear elements (LINEs) and short interspersed nuclear elements

(SINEs). Similar in structure to retroviruses, LTR retrotransposons have long terminal repeats

(LTRs), two normally homologous non-coding DNA sequences that flank the internal coding

region and that range in size from a few hundred base pairs to more than 5 kb. Superfamilies

within an order are distinguished by uniform and widespread large-scale features, such as the

structure of protein or non-coding domains and the presence and size of the target site dupli-

cation (TSD). Families are defined by DNA sequence conservation and subfamilies on the

basis of phylogenetic data. Class II is divided into two subclasses, which are distinguished by

the number of DNA strands that are cut during transposition. Subclass 1 consists of TEs of the

order TIR, which are characterized by terminal inverted repeats (TIRs). Subclass 2 groups the

Helitron and Maverick orders.

Methods identifying TEs in a genome are homology-based, employ structural information

or do not use prior information at all about the TEs to be identified [4–6]. The latter methods,

known as de novo repeat discovery methods, search for example for repeats in the genome. A

widely used method for TE identification is REPEATMASKER [7]. This tool screens a query

sequence searching for repeats, taking into account their similarity with sequences from a ref-

erence library, using an optimal pairwise alignment algorithm. CENSOR [8] works similarly

as REPEATMASKER but uses BLAST for the comparison. Afterwards, both REPEATMASKER and

CENSOR remove overlaps and defragment detected repeats. Loureiro et al. [9] show that
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machine learning can be used to improve the identification of TEs. They assessed a set of

(non-machine learning based) identification methods and learn a classifier that combines

their predictions to determine whether a sequence is a TE or not. Another classifier predicts

the best method to determine the exact boundaries of a TE. In their analysis, both

Fig 1. Copia, Gypsy and Bel-Pao superfamilies positioned in Wicker’s taxonomy [2].

https://doi.org/10.1371/journal.pcbi.1006097.g001
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REPEATMASKER and CENSOR were the most accurate tools. While Loureiro et al. demonstrate the

benefit of using machine learning models to improve predictions, they do not use machine

learning to obtain the predictions, which we address in this article.

A few methods have been proposed to classify TEs. LTRDIGEST [10] evaluates a list of LTR

retrotransposons generated by another tool called LTRharvest [11], annotating these

sequences w.r.t. the protein domains and other structural characteristics that were found in

them. LTRDIGEST can then be used for de novo (unsupervised) classification, i.e., finding groups

within the LTR retrotransposons without any predefined classification scheme. To evaluate

whether the resulting groups represent known LTR retrotransposon superfamilies, Steinbiss

et al. [10] have matched representative sequences of the groups to a reference set of known

transposon sequences using a fixed set of rules. LTRSIFT [12] takes the LTRDIGEST output and

clusters the candidate sequences. It then tries to find patterns of shared cluster membership

that might indicate multiple TE families, e.g. different Copia-like, Gypsy-like or Bel-Pao fami-

lies. It is a generic tool that uses sequence clusters to find family-specific patterns, based on the

LTRDIGEST detected features. These patterns are then used as evidence for family discrimina-

tion. TECLASS [13] classifies TE sequences into Class I and Class II TEs. The Class I elements

can further be classified into LTRs and non-LTRs, and the non-LTRs are classified into the

SINE or LINE orders. This classification is obtained by a hierarchy of binary classifiers based

on machine learning support vector machines, using oligomer frequencies as features.

REPCLASS [14] consists of three independent classification modules: a module based on homol-

ogy information, a module that searches for structural characteristics such as LTRs or TIRs,

and a module that searches for target site duplication. The three modules provide classifica-

tions at different levels of granularity, typically at the subclass or order level, sometimes at the

superfamily level. Finally, an integration module aims to compare, rank, and combine the

results of the three modules providing a single tentative classification. PASTEC [15] also uses

multiple features of TEs to classify TE sequences: structural features (TE length, presence of

LTRs or TIRs, presence of simple sequence repeats, etc.), sequence similarities to known

TEs, and conserved functional domains found in HMM profile databases. It provides classifi-

cations on the order level, including all orders from the classification hierarchy defined by

Wicker et al. [2], whereas TECLASS and REPCLASS only consider a subset of the orders. Impor-

tantly, none of the above classification systems is able to provide classifications for LTR retro-

transposons at the superfamily level. One exception is a recently introduced method called

LTRCLASSIFIER [16], which performs both annotation (i.e., identifying structural elements) and

classification (but not identification) for plant genomes, and returns predictions for the Copia

and Gypsy superfamilies.

In this article we introduce TE-LEARNER, a framework for the identification of TEs of a par-

ticular order, and for the classification of these TEs on the superfamily level. TE-LEARNER con-

sists of three steps. First, based on the characteristics of the order under consideration, it

extracts from the genome a set of candidate sequences, which may include false positives. Sec-

ond, it automatically annotates these candidates with features. Finally, the features are given as

input to a machine learning model, which predicts whether a given candidate sequence is

indeed a TE of the considered order, and if so, predicts its superfamily.

In particular, we present TE-LEARNER
LTR, an implementation of this framework for LTR ret-

rotransposons, which include the superfamilies Copia, Gypsy and Bel-Pao [2]. As features we

consider the occurrence of conserved protein domains, which help TEs perform the transposi-

tion process. The machine learning method we apply is random forests. This last step is essen-

tial, since the model of the three superfamilies contains the same protein domains [2]; for

Gypsy and Bel-Pao some domains even occur in the same order.

A machine learning based framework to identify and classify LTR retrotransposons
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As LTR retrotransposons have a high abundance in the genomes of Drosophila melanoga-
ster [17] and Arabidopsis thaliana [18, 19], and as these genomes are well annotated, they

present the ideal candidates for evaluating how well our proposed method can identify and

classify the LTR retrotransposons without using any prior information about these genomes.

We present an extensive quantitative analysis on D. melanogaster and A. thaliana comparing

the obtained results to three widely used methods (each dealing with one of the two tasks con-

sidered) and we show that TE-LEARNER
LTR outperforms the state-of-the-art methods w.r.t. pre-

dictive performance and runtime.

The novelty of our proposed method w.r.t. the available methods lies mainly in three

aspects. First, in contrast to the other methods, which focus on one task, here we consider the

tasks of identifying and classifying TEs together. Second, we propose a general framework for

these tasks. Even though the implementation we provide in this article focuses on LTR retro-

transposons, our framework can be extended to other TE orders. Third, in contrast to classifi-

cation methods such as LTRDIGEST, LTRSIFT, REPCLASS, PASTEC and LTRCLASSIFIER, our method is

not based on a predefined set of rules. Instead, we exploit the strength of machine learning to

automatically derive rules from the available data, with no need of prior knowledge. Our

framework is the first step towards completely automatic identification and classification of

TEs in superfamilies.

Methods

Framework

We address the following problem: given an unannotated genome, find subsequences in it cor-

responding to a particular order from the classification scheme [2], and predict their super-

family. We propose the following three-step framework, called TE-LEARNER:

1. The genome is split into subsequences, that become the candidate TE sequences.

2. Every candidate TE sequence is annotated with features related to the TE order considered.

3. Every candidate is represented by its features and fed into a machine learning model. The

model predicts for every candidate the probability that the sequence belongs to a specific

superfamily of the order considered.

We now discuss TE-LEARNER
LTR, one particular implementation, for every step in detail,

focusing on the LTR retrotransposon order. In Step 1 we use a simple splitting strategy to

obtain subsequences of the genome. The features used in Step 2 are conserved protein domains

known to occur in LTR retrotransposons, and the machine learning model used in Step 3 is a

random forest. Fig 2 shows a schematic representation of our framework based on this

implementation.

Note the modularity of the framework: every step can be implemented independently of the

other steps. For instance, an alternative implementation could use an LTR pair detection tool

in Step 1, annotate the candidates with oligomer frequencies in Step 2, and apply an artificial

neural network in Step 3. Any machine learning classifier can be used, as long as it outputs a

probability.

Step 1: Obtaining candidate LTR retrotransposons from the genome. First, the genome

needs to be cut into subsequences, which together with their conserved protein domain infor-

mation are used as input to the machine learning model. In our approach, we use a sliding

window to generate all subsequences of a particular length (10,000 nucleotides in our tests)

with an overlapping between them that avoids important regions potentially being cut (1,000

nucleotides in our tests). For this first step, one interested, for example, in potential full-length

A machine learning based framework to identify and classify LTR retrotransposons
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LTR retrotransposons could alternatively use existing tools [11, 20] to build the sets of candi-

dates based on their LTR pairs.

The output of this first step is a list of potential LTR retrotransposon candidates, which will

be searched for conserved protein domains (Step 2) and assigned probabilities of belonging to

a particular superfamily (Step 3). Even though this first step generates a lot of false positives,

the following steps will correct for these.

Step 2: Predicting conserved protein domains. The second step consists in screening

every candidate TE, obtained previously, for the presence of conserved protein domains that

can be found in LTR retrotransposons. To that aim, we use the RPS-Blast program [21].

RPS-Blast (Reverse Position-Specific Blast) uses a query sequence to search a database of pre-

calculated position specific score matrices (PSSMs), built from multiple sequence alignments.

In order to accelerate the search process, we constructed a database that only contains the

PSSMs related to conserved protein domains found in LTR retrotransposons. More precisely,

our database consists of 26 PSSMs, corresponding to the list of conserved subdomains shown

in Table 1.

The resulting domain hits are used to provide an estimation of the boundaries of the TE

candidate. In particular, we considered that each candidate starts at the beginning of the first

predicted domain and ends at the final position of the last predicted domain. In case a domain

is found in the overlap region between two sequences, we merged these sequences before

determining their boundaries. In case a candidate contains predicted domains in both DNA

strands (direct and reverse), we split it in two or more new candidates. Note that our bound-

aries do not include the LTR regions.

To summarize, for each candidate TE sequence returned by Step 1, this second step pro-

duces a list of conserved protein domains, which is used to delineate the candidate. Finally, the

candidates with at least one domain hit are passed on to Step 3.

Step 3: Predicting superfamily membership. In the final step of our method, we take the

candidate TE sequences, represented by their predicted protein domains, and apply a random

forest model on them. We use a first-order logic based format to represent candidate

sequences. This format is more expressive than traditional tabular representations and can be

handled by so-called relational learning systems (see [22] for more background on relational

Fig 2. A schematic representation of our framework, applied to LTR retrotransposons.

https://doi.org/10.1371/journal.pcbi.1006097.g002
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learning). Fig 3 gives an example of this type of representation: for each candidate sequence,

information is included on which domains occur in it, between which positions, and how cer-

tain this information is (expressed as an e-value). With this representation, we can thus express

TE sequences with a different number of domains in an elegant way.

Table 1. List of 26 protein domains considered in the tests.

Protein domain Subdomain (CDD/Pfam ID)

RNase RNase_HI_RT_Ty1 (cd09272)

RNase_HI_RT_Ty3 (cd09274)

RNase_HI_like (cd09279)

RNase_HI_RT_DIRS1 (cd09275)

Integrase rve (pfam00665)

GAG Retrotrans_gag (pfam03732)

Retrotran_gag_2 (pfam14223)

Retrotran_gag_3 (pfam14244)

gag-asp_proteas (pfam13975)

DUF1759 (pfam03564)

AP retropepsin_like (cd00303)

retropepsin_like_LTR_1 (cd05481)

retropepsin_like_LTR_2 (cd05484)

RP_Saci_like (cd06094)

RVP_2 (pfam08284)

Peptidase_A17 (pfam05380)

DUF1758 (pfam05585)

RT RT_LTR (cd01647)

RT_pepA17 (cd01644)

RVT_1 (pfam00078)

RVT_2 (pfam07727)

RVT_3 (pfam13456)

RT_DIRS1 (cd03714)

Pre-integrase gag_pre-integrase (pfam13976)

YR INT_Cre_C (cd00799)

DNA_BRE_C (cd00397)

https://doi.org/10.1371/journal.pcbi.1006097.t001

Fig 3. Logical representation. (a) Illustration of the typical structure of a TE from the Gypsy superfamily, delimited by LTRs and with protein domains

identified. (b) An example of a candidate sequence, annotated with protein domain predictions. Each domain prediction lists the candidate ID, the domain, the

predicted start and end positions in the sequence, and the e-value for the PSSM match. Note that domains may have subtypes. For example, RT_LTR is a subtype

of domain RT.

https://doi.org/10.1371/journal.pcbi.1006097.g003
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In our approach, the learning process involves learning, for each LTR retrotransposon

superfamily, a separate model that maps a sequence, represented as in Fig 3, to the probability

that it belongs to that superfamily. The model is constructed using the FORF (first-order ran-

dom forests) approach [23], which is implemented in the relational data mining system ACE

(http://dtai.cs.kuleuven.be/ACE/). A random forest [24] is an ensemble of decision trees that

classifies examples (candidate sequences in this case) by combining the predictions of each

individual tree. The decision trees in a forest are constructed by resampling the training set

and the feature set in the different tree induction processes. In this paper we use relational

decision trees [25] to construct the random forest. The difference with the standard approach

[26, 27] is that it allows to use the data representation defined above (instead of a traditional

tabular format), to express background knowledge, and to use user-defined tests in the nodes

of the trees. Apart from that, a standard top-down decision tree induction algorithm is applied.

The tests that we allow include the following: (1) the occurrence of a particular protein

domain, (2) the occurrence of a particular protein domain with a certain minimum or maxi-

mum length limit (the same domain can be predicted with different lengths), and (3) the spa-

tial relationship between two domains. The protein domains that are considered in the tree

nodes are the subdomains listed in Table 1, including the more general domains of the left col-

umn. Moreover, each test includes a minimum e-value for the domain hits, which is chosen

from the following list: [1e − 50, 1e − 40, 1e − 30, 1e − 20, 1e − 10, 1e − 05, 1e − 02, 1e − 01].

The list of length limits employed is [20, 50, 100, 200, 500, 700]. Note that limiting the tests to

individual domains or pairs of domains (rather than focusing on the complete TE domain

structure) enables the classification of incomplete TEs as well. A final type of tests that are

allowed in the tree nodes is (4) whether the number of occurrences of general domains (left

column of Table 1) exceeds a number between 1 and 5. As such, the total number of tests con-

sidered at each tree node is 10,947.

As an illustration, Fig 4 shows the (partial) relational decision tree obtained when con-

structing a single tree instead of a random forest for the Gypsy superfamily. Each internal

(oval) node of the tree contains one of the tests defined above, and is used to route down the

sequence according to the outcome of the test. The root node, in Fig 4, tests whether the

sequence has a domain RNase_HI_RT_Ty3 with an e-value of less than 0.01. If it does, the

sequence moves down to the “yes” branch of the tree; otherwise it moves to the “no” branch.

This procedure is repeated until the sequence arrives in a leaf (rectangle) node, which provides

the probability for belonging to Gypsy. The tree shows that not all Gypsy instances are discov-

ered by merely checking the occurrence of the RNase_HI_RT_Ty3 key domain (consider the

leaf node with 42 training sequences: 97.6% of them are Gypsy elements, although they fol-

lowed the “no” branch at the root).

As we can see in Table 1, domains have subdomains; thus, we provide the hierarchical “is a

subdomain” relationship as background knowledge to the system. This allows the tests to

check for the occurrence of both domains or subdomains, even though the data representation

only contains subdomains. For example, in the tree in Fig 4 there is a test that checks for the

occurrence of the domain RT and tests that check for the occurrence of its subtypes (RT_LTR,

for example).

TE-LEARNER is available for download at http://dtai.cs.kuleuven.be/software/te-learner.

Methodology and parameter settings

We evaluate the predictive performance of our framework on the genomes of D. melanogaster
and A. thaliana. We use version 6-15 of the annotated genome from Flybase (http://flybase.

org/), as the official annotation for D. melanogaster, which was made publicly available in

A machine learning based framework to identify and classify LTR retrotransposons
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April 2017. We use the Flybase annotations “Transposable Elements” and “Repeat Regions” to

constitute the golden standard in our experiments. For A. thaliana, we used the Araport11

annotation, released in June 2016, for genome TAIR10, from The Arabidopsis Information

Resource (TAIR) (http://www.arabidopsis.org).

We will compare our results for the Copia, Gypsy and Bel-Pao superfamilies (Bel-Pao only

for D. melanogaster because there is no annotation for it in A. thaliana) with those of three

methods for TE identification or classification that can make predictions at the superfamily

level: REPEATMASKER, CENSOR and LTRDIGEST. For each superfamily, we also compare the results

to those of a baseline model. We now discuss the specific parameter settings for each of the

tools used in our framework, as well as for the methods we compare to.

Baseline: The baseline model starts from the TE candidates obtained in Step 2 of our frame-

work and makes predictions solely based on the presence of one key protein domain (as pre-

dicted by the RPS-Blast program): RNase_HI_RT_Ty1, RNase_HI_RT_Ty3, and RT_pep_A17

for Copia, Gypsy, and Bel-Pao, respectively. As such, it evaluates the impact of the machine

learning aspect (step 3) in our framework.

RPS-Blast: We constructed the database used by RPS-Blast by taking for each domain of

interest the set of sequences from the Conserved Domain Database (CDD) (http://www.ncbi.

nlm.nih.gov/Structure/cdd/cdd.shtml) [28], used to generate the original multiple sequence

alignment, except that we excluded the sequences of the organisms used in our tests (D. mela-
nogaster and A. thaliana, respectively). The reason to exclude the D. melanogaster or A. thali-
ana sequences is that we want to provide an evaluation as blindly as possible, without using

any known information from the target organism. The PSI-Blast (Position-Specific Iterative

Fig 4. Decision tree. (Partial) decision tree predicting the probability that a given sequence belongs to the Gypsy superfamily. The abbreviation e in the nodes stands

for e-value, length for the number of base pairs, seq for the number of training sequences reaching the leaf.

https://doi.org/10.1371/journal.pcbi.1006097.g004
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Blast) program was used to obtain the new PSSMs and Makeprofiledb application for creating

the database for RPS-Blast.

FORF: The relational trees were built with default parameters, except for the minimum

number of examples in a leaf, which was set to 5. No pruning was used. The forests consist of

100 trees, with a feature sample size at each node equal to the square root of the number of pos-

sible features.

For the training of FORF we used sequences from Repbase (http://www.girinst.org/server/

RepBase/), volume 17—issue 3, one set for each superfamily of interest here. In order to pro-

vide a fair evaluation, as before, we excluded from these sets the sequences of the target organ-

ism. Note that each analysis was performed twice: each time leaving out one target organism.

The resulting sets were also used as the databases for RepeatMasker and Censor applications—

as described further. We ran the RPS-Blast program, with the PSSM database created in Step 2

of our framework, to search these sequences for regions related to the conserved domains of

interest (Table 1), retrieving the same types of information obtained from the screening of the

candidates (Step 2). We observed that the longest predicted domain region in these sequences

has a length smaller than 800 nucleotides, which indicates that the overlap size of 1,000 nucleo-

tides we used in Step 1 of our framework, is sufficient. We removed training sequences without

domain hits and those that contained domain hits in both strands of their genomic sequence.

The resulting number of sequences is 3188 for Copia, 4718 for Gypsy, and 891 for Bel-Pao

when leaving out D. melanogaster sequences. Leaving out A. thaliana, the numbers become

3077 for Copia and 4728 for Gypsy. These sequences constitute the positive training set. For

each superfamily, we also constructed a negative set, by sampling without replacement from

the other superfamilies. For Copia and Bel-Pao the negative set has an equal size as the positive

set; however for Gypsy, given the size of its positive set, the negative set contains less sequences

(all Copia and Bel-Pao sequences), which still yields a balanced classification task.

RepeatMasker and Censor: These systems were run using their standard parameter set-

tings. For a fair evaluation, we used as reference library the same training sets as for FORF as

described above. As each of the training sets belongs to a particular superfamily, we can label

hits with the corresponding superfamily. Both applications were run on the complete

genomes.

LtrDigest: This method was also run with its standard parameter settings on the complete

genomes. We only retained predictions with an assigned DNA strand and used the authors’

guidelines to assign a particular superfamily to each prediction as follows. Every predicted

sequence is annotated with protein domain hits. If the sequence has a “Peptidase_A17” hit it is

classified as BelPao; otherwise, if the sequence has a “Gypsy” hit, it is classified as Gypsy; other-

wise, following [10], if the sequence has an “INT” followed by an “RT” (there may be other hits

in between), it is classified as Copia and if an “RT” is followed by an “INT”, it is classified as

Gypsy. The remaining sequences are not classified.

Evaluation methodology

We report the predictive performance of the different methods with precision-recall (PR)

curves [29]. The motivation for preferring PR curves over the more popular ROC curves is as

follows. Only a small fraction of the genome contains TE sequences of a specific superfamily,

thus we are more interested in recognizing the positive cases, i.e. the candidate sequences that

actually belong to the superfamily, than in correctly predicting the negatives. Precision is the

percentage of predictions that are correct and recall is the percentage of annotations that were

predicted. A PR curve plots the precision of a model as a function of its recall. Assume the

model predicts the probability that a new example is positive, and that we threshold this
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probability with a threshold t to obtain the predicted class (positive or negative). A given

threshold corresponds to a single point in PR space, and by varying the threshold we obtain a

PR curve: while decreasing t from 1.0 to 0.0, an increasing number of examples is predicted

positive, causing the recall to increase whereas precision may increase or decrease (with nor-

mally a tendency to decrease). A domain expert can choose the threshold corresponding to the

point on the curve that looks most interesting.

To consider a prediction as a true positive, we do not require it to match the exact same

boundaries of the corresponding annotation of the genome, as this would be an overly strict

criterion. Instead, we allow some tolerance by defining a true positive as a prediction which

has a minimum overlap of 100 nucleotides with an annotation, or a prediction which overlaps

a complete annotation and vice versa. Our motivation for this evaluation is that a domain

expert can inspect each prediction and determine the exact boundaries of the complete TE.

Combined predictions

The random forests in TE-LEARNER
LTR only make predictions w.r.t. the superfamily for which

they were built. For example, one forest outputs the probability whether a sequence belongs to

Copia or not. However, one might be interested in having a model that can make predictions

w.r.t. many superfamilies at the same time. An advantage of such a model is that the user does

not need to combine the results of individual models, avoiding conflicting predictions.

As our models output probabilities, one straightforward idea to obtain this more general

model consists of selecting the superfamily with the highest probability. To avoid that a super-

family with a very low probability is predicted, we include the category None (i.e., the sequence

does not belong to any of the considered superfamilies), which is predicted when none of the

probabilities exceeds a certain threshold.

In this setting, we construct a single average PR curve for all superfamilies together as fol-

lows. When a sequence is predicted to have a certain superfamily, we consider it correct if the

sequence indeed belongs to that superfamily. The definition of precision and recall is then as

before. Thus, for precision, the denominator contains all candidate predictions, minus those

predicted as None; for recall, the denominator contains all annotations (for all considered

superfamilies).

We compare our results to those of LTRDIGEST, which is also able to make predictions w.r.t.

different superfamilies at the same time.

Results

In Step 1 and 2 of our framework, we generated 3372 possible candidates for D. melanogaster
and 2141 candidates for A. thaliana. In the third step, we constructed a random forest for each

organism (i.e., leaving out sequences of this genome from the training data) and each super-

family. Table 2 shows the average number of nodes per tree, the training set accuracy for the

forest, and the induction time. The latter shows the number of seconds needed to construct

the entire forest on a MacBook Pro, 2.8 GHz Intel Core i5. With respect to the tests in the

nodes of the trees, for all generated forests, we observed around 65% of the nodes testing for

the occurrence of a domain with a certain length condition, around 20% without length condi-

tion, and around 15% checking the occurrence of one domain before an other. Interestingly,

the number of occurrences of a particular domain did not show up in the forests.

We first evaluate the ability to predict each superfamily independently and then we evaluate

the combined predictions, i.e., how well our framework performs in classifying a TE as Copia,

Gypsy or Bel-Pao.
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Predicting each superfamily independently

Before discussing each superfamily in detail, we first show for both genomes the number of

predictions that were made and the average prediction length of each method and for each

superfamily (Table 3). Note that TE-LEARNER
LTR presents the same numbers of candidates and

average length of candidates for the three superfamilies. This happens because in our imple-

mentation Steps 1 and 2 output one common candidate set for the three superfamilies. From

the table it is clear that REPEATMASKERand CENSOR make a lot of predictions, which are on aver-

age much smaller than the predictions of TE-LEARNER
LTR. LTRDIGEST on the other hand, makes

much less predictions, which are considerably longer.

Copia. Let us first look at the curves for D. melanogaster (Fig 5). First, we observe that the

curve for TE-LEARNER
LTR has a maximal recall of 0.81. This is due to the candidate set returned

by Step 2 of our method: the candidate set contains 171 of the 210 Copia TE sequences

described in the annotations of D. melanogaster. Second, as expected, we observe that the pre-

cision of TE-LEARNER
LTR’s curve is high for high thresholds and goes down as the thresholds

are lowered. Third, REPEATMASKER, LTRDIGEST and the baseline model only output (positive)

predictions with 100% confidence rather than giving probabilities. Therefore, they correspond

to a single point in PR space. While the point of the baseline model is clearly below the curve

of TE-LEARNER
LTR, the points of REPEATMASKER and LTRDIGEST have a slightly higher value in

either recall or precision, respectively, compared to TE-LEARNER
LTR. Fourth, the curve of

CENSOR is below the one of TE-LEARNER
LTR, obtaining a maximal precision of 0.43, which

Table 2. Average number of nodes per tree, training set accuracy, and induction times for the random forests.

Target organism D. melanogaster A. thaliana
Superfamily Copia Gypsy Bel-Pao Copia Gypsy

nodes 14.63 22.97 8.99 13.45 20.91

training acc. 99.65% 99.59% 99.61% 99.71% 99.59%

induction time 248.98s 354.23s 72.55s 186.33s 320.16s

https://doi.org/10.1371/journal.pcbi.1006097.t002

Table 3. Number of predictions and average prediction length for each organism, method and superfamily.

D. melanogaster A. thaliana
Superfamily # pred. avg. length (bp) # pred. avg. length (bp)

TE-LEARNER
LTR

Copia 3372 2387.25 2141 1779.67

Gypsy 3372 2387.25 2141 1779.67

Bel-Pao 3372 2387.25 – –

REPEATMASKER

Copia 3662 222.25 5317 406.25

Gypsy 27188 415.63 11987 479.63

Bel-Pao 5176 498.78 – –

CENSOR

Copia 30702 77.60 48055 99.80

Gypsy 55645 182.35 61414 125.77

Bel-Pao 8068 300.44 – –

LTRDIGEST

Copia 43 4984.53 117 5196.29

Gypsy 441 6860.89 25 6433.72

Bel-Pao 152 8120.15 – –

https://doi.org/10.1371/journal.pcbi.1006097.t003
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quickly drops down close to zero. It does, however, obtain a higher recall than the other meth-

ods, with a maximum value of 0.86 (at a precision of 0.01).

The curve for A. thaliana can be found in Fig 6. The recall values for A. thaliana are lower

than the ones for D. melanogaster, with TE-LEARNER
LTR obtaining a maximal recall of 0.36,

while CENSOR obtains a maximal recall of 0.54, and REPEATMASKER reaches a recall of 0.53. Both

LTRDIGEST and TE-LEARNER
LTR are able to reach a precision of 1, at a recall of 0.09 and 0.23,

respectively. As before, CENSOR obtains a very low precision, and the baseline point is below

TE-LEARNER’s curve.

Gypsy. Fig 7 shows the results for D. melanogaster. As for Copia, we find that the candi-

date sequences returned by TE-LEARNER
LTR only contain a subset of the known Gypsy

sequences in D. melanogaster (1707 of the 3353 known Gypsy sequences). This results in a

curve with a maximal recall of 0.51. The points of CENSOR and REPEATMASKER have a lower

precision than the points on TE-LEARNER
LTR’s curve. However, both are able to obtain a

higher recall (0.80). The point of LTRDIGEST obtains a slightly higher precision (0.83) than

TE-LEARNER
LTR (0.81) at a recall of 0.14. However, TE-LEARNER

LTR is able to increase the recall

considerably without giving up on precision. Interestingly, the baseline model, which scans

the candidate sequences for the presence of the RNase_HI_RT_Ty3 protein domain, is situ-

ated exactly on the curve of TE-LEARNER
LTR. This shows that this protein domain is highly

predictive for Gypsy.

The curve for A. thaliana can be found in Fig 8. Apart from the lower recall for all methods,

and the baseline point being below the TE-LEARNER curve, the same conclusions as for D. mela-
nogaster hold.

Bel-Pao. Fig 9 shows the results for Bel-Pao. Here, our candidate sequences contain 349

of the 599 known Bel-Pao sequences in D. melanogaster, so the curve of TE-LEARNER
LTR has a

maximal recall of 0.58. Its curve is above the point of the baseline model. As for Gypsy, the

Fig 5. Precision-recall curves for the Copia superfamily (D. melanogaster).

https://doi.org/10.1371/journal.pcbi.1006097.g005
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Fig 7. Precision-recall curves for the Gypsy superfamily (D. melanogaster).

https://doi.org/10.1371/journal.pcbi.1006097.g007

Fig 6. Precision-recall curves for the Copia superfamily (A. thaliana).

https://doi.org/10.1371/journal.pcbi.1006097.g006
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Fig 8. Precision-recall curves for the Gypsy superfamily (A. thaliana).

https://doi.org/10.1371/journal.pcbi.1006097.g008

Fig 9. Precision-recall curves for the Bel-Pao superfamily (D. melanogaster).

https://doi.org/10.1371/journal.pcbi.1006097.g009

A machine learning based framework to identify and classify LTR retrotransposons

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006097 April 23, 2018 15 / 21

https://doi.org/10.1371/journal.pcbi.1006097.g008
https://doi.org/10.1371/journal.pcbi.1006097.g009
https://doi.org/10.1371/journal.pcbi.1006097


point of REPEATMASKER and the curve of CENSOR are able to reach a higher recall (0.88 and 0.85,

resp.) than TE-LEARNER
LTR, while the latter obtains a much higher precision at lower recall

values. LTRDIGEST’s point is slightly above the curve of TE-LEARNER
LTR, obtaining a precision

of 0.87 at recall 0.23, while TE-LEARNER
LTR obtains a precision of 0.79 at the same recall.

TE-LEARNER
LTR does however obtain a precision of 0.89 at a recall of 0.15.

Combined predictions

Figs 10 and 11 report the combined PR curves of TE-LEARNER
LTR and the point of LTRDIGEST.

For D. melanogaster, the point of LTRDIGEST obtains a slightly higher precision (0.80) than

TE-LEARNER
LTR (0.77) at a recall of 0.15. For A. thaliana, LTRDIGEST and TE-LEARNER

LTR both

obtain a precision of 1, however, the latter obtains a higher recall. Moreover, our combined

model has the advantage of allowing the user to choose an appropriate threshold.

Discussion

To summarize the above analyses, first, TE-LEARNER
LTR outperformed LTRDIGEST in terms of

recall, while it obtains a similar precision. Second, TE-LEARNER
LTR outperforms REPEATMASKER

and CENSOR in terms of precision, while the latter are able to obtain a higher recall. As we can

see in Table 3, REPEATMASKER and CENSOR make on average 3.7, resp. 14.2 times as many pre-

dictions as TE-LEARNER
LTR in order to obtain this recall, which comes at the cost of precision.

Additionally, TE-LEARNER
LTR’s lower recall can be explained by the fact that a considerable

amount of transposable elements either do not have the protein domains considered in this

study (see Table 1) or have domains that were not detected by RPS-Blast and are for these rea-

sons not found by TE-LEARNER
LTR. Third, the fact that TE-LEARNER

LTR and CENSOR output prob-

abilities does give the advantage for a domain expert to choose a threshold based on the

performance he or she prefers (either precision or recall).

Fig 10. PR curve of the combined predictions in D. melanogaster for TE-LearnerLTR and LtrDigest.

https://doi.org/10.1371/journal.pcbi.1006097.g010
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In order to have an overview about how many TEs are found exclusively by each method,

we created Table 4. It shows the number of annotations found by every method at the highest

recall point, regardless of the precision. The table confirms that REPEATMASKER and CENSOR

find indeed more TEs than TE-LEARNER
LTR, however, the latter is still able to find a significant

number of TEs that the other methods were not able to find.

To conclude the above analysis, we computed the widely used F1 measure, which summa-

rizes precision and recall in a single measurement. F1 corresponds to the harmonic mean of

Fig 11. PR curve of the combined predictions in A. thaliana for TE-LearnerLTR and LtrDigest.

https://doi.org/10.1371/journal.pcbi.1006097.g011

Table 4. Comparison of the number of annotations found by each method for each superfamily at the highest recall point. Column A indicates the number of annota-

tions found exclusively by TE-LearnerLTR, column I is the number of annotations that were predicted by both methods and column B indicates the number of annotations

found exclusively by the compared method.

D. melanogaster A. thaliana
Superfamily A I B A I B

TE-LEARNER
LTR vs. REPEATMASKER

Copia 6 165 11 49 596 351

Gypsy 82 1625 1072 114 1053 1404

Bel-Pao 5 344 183 – – –

TE-LEARNER
LTR vs. CENSOR

Copia 2 169 11 50 595 366

Gypsy 81 1626 1065 104 1063 1399

Bel-Pao 11 338 172 – – –

TE-LEARNER
LTR vs. LTRDIGEST

Copia 128 43 1 507 138 18

Gypsy 1293 414 46 1134 33 9

Bel-Pao 218 131 5 – – –

https://doi.org/10.1371/journal.pcbi.1006097.t004
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precision and recall, and measures the effectiveness of identifying TEs when giving equal

importance to precision and recall. For the methods that output a PR curve (i.e., TE-LEARNER

and CENSOR), we list the maximal F1 that can be obtained along the curve. The results, shown

in Table 5, show that, on average, TE-LEARNER
LTR obtains the best F1-score. Only in 2 cases it

was outperformed by REPEATMASKER only; in all other cases it outperformed the other meth-

ods. CENSOR and LTRDIGEST are not competitive w.r.t. this evaluation measure. The F1 scores

for the combined predictions confirm these results: on D. melanogaster we obtain 0.56 for

TE-LEARNER
LTR versus 0.26 for LTRDIGEST, on A. thaliana the values are 0.43 and 0.06,

respectively.

On a MacBook Pro 2.8 GHz Intel Core i5, it took TE-LEARNER
LTR less than 10 minutes per

superfamily to produce predictions from the D. melanogaster and A. thaliana genomes, includ-

ing the annotation of the protein domains. LTRDIGEST runs as fast as TE-LEARNER
LTR, but

REPEATMASKER and CENSOR have a much longer runtime: they are respectively 232 and 7

times slower than TE-LEARNER
LTR (averaged over the two target organisms and the three

superfamilies).

Finally, since our method outputs probabilities and achieves high precision, it can be used

to discover missing annotations: if a prediction receives a high score but is not in Flybase or

Araport11, it may indicate a missing or incorrect annotation. To verify this, we have per-

formed a BLAST search against the Nucleotide Collection (nt) of NCBI, for the top five false

positive predictions for each superfamily and each target organism. Default search parameters

were used. The results, shown in Table 6, confirm that for D. melanogaster all these predictions

match with a high confidence to a retrotransposon hit, belonging to the respective superfamily.

The only exception is the top two false positive predictions for Gypsy, which show a very low

query coverage. Further inspection learned that all these annotations are indeed missing in

Flybase, except the first false positive for Copia, which is in Flybase, but is annotated on the

wrong strand. In general, we observed that 14 annotations for Copia in Flybase describe

strands different of the strands retrieved by RPS-Blast for their conserved domains; for Gypsy

and Bel-Pao, these numbers are 34 and 5, respectively. For A. thaliana, only three false posi-

tives lead to a TE hit, which belongs to the respective superfamily.

Conclusion

In this paper we have proposed a framework based on machine learning to identify and classify

TEs in a genome. We evaluated our approach on three Class I TE superfamilies in D. melano-
gaster, and two Class I TE superfamilies in A. thaliana, using a relational random forest model.

We found a better predictive performance (w.r.t. F1 measure) and runtime compared to three

widely used methods for TE identification and classification. In terms of F1, the performance

of REPEATMASKER comes close to TE-LEARNER
LTR, however, it obtains a higher recall, because it

is able to recover TEs that have no conserved protein domains. The fact that we rely on these

protein domains is a clear limitation of our method, yet, we are able to find TEs that other

Table 5. F1-score of each method for each target organism and superfamily.

Target organism D. melanogaster A. thaliana Avg.

Superfamily Copia Gypsy Bel-Pao Copia Gypsy

TE-LEARNER
LTR 0.76 0.57 0.56 0.50 0.42 0.56

REPEATMASKER 0.20 0.47 0.58 0.48 0.59 0.46

CENSOR 0.12 0.19 0.28 0.06 0.14 0.16

LTRDIGEST 0.34 0.24 0.36 0.16 0.02 0.22

https://doi.org/10.1371/journal.pcbi.1006097.t005
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methods did not find. This suggests that TE-LEARNER
LTR presents a viable alternative to the

state-of-the-art methods, in case one prefers predictions with a very high precision, or as a

complement to the other methods when one is interested in finding more TEs. Furthermore,

for our top predictions not confirmed by the official annotations, we validated their homology

to known TEs of the corresponding superfamilies, showing that our method could be useful to

detect missing annotations.

While our implementation has been focusing on LTR retrotransposons, it is possible to

train it on other TE orders with superfamilies that have recognizable protein domains. Alter-

natively, one could change the implementation of any of the steps of the framework: the

machine learning model, the features used, and the candidate generation procedure. For

instance, to identify TEs from the TIR order (a Class II order with Terminal Inverted Repeats),

the first step could use software tools to identify a candidate set of sequences surrounded by

TIRs (such as [30, 31]).

A possible direction for further work is to explore hierarchical classification methods in the

machine learning step of the framework. This would allow to exploit the underlying structure

of the TE classification scheme. Additionally, one could try to still boost the performance of

the different steps of the framework, e.g., by improving protein domain detection, or by

including additional features (including features not related to protein domains) in the deci-

sion trees.

Table 6. BLAST analysis of the false positive (FP) predictions with the highest score. The first four columns show the location of the FP sequence, the last four columns

show the details of the BLAST TE hit.

chrom. start pos. end pos. strand hit FP cover e-value identity

D. melanogaster
Copia

3R 1354188 1356929 + AF492763.1 65% 0.0 94%

3R 2252810 2259304 - X02599.1 70% 0.0 99%

3R 1364299 1367899 - X07656.1 100% 0.0 96%

2R 3956904 3960831 - FJ238509.1 100% 0.0 99%

2L 23105894 23109919 - X02599.1 100% 0.0 99%

Gypsy

X 21872221 21878159 - S68526.1 1% 3e-22 96%

2R 3790612 3798451 + AY048125.1 0% 7e-10 89%

X 23476916 23480018 - AF541949.1 100% 0.0 97%

X 23340454 23343541 - X59545.1 100% 0.0 97%

3R 3675376 3680906 + X14037.1 84% 0.0 99%

Bel-Pao

3R 31890608 31894664 - AY180917.1 100% 0.0 99%

3R 3035596 3042707 - AY180917.1 68% 0.0 99%

3R 1657218 1661273 + AY180917.1 100% 0.0 99%

3L 27623316 27627575 - AJ487856.1 100% 0.0 99%

2R 4107747 4111802 + AY180917.1 100% 0.0 99%

A. thaliana
Copia

5 19473171 19473572 - NM_124179.2 100% 0.0 100%

3 15404097 15404507 - XM_018601062.1 99% 4e-100 83%

Gypsy

4 5080042 5082690 + FJ197993.1 11% 5e-37 77%

https://doi.org/10.1371/journal.pcbi.1006097.t006
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