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Chromatin regulatory factors (CRFs), are known to be involved in tumorigenesis

in several cancer types. Nevertheless, the molecular mechanisms through which driver
alterations of CRFs cause tumorigenesis remain unknown. Here, we developed a CRFs
Oncomodules Discovery approach, which mines several sources of cancer genomics
and perturbaomics data. The approach prioritizes sets of genes significantly miss-
regulated in primary tumors (oncomodules) bearing mutations of driver CRFs. We
applied the approach to eleven TCGA tumor cohorts and uncovered oncomodules
potentially associated to mutations of five driver CRFs in three cancer types. Our
results revealed, for example, the potential involvement of the mTOR pathway in the
development of tumors with loss-of-function mutations of MLL2 in head and neck
squamous cell carcinomas. The experimental validation that MLL2 loss-of-function
increases the sensitivity of cancer cell lines to mTOR inhibition lends further support to
the validity of our approach. The potential oncogenic modules detected by our approach
may guide experiments proposing ways to indirectly target driver mutations of CRFs.

INTRODUCTION

In recent years, catalogs of mutational cancer
driver genes from large sequencing datasets have been
identified [1, 2]. Although most of such mutational
drivers are involved in biological processes traditionally
associated with cancer, such as apoptosis or cell
proliferation [3, 4], an important fraction [1] is related to
cellular regulatory functions, including the regulation of
chromatin structure. Chromatin remodeling is crucial to
the regulation of gene expression. Three main biochemical
mechanisms compose chromatin remodeling —covalent
histone modifications, core histone replacement and
ATP-dependent chromatin remodeling [5]. Proteins that
carry out these three processes are generically referred
to as chromatin regulatory factors (CRFs), and their
involvement in tumorigenesis is now well established [6].
We recently showed that i) drivers are overrepresented
within CRFs; ii) CRF complexes —such as SWI/SNF
[7]- rather than individual genes driver tumorigenesis;

and iii) the importance of CRFs in tumorigenesis varies
amongst cancer types [8]. However, in most cases the
actual mechanism through which mutations in driver
CRFs lead to tumorigenesis is unclear. In this work,
we start with the catalog of mutational driver CRFs in
a cohort of almost 7.000 tumors representing 29 cancer
types, extending the aforementioned previous analysis.
We then hypothesize that changes in the expression of
key groups of genes mediate the tumorigenic effect of
mutational driver CRFs. To test this hypothesis, we develop
a simple three-step bioinformatics approach —the CRFs
Oncomodules Discovery Approach, or CRFs-ODA. We first
culled from TCGA a dataset of 3583 tumor samples from 11
cancer types for which both mutation and expression data
are available [9]. We then systematically detected genes
whose expression changes significantly in coherence with
mutations in individual driver CRFs. We call the groups
of functionally related genes (i.e. those in biochemical
pathways, gene ontology terms, or under the regulation
of a transcription factor, etc) significantly enriched for the
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differentially expressed genes in the previous analysis,
oncomodules. Finally, we ranked these oncomodules
according to prior knowledge on tumorigenesis and
information from several high throughput cancer genomics
and perturbaomics datasets [10, 11]. It is thus possible to
construct hypotheses linking the somatic mutations in the
driver CRF and the emergence of cancer based on the top-
ranking oncomodules. Furthermore, they provide clues on
possible therapeutic strategies to indirectly target tumors
bearing mutated CRFs.

RESULTS

CRFs as mutational drivers across tumor types

We started with a list of 459 mutational drivers derived
from the combination of three widely-used bioinformatics
methods [12—14] to a cohort of almost 7,000 tumors of 29
cancer types [1]. We intersected this list with a manually
curated set of 183 CRFs [8], resulting in 37 cancer driver
CREFs, 24 of which are included in the Cancer Gene Census,
CGC [15]. (The refined approach employed to detect the
drivers [16] and the increase in the number of tumor samples
in the cohort analyzed constitute the main improvement of
this catalog of driver CRFs over the aforementioned study.)
CRFs as a group are significantly enriched for drivers, as
25.3% of known CRFs are drivers, which represent only 1.9%
of non-CRF human genes (Fisher’s test p-value: 2.2x107'),
Three quarters of these CRFs (77.7%) are predicted to be
loss-of-function (LoF) [17]. On the other hand, only 48% of
all drivers are predicted LoF.

The mutational frequency of the 37 driver CRFs
varies across cancer types (Figure 1A) —a behavior already
observed in a smaller cohort [8]. While some CRFs (e.g.,
MLL3, MLL?2) appear mutated in several cancer types, others
are very specific to one or a few tumor types (e.g., ATRX,
PBRM1), as apparent from differences in the distribution
of the overrepresentation of CRF driver mutations (with
respect to the expected value) in each tumor sample across
all the cohorts analyzed, a metric which we call the CRF-
to-driver index, or CDI (Methods). We computed the CDI
as the minus logarithm of the pvalue of the Fisher’s test of
the overrepresentation of mutations in CRFs in each sample.
While the CDI varies amongst the samples of each tumor
type (Figure 1B) the median of its distribution in some
cancer types —such as bladder carcinoma (BLCA) and cervix
squamous cancer (CESC)-, is higher than in others. This
result suggests that CRFs are involved more frequently in
tumorigenesis in the cancer types of the former group.

The CRFs-ODA identifies oncomodules related
to MLL?2 driver mutations

The three-step CRFs-ODA (Figure 2) is predicated
on the idea that driver mutations in CRFs cause the miss-
regulation of a set of functionally related downstream genes.

First, the CRFs-ODA identifies genes whose expression
changes significantly in tumors bearing driver mutations
of a CRF with respect to unmutated samples (Figure 2A).
Then, the CRFs-ODA identifies sets of functionally related
genes (members of a biochemical pathway, with a common
Gene Ontology term, or under the regulation of the same
transcription factor) that are significantly enriched for the
previously detected differentially expressed genes (Figure
2B). We call these sets oncomodules. Finally (Figure 2C),
the CRFs-ODA employs a scoring system based on prior
knowledge of the tumorigenesis across several cancer types
to a) rank the biological modules detected in the previous
step; b) detect spurious relationships between somatic
alterations in the CRF and the differentially expressed genes;
and c) devise hypotheses to explain how the CRF in question
relates to the tumorigenic process and propose therapeutic
strategies to target them. In this section, and the following
two, we describe the use of the CRFs-ODA, illustrated
through the detection of oncomodules in head and neck
squamous cell carcinoma (HNSC) tumors carrying MLL2
driver mutations Tables 1 and 2, and Supplementary Figure
S1. We then summarize the results of its application to detect
oncomodules related to mutations of CRFs in eleven cohorts
of tumor samples analyzed by TCGA [9] (Supplementary
Tables S1-S5).

To carry out the first step of the CRFs-ODA (Figure
2A), we retrieved the mutations and expression data of
HNSC samples and divided them into two groups. The
first group contained samples (N=52) bearing mutations of
MLL?2 (all protein affecting mutations), while the second
comprised the samples with no mutations in any driver
CRF (N=60). To minimize the effects of the multiple test
correction derived from the comparison of gene expression
between the two groups, we discarded the 30% of genes
with the smallest expression variance across samples. We
then compared the expression of the remaining genes in
the two groups of samples, using a Wilcoxon test followed
by a Benjamini Hochberg FDR correction. We identified
154 differentially expressed (DE) genes —84 up-regulated
and 70 down-regulated— (corrected P-value<0.05).

In the second step of the CRFs-ODA, we (Figure
2B), identified sets of functionally related genes
(transcription factor targets from TRANSFAC [18],
biochemical pathways from KEGG [19] and REACTOME
[20] and oncogenic modules from MsigDB [21, 22])
significantly enriched for the DE genes. The 154 DE genes
in HNSC were significantly enriched (Table 1) for genes
of the mTOR pathway and for targets of the transcription
factors E2F1 and SF1. We refer to these genesets as the
MLL2 oncomodules in HNSC.

A scoring system to rank oncomodules

We then ranked these three MLL2 oncomodules
using information retrieved from several cancer
genomics and perturbaomics databases and the literature
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Figure 1: CRFs and their relative importance as drivers across tumor types. A. Heatmap illustrating the frequency of samples
with mutations of each known driver CRF relative to the total number of samples of 30 cohorts of tumors. (A cohort of lung tumors of
unspecified histology was added to those of the 29 tumor types analyzed in our aforementioned work. Note that because it does not represent a
new tumor type, the cohort under study still represents tumors from 29 cancer types.) B. The boxplots show the distribution of the enrichment
for driver mutations of CRFs across all samples of each cohort (CDI, see text for details). The enrichment for driver mutations of CRFs in
each sample was computed as the minus logarithm of the p-value of a Fisher’s exact test of the overrepresentation of mutations in driver
CRFs in each sample through a contingency table. The tumor cohorts in both panels are sorted by decreasing CDI median value. Tumor type
acronyms: BLCA: Bladder carcinomas; CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; KIRC: Renal clear
cell carcinoma; LGG: Lower grade glioma; DLBC: Difuse large B-cell linfoma; STAD: Stomach adenocarcinoma; LUSC: Lung squamous
cell carcinoma; HNSC: Head and neck squamous cell carcinoma; CM: Cutaneous melanoma; UCEC: Uterine endometrioid carcinoma;
LUAD: Lung adenocarcinoma; PA: Pilocytic astrocytoma; CLL: Chronic lymphocytic leukemia; ESCA: Esophageal carcinoma; MB:
Medulloblastoma; HC: Hepatocellular carcinoma; BRCA: Breast carcinoma; COREAD: Colorectal adenocarcinoma; GBM: Glioblastoma
multiforme; PAAD: Pancreatic adenocarcinoma; Lung: Lung cancer (histology unspecified); NSCLC: Non-small cell lung cancer; SCLC:
Small cell lung cancer; MM: Multiple myeloma; NB: Neuroblastoma; PRAD: Prostate adenocarcinoma; KIRP: Kidney papillary carcinoma;
AML: Acute myeloid leukemia; OV: Ovarian cystadenocarcinoma; THCA: Thryroid carcinoma.
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(Figure 2C) to implement the third step of the CRFs-ODA.
First, we assessed whether mutations of any HNSC driver
other than MLL2 correlated better with the collective
expression shift of the genes in each oncomodule than those
of MLL?2. To do this, we collapsed the expression values of
the genes in each oncomodule in each sample into a Zscore
value reflecting the level of collective over or under-
expression of the module with respect to the population
of all genes probed in the sample, through a Sample-
Level Enrichment Analysis (SLEA: [23] and Methods).
We then separated up-regulated and down-regulated DE

genes within each oncomodule to compute their SLEA,
thus producing a Zscore matrix of eight rows (six from
the genes in the oncomodules and two for the whole
sets of up- and down-regulated DE genes), as presented
in Supplementary Figure S1A. Next, we compared the
Zscores of samples grouped according to the mutations of
each HNSC driver. We found that the mutational status of
MLL?2 correlated better (Wilcoxon p-value smaller by more
than 5 orders of magnitude; Supplementary Figure S1B)
with the miss-regulation of the modules identified (mTOR,
E2F1 and SF'1) than that of any other HNSC driver.
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Figure 2: Flow diagram of the CRFs-ODA A. A data matrix with samples as columns and genes as rows is used as input. The genes
(30%) with the lowest variance are discarded. Then, samples are separated following the mutational state of the driver CRF under study
(details in Methods). The expression change between the two groups of samples of the remaining genes is computed, and those with corrected
p-values below threshold are considered differentially expressed (DE). B. DE genes are analyzed for enrichment for several genesets, such as
transcription factor targets from Transfac, biological pathways from KEGG and Reactome and experimentally generated oncomodules from
MSigDB. Genesets with significant overrepresentation of DE genes (oncomodules) are retained for analysis. C. Oncomodules are sorted
according to several layers of information obtained from the literature and cancer genomics and perturbaomics databases (Methods), in a

process we refer to as a scoring system.
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Table 1: MLL2 oncomodules detected in HNSC

Oncomodule Query size Term size Overlap size Adj. Pval
SF1 154 140 10 0.0019
mTOR 154 128 8 0.0118
E2F1 154 122 7 0.0247

Query size: Number of Differentially Expressed genes

Term size: Number of elements in the probed biological module
Overlap size: Number of elemens in the overlap between the set of differentially expressed genes and the sets of genes that

form the probed biological module

Adj. Pval: P-value of the overrepresentation test correct for multiple testing

Secondly, we used the data in the Connectivity
Map 02 [11], to search for gene signatures of response
to therapeutic perturbations of cell lines that significantly
correlate with the set of DE genes. The 154 differentially
expressed genes identified in HNSC tumors upon mutations
of MLL2 showed a significant negative correlation with
genes miss-regulated in several cell lines upon treatment
with the mTOR inhibitor rapamycin, as well as with
vorinostat, trichostatin A and LY-294002 and a positive
correlation with genes miss-regulated in response to
diethylstilbestrol (top 5 results; Supplementary Table S6).

As a third line of evidence to support and/or rank
the detected oncomodules, we manually searched the
literature for prior reports on the involvement of each CRF
oncomodule in cancer. Specifically, we asked whether the
miss-regulation of each oncomdule has previously been
associated to: a) the activity of the CRF under study; b) the
onset of tumorigenesis in the cancer type under analysis
and/or; ¢) the onset of tumorigenesis in other tumor types.
The three MLL2 oncomodules have previously been linked
to cancer [24-26], with MTOR and E2F1 specifically
involved in tumorigenesis in HNSC [27, 28]. Mutations
of MLL2 [29] have also been associated to the miss-
regulation of E2F1.

As a fourth test, we asked whether the genes within
each oncomodule are also miss-regulated in cancer cell
lines with mutations of the CRF under study. To do this,
we selected from the Cancer Cell Line Encyclopedia
(CCLE) [10] all cell lines derived from tumors of the same
cell type as the tumor type under analysis. Then, the cell
line-wise Zscores of CRF oncomodules —representing the
level of collective up- or down-regulation of each CRF
oncomodule— were computed using the SLEA approach.
Finally, the Zscores of cell lines bearing mutations of the
CRF were compared to those of cell lines with the CRF
unmutated. In the case of MLL2, because no information
is available of the mutational status of MLL?2 in the CCLE,
this test could not be performed. (See results for other
CRFs in Supplementary Tables S1-S5.)

For the fifth and final test, we asked whether the
significant overlap between DE genes upon mutations of
the CRF and the set of genes within an oncomdule under

the control of a gene (e.g. under the regulation of E2F1)
was also observed in cell lines subjected to analogous
perturbations. We computed the overlap between the set
of genes most extremely miss-regulated in cell lines after
knock-down of the CRF (in experiments carried out by the
Library of Integrated Network-based Cellular Signatures,
LINCS, http://www.lincsproject.org) and those extremely
miss-regulated upon knock-down of the gene controlling
the oncomodule. Miss-regulated genes upon knock-down
of MLL2 exhibit a significant overlap with those miss-
regulated by perturbing the cell lines via loss-of-function
of MTOR, E2F1 and SFI (P-values, 3.9x107%%, 7.5x107%,
and 3.5x107%, respectively).

In summary, the majority of the tests in the scoring
system corroborate that mTOR, E2F'[ and SF1 oncomodules
constitute good candidates to mediate the tumorigenic
effects of driver mutations of MLL?2 (see Discussion).

Further evidences of the involvement of the
mTOR oncomodule in MLL2 mutated tumors

We determined that driver mutations of MLL2 and
alterations of driver genes upstream the mTOR pathway
in HNSC occur in mutual exclusivity (P-value=5.4x107%;
Figure 3A), suggesting that all of them result in the
same downstream alteration of the mTOR oncomodule.
We also found that patients with MLL2-mutated HNSC
tumors with high expression of the 84 genes that are
significantly up-regulated upon such mutations exhibit
significantly worst survival than patients with tumors with
low expression of these same genes and no mutations in
any CRF (Figure 3B). This constitutes an indication that
the signatures of miss-regulated genes associated to driver
mutations of CRFs may also carry prognostic value.

On the basis of all prior observations, we
hypothesized that MLL2 knockdown of a cancer cell
line derived from a tumor type where MLL2 drives
cancerogenesis should produce the same type of miss-
regulation of the mTOR oncomodule observed in
head and neck primary tumors. Therefore, to simulate
the downstream effects of loss of function mutations
in MLL2 and to investigate their relationships with
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Table 2: Top-scoring oncomodules detected across all tumor cohorts

Tumor type  Driver Top- Correlation CMO02 drug Prior CRF  Prior Prior Miss- Overlap  Overall
CRFs scoring with other modules relation tumor cancer regulation miss- score
module driver type relation in cancer regulation
specific cell lines CRF/
relation module
mTOR No Tapammyein, No Yes Yes NA Yes 5/6
HNSC MLL2 vorinostat
E2F1 No No Yes Yes Yes NA Yes 5/6
MEK No pioglitazone Yes Yes Yes NA NA 5/5
HNSC NSDJ trichostatin A,
pioglitazone,
AKTI No LY-294002, No Yes Yes NA Yes 5/6
rapamycin
SOX9 No estradiol No Yes Yes Yes NA 5/6
monorden
LUAD SMARCA4 (radicicol),
HSF No estradiol, Yes Yes Yes No NA 5/6
15-dpj2,
rapamycin
p53 No LY-294002 Yes Yes Yes No Yes 6/7
KIRC PBRM1
ERBB2 No LY-294002 No No Yes No Yes 4/7
Base
excision No vorinostat Yes Yes Yes No NA 5/6
KIRC BAPI repair
C.D 28 co No trichostatin A’ No Yes Yes No NA 4/6
stimulation geldanamycin
pS3 Yes (p53) No Yes Yes Yes No NA NA
UCEC ARIDIA . ;
Cell-cell o ¢ (ps3) ~ raloxifene, No Yes Yes No NA NA
junction mefloquine

Tumor type: The tumor types names follow the same acronyms as in Figure 1.

Driver CRFs: Driver CRFs investigated with the CRFs-ODA in each tumor type.

Top-scoring module: Selected oncomodule(s), with the highest score for their misregulation upon mutations of driver CRFs in each tumor type.
Correlation with other driver: Miss-regulation of the oncomodule correlates with mutations of other driver better that with the CRF.

CMO02 drug modules: Modules miss-regulated in response to drug perturbations that significantly (anti-)correlate with oncomodules, according to

Connectivity Map 02. Drug names appear in each case.

Prior CREF relation: Evidences of the relationship between alterations of the CRF and miss-regulation of the oncomodule exist in the literature.
Prior tumor type specific relation: Evidences of the relationship between miss-regulation of the oncomodule and the emergence of this tumor type exist

in the literature.

Prior cancer relation: Evidences of the relationship between miss-regulation of the oncomodule and tumorigenesis exist in the literature.
Miss-regulation in cancer cell lines: The oncomodule appears significantly miss-regulated in cancer cell lines bearing mutations of the CRF with

respect to others without mutations of any CRF.

Overlap miss-regulation CRF/module: A significant overlap exists in genes miss-regulated upon knock-down of the CRF and knock-down of the gene

controlling the oncomodule in cell lines.

Overall score: Fraction of the tests that support the involvement of the oncomodule in tumorigenesis upon mutations of the CRF.

alterations of the mTOR pathway, we carried out MLL2
silencing with a specific short hairpin RNA in T24 human
bladder cancer cells where the MTOR gene is not altered
(Figure 3C, left panel). (We know that bladder carcinoma
is one of the tumor types frequently driven by MLL?2
loss-of-function mutations: see http://www.intogen.org/
search?gene=MLL2&cancer=BLCA.) Since mTORC1
activity is required for 4E-BP1 phosphorylation and
mTORC2 for AKT phosphorylation, we analyzed the

phosphorylation status of these two proteins in the
absence of MLL2 by western blot. In agreement with
the predictions resulting from our scoring system, the
decrease in MLL2 expression, checked by quantitative
PCR, resulted in increased mTORC1/2 activity (Figure
3C, right panel), which in turn suggests that these
cancer cells may be more sensitive to mTOR pathway
inhibitors. To test this hypothesis, we treated T24 cells,
with and without the MLL2 shRNA insertion, with
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Figure 3: Further evidences supporting the involvement of mTOR in tumorigenesis upon mutations of MLL2. A. Mutual
exclusivity of driver alterations of MLL2 and genes upstream and in the mTOR pathway. (Mutex p-value: 5.4x107°) B. Loss-of-function
mutations of MLL2 concomitant with miss-regulation of its related DE genes possess predictive survival value. HNSC tumors were
separated in two groups: those bearing mutations of MLL2 and concomitant miss-regulation of related down-regulated genes (red curve),
and those without mutations of MLL2 and no sign of down-regulation of the same genes. (A) Left panel. The levels of MLL2 of lysates of
T24 cells infected with an irrelevant short hairpin RNA (shControl) or specific for MLL2 (shMLL2) were checked by real-time quantitative
RT-PCR (qRT-PCR). Gene expression was normalized against an endogenous control and represented as RNA levels relative to those
obtained in shControl-infected cells, which was set to 1. Right panel. The lysates were analysed by western blot with an anti-P-4E-BP1,
4E-BP1, P-AKT, AKT and Tubulin antibodies. (B) Knock-down of MLL2 increased T24 cells sensitivity to everolimus treatment. The
proliferation of both shControl and shAM/LL2 cells treated with everolimus in the course of 3 days (three replicates in each point) is presented
relative to the proliferation of shControl and shMLL2 untreated cells, respectively. The units in the abscissa represent a proliferation ‘fold
change’.

everolimus and measured their growth rate through an
MTT assay. As shown in Figure 3D, everolimus proved
more effective in the inhibition of the growth of cells
carrying the MLL2 shRNA.

Potential mechanisms of tumorigenesis of other
driver CRFs

We identified oncomodules associated to the
alterations of six CRFs in four cancer types (including
MLL2 in HNSC). The results of the analyses are
summarized in Table 2 and presented at length in

Supplementary Tables S1 to S5. For example, while
mTOR and E2F] are the top-ranking oncomodules
associated to mutations of MLL2 in HNSC, we found
that oncomodules in the MEK/AKT] axis are top-ranking
in association to NSD/ mutations in the same cancer
type. In the case of mutations of SMARCA4 in lung
adenocarcinomas (LUAD), the top ranking oncomodules
include SOX-9 and transcription factors of the HSF family,
which have been linked to tumorigenesis before ([30];
Supplementary Table S2). In kidney clear cell carcinomas
(KIRC) the top-ranking oncomodule associated to
mutations of PBRM1 (the most frequently mutated KIRC
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driver, [31] are genes in the p53 pathway (Supplementary
Table S3). On the other hand, genes related to base-
excision repair mechanisms constitute the top-ranking
oncomodule related to driver mutations of BAP1, another
frequently mutated CRF in KIRC (Supplementary Table
S4). While genes within the p53 pathway are significantly
enriched for DE genes in uterine endometriod carcinomas
(UCEC) bearing mutations of 4RID1A and unmutated
ones, collective differences in expression of genes in the
pathway correlate more significantly with driver mutations
of TP53 (Supplementary Table S5). Mutations of 7P53
thus constitute a much simpler explanation of the observed
miss-regulation of genes under its control, and we accept
it under Occam’s razor.

DISCUSSION

We developed a CRFs-ODA to prioritize sets
of functionally related genes miss-regulated upon
somatic mutations of driver CRFs (oncomodules). We
applied it to 11 cohorts of tumors analyzed by TCGA,
and identified top-ranking oncomodules associated
to 5 CRFs in 3 cancer types. To our knowledge,
this constitutes the first systematic analysis of the
oncomodules that become miss-regulated upon
mutations of driver CRFs across cancer types. We
focused on the top-ranking oncomodules associated to
mutations of MLL2 in HNSC to illustrate the validity
of our approach, and we made predictions on how
the perturbation of the oncomodules could render the
tumors sensitive to certain anti-cancer drugs. Using
the Connectivity Map 02, for instance, we found that
drugs inhibiting mTOR (Rapamycin) and histone
de-acetylases (HDAC inhibitors) could constitute
candidates to indirectly target MLL2-deficient tumors.
Previous studies have shown that Vorinostat enhances
the ability of mTOR inhibitors to induce cell death
[32]. We also made other observations that support the
mechanistic relationship between the loss of function
of MLL2 and the miss-regulation of genes in the
mTOR pathway in tumorigenesis, such as the mutual
exclusivity of mutations across them. In addition,
we experimentally observed that —as predicted by
this hypothetic mechanistic relationship— the loss of
function of MLL?2 in cell lines derived from tissues in
which MLL?2 drives tumorigenesis renders tumor cells
more sensitive to mTOR inhibitors. Note that neither
the in silico predictions resulting from our scoring
system nor the experimental results that back them
are able to demonstrate the existence of a direct link
between MLL2 and the mTOR pathway. Our results
could also be due to synthetic lethality. Rather than
as an experimental validation of this particular link
bettwen loss-of-function mutations of MLL2 and the
miss-regulation of the MTOR module —which, outside
the scope of our study, must be undertaken by the

cancer research community— this result lends support
to the validity of our approach.

Description of the oncogenic modules related to five
CRFs in three tumor types with biologically meaningful
results, together with all the information produced by the
CRFs-ODA and —in particular— the scoring system on
each of them are available to cancer genomics researchers
as Supplementary Tables S1-S5. These results constitute
a pool of hypotheses on the mechanisms through which
MLL2, NSDI1, SMARCA4, PBRMI, and BAPI may
trigger the malignization of cells in HNSC, LUAD,
and KIRC. We envision that these hypotheses be tested
experimentally, and in particular that indirect therapeutic
strategies proposed by the strategy be essayed for their
potential use in clinical settings. We also envision that
the strategy we have developed in this study be used to
explore the tumorigenic mechanisms of other CRFs —and
eventually other driver— as larger multidimensional cancer
genomics datasets become available from new and bigger
sequencing studies.

MATERIALS AND METHODS

Data download and processing

Mutations in driver genes in 6792 tumors from
29 cancer types to carry out the mutational landscape
analysis, were downloaded from IntOGen [1, 33]. (We
added to the mutational frequency analysis a cohort of lung
tumors of unknown histology. See Figure 1A.) Both the
expression data and the mutational information used in the
differential expression analysis were retrieved from TCGA
through the import capability of the Gitools program [34].
Expression data for 3583 tumor samples form 12 different
cancer types was already normalized and median-centered.
The sets of functionally related genes used in enrichment
analyses (see below) were downloaded from MsigDB [21,
22]. They encompassed TRANSFAC transcription factor
targets, KEGG and REACTOME biological pathways
and experimental oncogenic signatures. The Cell lines
expression and mutational data used in the scoring section
was downloaded from the Cancer Cell Line Encyclopedia
[10]. Genes in cell lines with knocked-down CRFs and
other genes were obtained from the Library of Integrated
Network-based Cellular Signatures (LINCS; http://www.
lincsproject.org/) program.

Differential expression analysis

The variance of every gene across all the samples
available, regardless of their mutational status was
computed. The 30% of the genes with lowest variance
were discarded. Next, the samples were divided into two
groups, one group contained the samples with protein
affecting mutations (PAMs) in the CRF under study,
while the other was composed of the samples with no
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mutations of CRFs. Then, a Wilcoxon test comparing
the expression of every gene between these two groups
was performed. The resulting p-values were subjected to
multiple test correction using the Benjamini Hochberg
FDR method. The expression comparison, p-value
correction and filtering was carried out using Gitools [34].
Finally, genes with an adjusted p-value lower than 0.05
were considered as differentially expressed. When the
number of differentially expressed genes was higher than
1000, the adjusted p-value threshold was raised to 0.01. If
the resulting list of differentially expressed genes had still
more than 1000 genes the adjusted p-value threshold was
raised again to 0.001.

Enrichment analysis

Hypergeometric tests followed by the corresponding
multiple test correction were performed between the
differentially expressed genes and every one of the sets of
genes of functionally related genes mentioned in the first
section. Tests with an adjusted p-value lower than 0.05
were considered statistically significant.

Construction of oncogenic modules and sample
level enrichment analysis

We constructed oncogenic modules, i.e., sets
of genes differentially expressed in coherence with
the occurrence of driver mutations in the CRF under
analysis and related with cellular functions. Each
oncogenic module contained differentially expressed
genes overlapping sets of genes that were significant in
the previously described enrichment analysis. Genes in
these sets which exhibited raw p-values lower than 0.05
in the differential expression analysis, but discarded due
to the multiple test correction, were added back to the
oncogenic module. Each oncogenic module inherited
its name from the original gene set which significantly
overlapped the differentially expressed genes. Next,
every oncogenic module was divided into two subsets
of genes, one containing the up-regulated genes, and the
second one, with the down-regulated genes. The resulting
subsets of genes were used as input for the Sample Level
Enrichment Analysis (SLEA; [23]) implemented in
Gitools [34].

Correlation of the miss-regulation of oncogenic
modules with other drivers

A list of cancer driver genes mutated in 5 or more
samples from the differential expression analysis was
retrieved. Next, a SLEA using as input the expression
data used in the differential expression analysis and
as gene sets those built as explained in the SLEA
section was performed. Every one of the genes in the
list of cancer driver genes with more than 5 mutations

mentioned above was used to group the samples
according to its mutational status, then performing a
group comparison of the Z scores resulting from the
SLEA. Thus, a p-value per cancer driver gene per gene
set was obtained. Finally, these p-values were ranked to
check whether the most significant p-value corresponded
to the CRF under study. If so, the modules received a
positive score.

Miss-regulation of oncomodules in cancer cell
lines

Cell lines data corresponding to cell lines derived
from the same tissue than the tumor type under study were
selected. Cell lines expression data was used to perform a
SLEA with the gene sets built as described in the SLEA
section. Thus, a Z score per gene set per cell line was
obtained. Next, cell lines were grouped according to the
mutational status of the CRF under study and Z-scores
were compared using a Wilcoxon test between the two
groups, followed by a multiple test correction (Benjamini-
Hochberg FDR method). Modules whose Z scores group
comparison appeared to be statistically significant received
a positive score.

Overlap of genes miss-regulated upon knock-
down of CRFs and oncomodules in cell lines

We analyzed the overlap between the genes that
become miss-regulated when a CRF is knocked-down with
those miss-regulated when the gene controlling each of the
oncomodules detected to be associated with the CRF is
knocked-down. Genes miss-regulated upon knock-down
of a gene were obtained from the experiments carried
out in cell lines by the LINCS program (see above). We
require that the genes appear as extremely miss-regulated
in at least two knock-down experiments to include them
in the sets to test the significance of the overlap. We only
carried out this test when the oncomodule in question was
unequivocally under the control of a gene, rather than
describing a biological process and at least one knock-
down experiment had been carried out within LINCS of
the CRF and the gene controling the module. We then
probed the significance of the overlapping set of genes
through a Fisher’s test.

Mining prior knowledge on detected
oncomodules

An exhaustive literature search was performed
in order to assess whether the modules identified in
the enrichment analysis had already been related with
mutations in the CRF under study, the tumor type or
cancer in general. Each one of these already identified
relations was scored positively in case of being reported
on literature.
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Detecting correlation between oncomodules and
perturbation-response genesets

To fulfill the input format requirements of the
Connectivity Map 02, the genes identified as differentially
expressed in the differential expression analysis were
divided into two subsets, containing the up and down
regulated genes respectively. Also, the gene ids of the
genes in this two subsets were converted from symbol to
probe id (when more than a probe belonged to the same
gene, all of them were added). Next the two subsets of
genes were used as input to run CMO02. The top 5 resulting
drugs were selected, but only if the number of instances
was higher greater or equal to 5 (or in other words, that
had been tested at least 5 times varying the concentration,
the cell-line or the batch). If any of this drugs had as target
one of the modules identified in the enrichment analysis or
had been related to it, the module was scored positively.

Mutual exclusivity test

We first manually selected genes within the PIK3CA
pathway finalizing with signalling through MTOR. Then, to
visualize and assess the significance of the mutual exclusivity
of alterations of these genes, we once again employed
Gitools [34] built-in capabilities. After automatically sorting
the genes following the mutually exclusive pattern of their
alterations, we carried out the Mutex test implemented in
Gitools which permutes the alterations observed in each
gene in the set across the samples in the cohort respecting the
observed probability of alterations in each of them. Then, it
assesses the likelihood that the number of samples affected
by the observed pattern of alterations appeared by chance by
comparing it to those resulting from the permutations and
computing an empirical P-value.

Testing the sensitivity of MLL2-knocked down
cells to everolimus

Compounds
Everolimus was purchased from Sigma-Aldrich.
Cell culture

Human T24 cell line was obtained from the
American Type Culture Collection (Manassas, VA,
USA). Cells were maintained in DMEM medium
supplemented with 10% heat-inactivated fetal bovine
serum, penicillin (100 IU ml™"), streptomycin (100
mgxml™") and 4 mM glutamine (ICN, Irvine, UK) in a
humified atmosphere of 95% air and 5% CO, at 37°C.
For lentiviral infection, HEK293T cells were used to
produce viral particles. Cells were transfected (day
0) by adding drop-wise NaCl together with a DNA
mixture comprising 50% pLKO-shControl/shKMT2D
(Mission library Sigma SHCLNG-NM_003482), 10%

pCMV-VSVQG, 30% pMDLg/pRRE and 10% pRSV rev
and polyethylenimine polymer (Polysciences Inc) that
were preincubated for 15 min at room temperature. The
transfection medium was replaced with fresh medium
after 24 h (day 1), and the cell-conditioned medium at
day 2 was filtered and used to infect target cells with 8
png/mL polybrene. HEK293T cells were incubated with
fresh medium for further 24 h, and a second infection
with the conditioned medium and polybrene was
performed on day 3. Infected cells were selected with
puromycin for 72 h (2 pg/mL).

RNA analysis by quantitative RT-PCR
(qQRT-PCR)

After RNA extraction with TRIzol® reagent
(Invitrogen), RNA was retrotranscribed with the
transcription first-strand cDNA synthesis kit (Roche),
and real-time quantitative PCR experiments were done in
a Light Cycler PCR machine (Roche). This was used to
verify the efficiency of the MLL2 KD.

Cell survival assay

Cells (5%10* cells per well) were grown in 24-
well plates and exposed to 100nM of the drug. The
percentage of cell growth was determined using the
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-
mide (MTT) assay according to the manufacturer’s
instructions.

Western blot analysis

Total cell lysates were obtained from cell cultures.
Protein extracts were resolved by 10% SDS—-PAGE and
probed with anti-human, polyclonal P-Akt Thr308 (#9275,
Cell Signaling), Akt (#9272, Cell Signaling), P-4E-BP1
Thr37/46 (#9459, Cell Signaling), 4E-BP1 (#9452, Cell
Signaling) and Tubulin (T9026, Sigma) antibodies.
Immunoreactive proteins were visualised by enhanced
chemiluminescence (Pierce, Rockford, IL, USA).
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