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Abstract

The availability of a large number of dense SNPs, high-throughput genotyping and computation methods promotes the
application of family-based association tests. While most of the current family-based analyses focus only on individual traits,
joint analyses of correlated traits can extract more information and potentially improve the statistical power. However,
current TDT-based methods are low-powered. Here, we develop a method for tests of association for bivariate quantitative
traits in families. In particular, we correct for population stratification by the use of an integration of principal component
analysis and TDT. A score test statistic in the variance-components model is proposed. Extensive simulation studies indicate
that the proposed method not only outperforms approaches limited to individual traits when pleiotropic effect is present,
but also surpasses the power of two popular bivariate association tests termed FBAT-GEE and FBAT-PC, respectively, while
correcting for population stratification. When applied to the GAW16 datasets, the proposed method successfully identifies
at the genome-wide level the two SNPs that present pleiotropic effects to HDL and TG traits.
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Introduction

Recent technological advances in genotyping along with the

capacity to detect increasingly large numbers of single nucleotide

polymorphisms (SNPs) have created great demand for developing

new strategies to identify genes that underlie phenotypic variation.

The availability of high-throughput SNP genotype data is

prompting the development of genetic association analyses,

including family based association tests (FBAT).

For family data sets, such as the Framingham heart study [1],

multiple phenotypes are usually recorded. While most of the

current analyses focus only on traits individually, explicitly

modeling genetic and environmental correlations among traits

can theoretically extract more information and consequently

provide a greater power of test. In linkage studies, it has been

shown that joint analyses of two correlated traits may substantially

improve power for localizing genes that jointly influence complex

traits, and for evaluating their effects [2–7]. In association studies,

however, only a limited few methods are available [8–10].

Therein, Lange et al. [10] proposed a multivariate generalized

estimating equations (GEEs) based method, termed FBAT-GEE.

The method FBAT-GEE makes no assumptions on phenotypic

distributions and thus can be applied to phenotypes with arbitrary

distributions. For quantitative traits, Lange et al. [9] also proposed

a generalized principal component analysis (PCA), termed FBAT-

PC, which is more powerful than FBAT-GEE.

Both the methods FBAT-GEE and FBAT-PC possess the

property of protection against population stratification by a

transmission disequilibrium test (TDT)-like strategy. Despite its

potential merit, this property comes at the cost of a substantial loss

of statistical power by the fact that genotypes at each single marker

need to be decomposed in order to correct for population

stratification and test association simultaneously. The loss of power

may become problematic in the context of genomewide

association studies (GWAS) where it is critical to achieve a

genomewide significance level in order to judge a positive finding.

Alternatively, the issue of population stratification can be

handled at the population level by studying population structures

from genotype data of multiple markers [11–17]. Among these

approaches, Principal component analysis based methods

[12,14,16,17] summarize individual genetic background informa-

tion. PCA-based methods are proven to be both computationally

fast and statistically effective. The extensions of PCA to familial

data are also proposed by Zhu et al. [14] and by us previously

[18]. Thus, with the availability of large numbers of genotyped

markers, a more flexible scheme that would enhance the feasibility
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of applying FBAT would be to correct for population stratification

from multiple markers rather than from any single marker.

In this study, under the framework of the variance-components

(VCs) model [19,20], we develop a method for tests of association by

joint analysis of two correlated quantitative traits in families.

Specifically, Individual genotype scores and phenotypes are adjusted

by the use of the principal component analysis to guide against

potential population stratification. A score test is proposed with the

residual of genotypes and of phenotypes. Statistical properties of the

proposed method are investigated through extensive simulations

under a variety of conditions, and its performance is compared with

existing both univariate and bivariate methods.

Methods

Multivariate Variance-Components Pedigree Model
We describe the problem in the variance-components (VCs)

[8,19,20] framework which is a powerful tool for modeling

phenotypic variation for continuous traits in families. We describe

the model in the context of multivariate phenotypes, although we

consider only bivariate situation in our analysis.

Assume that there are N nuclear families with ni individuals in

the i-th family (i = 1, …, N ). Let yij = (yij1, …, yijm)9 be the vector of

m (m = 2 for bivariate) phenotypes for individual j (j = 1, …, ni) in

family i. Further, let Yi = (yi19, …, yini
9)9 be the vector of

phenotypes for all members in family i. Under the additive mode

of inheritance, the genotype score gij is defined as 0, 1 and 2 for

genotypes ‘‘11’’, ‘‘12’’ and ‘‘22’’, respectively. In the variance-

components model, genetic components contributing to pheno-

types are decomposed into the fixed effects, e.g., the effects at the

specified locus, and the random effects, e.g., the effects of unknown

polygenes. Specifically, the phenotype vector yij can be described

by the following multivariate variance-components model

yij~mzxijbxzgijbgzaijzeij for i~1, . . . N,j~1, . . . , ni, ð1Þ

where m~ m1, . . . ,mmð Þ
0

denotes the vector of grand means for the

m phenotypes; xij is a m6t design matrix for t covariates, e.g., age,

sex, and known environment factors, to the m phenotypes, and bx

is the vector of corresponding covariate effects; gij is a m6m design

matrix for genotype scores with the m principal diagonal elements

being gij and the other elements being 0, and bg the corresponding

additive major gene effects. At last, aij and eij are vectors of length

m denoting, respectively, the additive polygenic effects and the

residual effects.

Here, the covariate effects xijbx and the major gene effects gijbg

are modeled as fixed, whereas the polygene effects aij and the

residuals eij are modeled as random. Let aij and eij follow

multivariate normal distributions

aij*N 0,Að Þ and eij*N 0,Eð Þ,

where A and E are the m6m variance-covariance matrices

accounting for polygenic (aij ) and environmental (eij ) variation

among the traits, respectively, so that

E yij

� �
~mzxijbxzgijbg, ð2Þ

The covariance matrix of yij,
P

ij , has elements

X
ij

~GzAzE,

where G, A, and E are the m6m variance-covariance matrices

accounting for major gene (gij ), polygenic (aij ) and environmental

(eij ) variations, respectively.

The phenotype vector for the family i, Yi, will then follow a

multivariate normal distribution with the mean vector

E Yið Þ~mizxibxzgibg, ð3Þ

and the covariance matrix

X
i

~Pi6Gz2 i6AzI6E, ð4Þ

where mi~ m
0
, . . . ,m

0� �0
is the mean vector with length mni for the

family i; Xi~

Xi1

. . . ,

Xini

0
@

1
A

mnixt

is the design matrix for covariates, and

gi~

gi1

. . . ,
gini

0
@

1
A

mnixm

is the design matrix for genotypes at the tested

locus; Pi is the ni6ni identity-by-descent (IBD) matrix at the tested

locus (estimated from the genotype data) and i is the ni6ni kinship

coefficient matrix (estimated from the relationships among

individuals), both of which can be calculated from pedigree

structures and available genotype data. Finally, I is the ni6ni

identity matrix and 6 is the Kronecker-product operator for

matrices.

Correcting for Population Stratification
When the issue of population stratification exists, the model

described above may not provide a valid test. We previously

proposed to extend the principal component analysis to include

familial data [18]. The method is briefly outlined as follows:

founders in each family are selected to form an unrelated sample

on which principal component analysis is performed with available

genotype data. The calculated principal components are used to

estimate these founders’ genetic background information and to

adjust their genotype scores and phenotypes, as described by Price

et al. [12]. Principal components for non-founders in each family

are inferred according to those for their founder relatives through

a TDT strategy. The inferred principal components are then used

to adjust non-founders’ genotypes and phenotypes. The approach

is also extended to the scenarios where parental information is

missing. Denote the adjusted genotypes and phenotypes with an

asterisk (*), and we rewrite the equation (3) as

E Y�i
� �

~mizxibxzg�i bg: ð5Þ

Tests of Association
With the assumptions of independent families and of within-

family multivariate normality distributed phenotypes, the likeli-

hood function of the adjusted genotype and phenotype data is

written as

L~PN
i 2pð Þ{ni=2

X
i

�����
�����
{1=2

exp {
1

2
Y�i {E Y�i

� �� �0X{1

i

Y�i {E Y�i
� �� �( )

:

Evidence of association is assessed by a statistical hypothesis testing

of the null hypothesis H0: bg~0 (no association) versus the

Bivariate FBATs
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alternative hypothesis H1: bg=0 (evidence of association).

Generally, the hypothesis can be tested by a likelihood ratio test

(LRT) where for each marker the maximal likelihoods under the

null and alternative hypotheses are estimated respectively.

However, the LRT is rather computationally intensive when large

numbers of markers are involved, making it prohibitive for large-

scale scans. Here we propose a multivariate score test as the

extension of that proposed by Chen & Abecasis [21]. The set of

parameter in the likelihood function is h~½½m,bx,bg,G,A,E��. We

first fit the model under the null hypothesis (without bg), from

which we obtain the maximal likelihood estimates (MLE) of
P

i

and E Y�i
� �

, denoted by ŜS
baseð Þ

i and E Y�i
� � baseð Þ

, respectively, for

family i. Under the null hypothesis, the score vector with respect to

bg is defined as

S~
XN

i~1
g�i {�gg�
� �0

ŜS
baseð Þ{1

i Y�i {E Y�i
� � baseð Þ

� �
,

and the corresponding variance-covariance matrix is

V Sð Þ~
XN

i~1
g�i {�gg�
� �0

ŜS
baseð Þ{1

i g�i {�gg�
� �

:

The score test statistic is then defined as

T~S
0
V Sð Þ{1

S,

which asymptotically follows a x2 distribution with degree of

freedoms (df) being the rank of V Sð Þ, which is equal to m unless

there are linear dependences between the phenotypes. The statistic

T is valid regardless of the presence of population stratification.

Data Simulations
Statistical properties and performances of the proposed method

were investigated via extensive simulation studies. For genotype

data, we simulated 998 SNP markers, with the allele frequency for

each marker being drawn from the Uniform distribution U(0.1,

0.9). We also simulated two additional SNPs, both with MAF 0.3,

as the causal and the test SNPs, respectively. Two hundred nuclear

families were simulated by sampling parental genotypes according

to allele frequencies, and then by randomly selecting two parents

to produce children. Unless otherwise specified, the number of

children per family was drawn from a Poisson distribution with

mean 2.

Two quantitative traits were simulated by the equations (3) and

(4). To each trait, the causal SNP was assumed to explain a specific

proportion of phenotypic variation, which was set to 2% by

default, and the background polygenic effects were assumed to

explain additional 40% of phenotypic variation. The polygenic (ra)

and environmental (re) correlations between the traits were set to

0.4 unless otherwise specified.

When needed, population stratification was generated by

mixing equal numbers of families from two discrete populations

A and B. Marker allele frequencies in the two populations were

generated using the Balding-Nichols model [22]. Specifically, for

each SNP, an ancestry allele frequency p was drawn from the

Uniform distribution U(0.1, 0.9). The allele frequencies for

populations A and B were then drawn from a Beta distribution

with parameters p(12FST)/FST and (12p)(12FST)/FST, where FST

is the measure of genetic distance between the two populations.

We set FST to 0.05 to simulate moderate population stratification.

The two populations were generated separately with different

phenotypic means (mA and mB) and different causal and test SNP

MAFs (pA = 0.2 and pB = 0.4 for both causal and test SNPs). The

values of mA and mB were selected such that 20% of the phenotypic

variance of each trait in the combined population was explained

by stratification.

We evaluated the statistical properties, including type I error

rates and power, of the proposed method. In all the simulations,

the null hypothesis was produced by setting the LD measure r2

between the causal and the test sites to 0.0, whereas the alternative

hypothesis was produced by setting a certain value of r2 between

the two sites. Unless otherwise specified, the value of r2 under the

alternative was set to 1.0 to produce a perfect association between

the two sites.

We also studied the effects of various influential factors,

including locus effect, correlation coefficient between traits, the

level of LD, and family structure, on the performance of the

proposed method. For comparison, we also included extensive

popular univariate and bivariate methods into analysis. For

univariate method, we selected the commonly used method

QTDT proposed by Abecasis et al. [23], and the univariate score

test proposed by us previously [18]. For bivariate analyses, we

selected two popular methods: FBAT-GEE [10] and FBAT-PC

[9], which are implemented in the programs FBAT [24] and

PBAT [25], respectively. We denote the proposed test and the

other methods as T, UT, QTDT, FBAT and PBAT, respectively,

throughout the study.

GAW16 Datasets
As an application, we analyzed the Genetic Analysis Workshop

16 (GAW16) Problem 3 simulated data sets with the proposed

method. The access and analyses of the GAW16 simulated data

sets have been approved by the Institutional Review Board (IRB)

of the University of Missouri-Kansas City (UMKC). The GAW16

data sets consist of 6476 subjects from the Framingham Heart

Study (FHS), where each subject has real genotypes at approx-

imately 550,000 (549,872) SNPs and simulated phenotypes.

Subjects are distributed among three generations and singletons.

After dividing large families into smaller nuclear families and

applying some quality controls to the data (for example, as the

proposed test cannot analyze half-sibs, we deleted half-sibs from

the data), we finally identified 5456 family members from a total of

1815 nuclear families.

A total of four correlated quantitative traits, termed HDL, LDL,

TG, CHOL, respectively, are simulated in order to mimic the lipid

pathway underlying the development of cardiovascular disease

[26]. We focused on the traits HDL and TG. Genetic components

underlying each of both traits consist of several SNPs with major

effects and 1,000 SNPs with polygenic effects. Two major SNPs

(rs3200218 and rs8192719) present pleiotropic effects to both traits

in the simulation. Phenotype data are simulated at three pseudo-

visits with 10 years apart to mimic the context of longitudinal

study, and at each visit, 200 simulated data sets are replicated. The

dataset from the first replicate of the first visit was analyzed as

suggested by the workshop. Both phenotypes were adjusted by age

and sex.

Results

Type I Error Rates
We first estimate type I error rates under a variety of polygenic

(ra) and environmental (re) correlations in homogeneous popula-

tion setting, as listed in Table 1. Two modes of linkage are

considered: 1) the marker is tightly linked to but not associated

with the QTL (Linkage); and 2) the marker is neither linked to nor

associated with the QTL (No linkage). It is obvious that all

Bivariate FBATs
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methods have correct type I error rates that are close to the target

levels, regardless of the existence of linkage.

Table 2 lists the type I error rates when families from two

populations are admixed. All methods again have correct error

rates, implying their ability to protect against population

stratification.

We also estimate the type I error rates when parents in each

family are missing, as presented in table 3. In the table, the

number of children per family varies from 2 to 4, with the total

number of children being fixed at 480. Again, all investigated

methods have correct type I error rates regardless of the presence

of linkage or population stratification, indicating the proposed

method as well as the others is applicable to studies with missing

parental information.

Power Estimates
Powers of various methods affected by ra and re are listed in

table 4. For all the three bivariate approaches, power increases as

Table 1. Type I error rates at various levels of residual correlations under homogeneous population.

ra

20.8 20.4 0.0 0.4 0.8

re T FBAT PBAT T FBAT PBAT T FBAT PBAT T FBAT PBAT T FBAT PBAT QTDT UT

Linkagea

20.8 4.9 4.6 5.1 3.8 4.5 5.3 5.0 5.8 5.1 4.7 5.7 5.3 4.1 4.6 3.8 4.9 5.5

20.4 7.4 5.8 5.2 5.2 4.6 5.2 5.1 5.7 4.4 5.0 4.5 4.9 5.2 6.0 4.8

0.0 5.3 4.5 5.3 4.7 5.8 6.8 5.3 3.9 4.3 4.7 6.6 4.0 5.8 5.7 5.2

0.4 5.3 4.8 4.2 5.3 4.5 5.1 5.1 3.7 4.6 5.0 5.2 5.8 4.3 4.6 5.5

0.8 4.7 4.6 5.3 4.3 4.2 4.9 4.8 4.8 5.4 4.8 5.7 5.3 3.9 4.9 3.9

No Linkageb

20.8 4.7 4.5 3.8 5.7 4.9 5.4 4.6 4.6 4.2 5.8 4.9 4.2 5.9 4.3 4.9 5.2 4.0

20.4 5.1 3.9 4.5 5.7 5.1 5.4 5.4 5.5 5.2 4.1 6.5 4.1 4.3 4.8 5.3

0.0 5.5 4.8 3.9 4.4 4.2 5.1 3.8 6.5 5.8 4.0 6.0 5.1 4.3 5.2 4.1

0.4 5.2 5.4 3.7 4.6 4.9 4.2 4.9 6.1 3.8 4.1 4.6 4.9 5.6 5.4 4.6

0.8 5.2 6.2 5.2 6.4 4.1 4.4 4.4 5.0 4.8 4.3 5.4 6.0 4.2 4.5 4.6

Two hundred nuclear families were simulated, with the number of children per family being drawn from a Beta distribution with mean 2. Type I error rate was estimated
at nominal level 5% on 1,000 replicates, with various levels of polygenic correlation (ra) and environmental correlation (re).
athe test site was linked to but not associated with the causal site.
bthe test site was neither linked to nor associated with the causal site.
Abbreviations: T, the proposed bivariate method; FBAT, the method FBAT-GEE [10] implemented in the software FBAT [24]; PBAT, the method FBAT-PC [9] implemented
in the software PBAT [25]; QTDT, the method proposed by Abecasis et al. [23] and implemented in the software QTDT; UT, the univariate test in our previous study [18].
doi:10.1371/journal.pone.0008133.t001

Table 2. Type I error rates at various levels of residual correlations under admixed population.

ra

20.8 20.4 0.0 0.4 0.8

re T FBAT PBAT T FBAT PBAT T FBAT PBAT T FBAT PBAT T FBAT PBAT QTDT UT

Linkagea

20.8 2.0 4.5 4.5 3.5 5.7 4.0 3.2 4.0 4.3 3.8 5.4 5.5 4.3 5.7 5.4 4.6 4.4

20.4 3.5 5.4 5.7 3.3 4.1 5.1 4.1 5.2 5.8 2.8 3.9 5.7 3.8 4.1 4.0

0.0 4.3 4.2 3.7 2.9 4.5 4.3 3.8 4.2 5.1 5.5 4.7 5.1 4.0 5.0 5.1

0.4 2.8 4.0 4.9 2.7 4.4 4.5 3.0 5.3 3.8 2.2 3.9 4.3 3.2 4.9 3.7

0.8 2.9 5.8 5.8 3.2 4.9 3.2 2.8 4.9 4.8 2.6 4.0 5.8 3.6 6.0 4.8

No Linkageb

20.8 1.9 5.2 4.2 2.6 4.9 5.7 3.6 5.1 4.9 2.9 4.8 4.0 4.1 4.6 6.0 5.0 4.5

20.4 3.7 4.9 5.0 4.2 4.4 5.2 3.0 6.0 5.8 3.4 5.4 5.4 4.6 5.3 5.3

0.0 2.8 4.6 4.4 3.1 5.4 5.9 3.4 5.8 5.0 3.8 6.0 5.5 4.5 4.8 5.0

0.4 3.9 5.4 5.3 2.8 4.8 4.6 4.1 5.4 5.5 4.0 4.9 4.8 4.7 4.5 4.7

0.8 3.7 5.1 5.9 4.4 5.1 5.8 4.1 4.8 5.3 3.9 6.5 5.7 3.9 4.2 4.7

Two hundred nuclear families were simulated by admixing 100 from two populations A and B. See Table 1 legend for simulation and abbreviation details.
doi:10.1371/journal.pone.0008133.t002
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residual correlations (ra and/or re) decrease from +1.0 to 21.0.

For example, under homogenous population, the power of the

proposed method is 87.6% when both ra and re are +0.8, and

increases to 100.0% when both correlations decrease to 20.8. In

additional simulations where the major gene correlation between

the traits is constrained to 21.0 rather than +1.0, we observe an

opposite trend in power change; power increases as ra and/or re

increase from 21.0 to +1.0 (data not shown). Therefore, our

simulation results indicate that the power of the bivariate

approaches increases when the effects of the major-gene and

those of the residuals (polygenic and environmental) act in

increasingly dissimilar directions, which coincides with previous

studies in the literature of linkage analyses [3].

Among the three bivariate methods, the proposed one has the

highest power under all the parameter settings. The power

improvement is remarkably large. For example, when both ra and

re are +0.8 under homogeneous population, the power for the

proposed method is 90.5%, whereas it is only 48.8% for FBAT

and 58.0% for PBAT. For the other two methods, PBAT has a

higher power than FBAT.

When comparing the bivariate and univariate approaches, the

proposed method has higher power than UT under most

conditions, and than QTDT under all the conditions. UT has

higher power than QTDT, consistent with our previous study

[18]. FBAT and PBAT have higher power than QTDT unless the

traits are highly positively correlated.

Power when parental information is missing is presented in

table 5. The trends in power changes are similar with those when

parental information is available. The proposed method again has

the highest power, and the bivariate tests have higher power over

univariate tests in most situations.

We also study the effects of two factors, including the level of

LD and family structure, on power estimations. As presented in

table 6, all the methods have increased power with increased r2. As

the number of children per family increases, the power of the

proposed method and UT decreases a little, whereas that of the

Table 3. Type I error rates when parents are missing.

No. of children per family

2 3 4

T FBAT PBAT QTDT UT T FBAT PBAT QTDT UT T FBAT PBAT QTDT UT

Homogeneous

Linkage 6.3 4.7 5.9 4.5 4.7 3.3 5.1 3.6 5.2 4.9 5.3 4.7 5.0 5.2 4.2

No Linkage 5.0 3.3 4.3 4.7 3.6 4.9 4.1 4.6 4.9 4.7 5.9 4.7 5.0 4.8 5.3

Admixture

Linkage 3.9 4.7 5.2 5.2 3.5 4.6 5.3 5.0 4.8 3.9 4.2 4.3 5.1 4.1 4.5

No Linkage 4.0 4.5 4.6 4.7 3.8 4.7 5.9 6.1 5.8 4.7 5.3 4.5 5.2 5.1 4.8

The number of children per family varied from 2 to 4, and the number of families varied accordingly with the constraint that the total number of children was fixed at
480. Both polygenic and environmental correlations were set to 0.4. See Table 1 legend for simulation and abbreviation details.
doi:10.1371/journal.pone.0008133.t003

Table 4. Power estimates at various levels of residual correlations.

ra

20.8 20.4 0.0 0.4 0.8

re T FBAT PBAT T FBAT PBAT T FBAT PBAT T FBAT PBAT T FBAT PBAT QTDT UT

Homogeneous

20.8 100.0 100.0 100.0 100.0 99.3 99.7 100.0 95.9 98.3 100.0 87.5 94.5 100.0 80.0 88.7 61.3 93.7

20.4 100.0 97.3 99.5 100.0 90.9 96.1 100.0 83.8 92.0 99.8 74.9 85.7 99.3 71.5 82.4

0.0 100.0 89.2 93.2 100.0 80.5 89.6 99.4 75.2 84.6 99.2 65.4 77.1 98.4 59.7 70.5

0.4 100.0 79.0 88.4 99.4 70.6 79.7 98.0 62.8 76.5 97.4 60.3 71.8 96.1 53.7 65.8

0.8 99.7 66.6 76.9 98.2 61.8 73.6 96.0 58.2 65.5 95.6 55.1 64.1 90.5 48.8 58.0

Admixture

20.8 100.0 85.8 94.5 99.7 76.0 83.1 99.9 71.2 80.3 100.0 64.5 74.6 99.8 57.7 66.8 55.1 91.4

20.4 99.8 75.1 82.4 100.0 69.8 80.3 99.3 61.0 74.8 99.3 56.3 63.1 98.4 49.7 57.2

0.0 99.9 64.0 78.3 99.3 57.9 64.7 98.0 53.3 57.6 97.5 50.9 54.2 94.9 44.7 50.3

0.4 98.4 55.7 64.7 97.6 50.4 58.6 96.3 49.1 53.4 93.4 44.2 47.7 92.0 40.4 44.5

0.8 95.6 48.8 55.5 94.0 45.5 52.2 92.3 40.4 48.0 91.3 35.7 42.5 87.6 37.4 39.6

Power was estimated at the nominal level of 5% based on 1,000 replicates. The value of r2 between test and causal sites was set to 1.0, and the recombination rate
between the sites was set to 0.01. See Table 1 and 2 legends for simulation and abbreviation details.
doi:10.1371/journal.pone.0008133.t004
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other methods increases instead. Again, the proposed method has

the highest power in all situations.

Analysis of GAW16 Datasets
As an application, we analyze the GAW16 simulated datasets as

described in the preceding section. On a desktop computer with a

single 2.8GHz Intel Xeon CPU, the computation from the

proposed method for the scan with 550K SNPs takes a total time

of approximately 20 hours. Figure 1A presents the quantile-quantile

(QQ) plot (left) and log-QQ plot (right), and Figure 1B plots raw p-

values over 22 autosomes. Obviously, the overall p-values distribute

uniformly between 0 and 1. The most significant signal from the

proposed method is observed at SNP rs10820738, with a p-value

9.55e-17. UT has a p-value 4.42e-17 at this SNP. The second most

significant signal corresponds to one of its flanking SNPs rs2297398

(7.7kb apart), with a p-value 1.88e-15 from the proposed method.

The SNP rs10820738 explains the most phenotypic variation (1.0%)

for HDL trait in the GAW16 simulation, but none for TG trait. The

third most significant SNP is rs3200218 with a p-value 3.47e-12.

This SNP is exactly one of the two SNPs that present pleiotropic

effects to both traits. The p-value at the other major pleiotropic SNP

rs8192719 is 3.07e-6, which does not achieve the genomewide

significance level. However, one of its flanking SNPs rs7249735

(12.8kb apart) presents a p-value 2.77e-8 that is significant at the

genomewide level. Generally speaking, the proposed method

successfully identifies both pleiotropic SNPs at the genomewide

level. We also list p-values at these two SNPs from other methods in

Table 7. Obviously, most of them do not achieve genomewide

significant level, further demonstrating the advantage of the

proposed method.

Table 5. Power estimates at various levels of residual correlations when parents are missing.

ra

20.8 20.4 0.0 0.4 0.8

re T FBAT PBAT T FBAT PBAT T FBAT PBAT T FBAT PBAT T FBAT PBAT QTDT UT

Homogeneous

20.8 99.0 100.0 100.0 99.2 96.7 99.2 99.3 90.1 97.5 98.4 85.5 94.4 97.5 77.5 88.9 43.4 72.8

20.4 99.7 85.8 95.7 99.2 79.1 92.8 96.8 71.2 85.8 94.7 66.9 83.1 90.3 60.5 76.9

0.0 99.0 67.7 86.1 95.8 60.2 80.7 92.3 57.2 76.6 85.6 51.4 69.9 81.6 46.4 66.0

0.4 94.3 54.3 74.5 89.0 46.1 70.2 84.8 42.6 61.9 79.7 40.7 56.8 76.4 39.1 60.2

0.8 88.2 42.7 66.7 81.4 37.8 59.5 77.7 37.2 58.2 76.3 35.7 57.7 68.9 31.4 48.8

Admixture

20.8 99.9 99.3 99.7 99.4 94.7 97.3 98.7 87.9 94.6 94.6 77.5 88.2 93.1 70.1 78.6 40.3 63.2

20.4 98.2 83.4 96.2 94.9 70.2 90.7 90.8 64.1 83.1 86.8 58.9 78.4 81.0 54.7 74.3

0.0 92.0 61.2 87.7 87.6 57.0 78.9 83.3 52.6 75.5 78.9 47.3 72.3 74.5 42.9 65.8

0.4 82.7 45.8 72.1 78.8 42.6 69.9 73.2 40.8 63.4 68.7 39.0 59.6 64.1 35.0 57.2

0.8 76.9 41.3 65.2 69.8 36.4 61.7 63.1 34.7 55.4 62.3 32.5 54.1 57.8 29.5 39.5

Parents were deleted from the simulation. See Table 1 and 2 legends for simulation and abbreviation details.
doi:10.1371/journal.pone.0008133.t005

Table 6. The effects of LD level and family structures on power estimates.

No. of children per family

1 2 3

r2 T FBAT PBAT QTDT UT T FBAT PBAT QTDT UT T FBAT PBAT QTDT UT

Homogeneous

0.25 46.2 14.7 17.3 14.5 41.1 42.1 15.7 20.9 18.1 43.6 41.9 18.9 23.4 20.8 40.8

0.50 72.7 18.2 26.4 20.5 70.3 74.6 26.1 37.9 30.4 66.2 72.2 34.2 41.1 36.3 67.9

0.75 89.4 28.8 39.0 31.5 86.0 91.0 41.3 53.3 42.0 85.1 89.5 49.5 59.7 50.8 83.7

1.00 97.1 36.9 49.5 39.6 92.8 96.0 52.2 63.7 54.0 92.4 95.7 59.9 70.5 62.5 92.5

Admixture

0.25 32.5 11.4 15.4 13.2 31.6 33.0 13.7 18.9 16.5 29.0 29.2 12.8 19.5 16.4 33.1

0.50 60.8 13.9 18.2 17.7 58.2 61.0 22.9 34.8 28.8 58.7 60.6 25.1 35.4 30.7 57.5

0.75 80.9 22.2 36.3 26.7 77.4 81.6 32.2 48.6 37.6 75.7 79.5 33.4 55.9 43.7 74.2

1.00 92.3 25.4 41.6 34.1 87.1 92.4 42.0 57.1 49.3 86.3 91.9 45.7 66.8 55.6 89.5

The number of children per family varied from 1 to 3, with the total number of individuals being constrained at 800. See Table 1 and 2 legends for simulation and
abbreviation details.
doi:10.1371/journal.pone.0008133.t006
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Discussion

In this study, we have presented a bivariate test of association

for quantitative traits in families, by the use of the multivariate

variance-components model. In particular, the proposed method

uses principal component analysis to correct for population

stratification. Simulation studies have shown that the proposed

method not only outperforms the analysis focused on individual

traits when pleiotropic effect is present, but also has increased

power compared with the existing bivariate methods, while

correcting for population stratification.

The strength of bivariate analyses is influenced by correlations

between traits. Our simulation results show that bivariate analyses

are more powerful when the major genes and the residual factors

act in more dissimilar ways. For example, by constraining the

major-gene correlation to +1.0, bivariate approaches are most

powerful when both ra and re are equal to 20.8, corresponding to

an approximate phenotypic correlation of 20.76. When pleiotro-

pic effect is present, bivariate analysis is more powerful than

univariate analysis unless the residual correlation is high and in the

same direction to the correlation of major gene effect, coinciding

with the findings in linkage studies [27]. When pleiotropic effect is

not present and there is weak or no correlation between traits, on

the other hand, bivariate analysis is less powerful than univariate

analysis [28]. In our analyses of the SNP rs10820738 that has no

pleiotropic effect in the GAW16 simulation, the p-value from the

proposed bivariate method, 9.55e-17, is slightly higher than that

from the univariate method UT, 4.42e-17. In practical applica-

tions in which the existence of pleiotropic effect is unknown in prior,

bivariate analysis is not necessarily more powerful than univariate

analysis, even when the traits are strongly correlated. Bivariate

analysis should thus be processed with caution, and combing the

results of bivariate and univariate analyses is warranted.

Thus, our simulations provide a statement in demonstrating that

bivariate approaches are more powerful than univariate analyses

unless major-gene effects and residual effects are very highly

correlated in the same direction, which coincides with the

conclusion of Amos et al. [27].

Our method that is developed by extending the variance-

components model offers a way to powerfully/robustly perform

bivariate association analysis in the presence of linkage in general

pedigrees. The variance-components model is advantageous in

detecting QTL in the following two aspects: first, it combines the

Figure 1. Application of the proposed method to the GAW16 simulated datasets. The GAW16 simulated HDL and TG traits were analyzed.
Figure 1A, the quantile-quantile (QQ) plot (left), and log-QQ plot (right); Figure 1B, raw p-values of the genome-wide scan.
doi:10.1371/journal.pone.0008133.g001

Table 7. P-values at pleiotropic SNPs.

p-value

SNP T FBAT PBAT QTDT UT

rs3200218 3.47e-12 0.03 5.20E-04 1.91E-04 2.72e-08

rs8192719 3.07e-6 0.94 0.04 0.04 2.38e-06

For univariate tests, e.g., QTDT and UT, the uniform bivariate p-value was
obtained by adjusting the minimum of the two univairate p-values by multiple
testing correction (multiplying by 2). See Table 1 legend for abbreviation
details.
doi:10.1371/journal.pone.0008133.t007
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analysis of linkage and association and would increase the power

of detecting QTL when the marker, itself is not the QTL, is

associated with the QTL. Second, the prior evidence on linkage

can be incorporated to indicate LD strength between the QTL

and the marker [29].

Another strengthen of our method is decomposing individual

genotype scores by principal component analysis rather than by

TDT-like strategy for controlling population stratification. The

resulting test statistic provides largely improved power over

existing TDT-based methods, where the latter may be prohibitive

for application to genome scans due to their poor powers. For

example, under the moderate setting where both polygenic and

environmental correlation coefficients were set to 0.4 and the locus

effect were set to 2%, we observed 164 and 24 significant results

over 1,000 replicates for the proposed method and UT,

respectively, but only 6, 8, and 4 for FBAT-GEE, FBAT-PC,

and QTDT, respectively, at the genome-wide level 1.0e-6.

An interesting observation from our simulations is that family

structures influence the power of the investigated methods in

different patterns. For FBAT-GEE, FBAT-PC and QTDT that

control population stratification through TDT, small numbers of

large families provide more power than large numbers of small

families. This is not surprising, since with these methods the

parental information is used to control the stratification, and

consequently, only the information of children contributes to test

statistics. Contrary, the power decreases slightly as the number of

children per family increases for the proposed method. This

appears to be caused by the fact that a large number of small

independent families provides more information on allele

distributions than a small number of larger families can provide.

In this manuscript, we focus our attention on data with nuclear

families. However, the proposed method is applicable to extended

pedigrees as well. The described multivariate variance-compo-

nents model can be directly applied to extended pedigrees. As for

correcting for population stratification, the extension of principal

component analysis coupled with TDT strategy to extended

pedigrees is also straightforward. For example, all founders can be

collected to form an unrelated sample. In cases where there is no

founder, one sib can be randomly selected into the unrelated

sample, as we described in reference [18]. PCA will then be

performed on the unrelated sample, and both the genotype and

the phenotype for each subject in the unrelated sample are

adjusted accordingly. For subjects not in the unrelated sample,

their principal components can be calculated by that of their

parents or sib that is in the unrelated sample. The process will

carry on recursively until all non-founders are adjusted. Some

specialized algorithms, e.g., the one described in [30], can be

adopted in a relatively simple manner. However, the performance

when applying to extended pedigrees is unknown deserves further

endeavor.

In summary, we develop a novel method for family based

bivariate association test. Our method is more powerful than

currently available bivariate methods. The proposed method is

computationally effective and can complete a typical GWAS scan

within hours. The program implementing our proposed method is

available upon request to us.
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