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Abstract

Abnormal proliferation of vascular smooth muscle cells (VSMCs) contributes to the develop-

ment of cardiovascular diseases. Studies have shown the great impact of microRNAs (miR-

NAs) on the cell proliferation of VSMCs. This study examined the effects of miR-137 on the

cell proliferation and migration of VSMCs and also explored the underlying molecular mecha-

nisms. The mRNA and protein expression levels were determined by qRT-PCR and western

blot assays, respectively. The CCK-8 assay, wound healing assay and transwell migration

assay were performed to measure cell proliferation and migration of VSMCs. The miR-137-

targeted 3’untranslated region of insulin-like growth factor-binding protein-5 (IGFBP-5) was

confirmed by luciferase reporter assay. Platelet-derived growth factor-bb (PDGF-bb) treat-

ment enhanced cell proliferation and suppressed the expression of miR-137 in VSMCs. The

gain-of-function and loss-of-function assays showed that overexpression of miR-137 sup-

pressed the cell proliferation and migration, and also inhibited the expression of matrix genes

of VSMCs; down-regulation of miR-137 had the opposite effects on VSMCs. Bioinformatics

analysis and luciferase report assay results showed that IGFBP-5 was a direct target of miR-

137, and miR-137 overexpression suppressed the IGFBP-5 expression and down-regulation

of miR-137 increased the IGFBP-5 expression in VSMCs. PDGF-bb treatment also increased

the IGFBP-5 mRNA expression. In addition, enforced expression of IGFBP-5 reversed the

inhibitory effects of miR-137 on cell proliferation and migration of VSMCs. More importantly,

overexpression of miR-137 also suppressed the activity of mTOR/STAT3 signaling in

VSMCs. Taken together, the results suggest that miR-137 may suppress cell proliferation and

migration of VSMCs via targeting IGFBP-5 and modulating mTOR/STAT3 signaling pathway.

Introduction

Cardiovascular diseases, including coronary artery disease, stroke, atherosclerosis, hypertension,

myocardial infarction and stroke, are the leading cause of the death worldwide [1]. Mounting
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evidence has demonstrated that disruption of vascular smooth muscle cells (VSMCs) prolifera-

tion is a key factor in the development of cardiovascular diseases [2, 3]. Studies have shown that

the abnormal elevation of growth regulating factors, cell factors and vasoactive substances under

pathological conditions can promote the VSMCs proliferation and also alter the gene expression

profiles of VSMCs [4]. Among these factors, platelet-derived growth factor (PDGF) is one of the

most potent inducers for VSMCs proliferation and migration. PDGF-bb is primarily released by

the vascular endothelial cells and platelets at the vascular injury sites, and PDGF-bb promotes

VSMCs proliferation and migration via regulating the transcriptional factors and critical molec-

ular signaling pathways [5–7]. However, the exact molecular mechanisms underlying VSMCs

proliferation are largely unknown.

MicroRNAs (miRNAs) are a class of *22 nucleotide non-coding short RNAs and play

important roles in cell proliferation, cell differentiation, metabolism and development [8, 9].

MiRNAs exert their functions by targeting the 3’untranslated region (3’UTR) of the targeted

genes, which results in degradation of mRNA or repression of mRNA translation [10]. Aber-

rant miRNA expression has been linked to various diseases such as cancer and cardiovascular

diseases, and studying the role of miRNAs in cardiovascular disease may be important for us

to understand the molecular mechanisms underlying VSMCs proliferation. [11]. Previously,

we have demonstrated that miR-379 was down-regulated after PDGF-bb treatment, and miR-

379 was found to suppress the VSMCs proliferation, invasion and migration via targeting insu-

lin-like factor-1 [12]. In addition, lots of miRNAs have been shown to have a regulatory role

for VSMCs proliferation and migration. MiR-503 was found to inhibit PDGF-bb-induced

human aortic VSMCs proliferation and migration via targeting the insulin receptor [13]. MiR-

145 was found to have inhibitory effects on the VSMCs proliferation, and this inhibitory effect

was mediated via targeting the CD40 [14]. On the other hand, miR-34a was found to promote

proliferation of human pulmonary artery smooth muscle cells by targeting platelet-derived

growth factor alpha [15], and miR-181b activated the PI3K and MAPK signaling pathways,

which subsequently promoted VSMCs proliferation [16]. Recently, miR-137 was found to play

tumor-suppressive roles in the different types of cancers [17–20]. However, it is unclear

whether miR-137 plays a role in the VSMCs proliferation and migration.

In the present study, we showed that PDGF-bb suppressed the expression of miR-137 in

VSMCs. In vitro functional studies found that miR-137 had inhibitory effects on the VSMCs

proliferation and migration. Bioinformatics prediction and luciferase reporter assay showed

that insulin-like growth factor-binding protein-5 (IGFBP-5) was a direct target of miR-137 in

VSMCs. MiR-137 overexpression also suppressed the activity of mTOR/STAT3 signaling.

Materials and methods

Cell culture

VSMCs cell lines (human aortic smooth muscle cells, #6110) were from the ScienCell (San

Diego, USA), and the cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM;

Hyclone, GE Health Care, USA) with 10% fetal bovine serum (FBS; Gibco, Thermo Fisher Sci-

entific, Waltham, USA). Cells were cultured in a humidified atmosphere with 5% CO2 at 37˚C.

MiRNAs and plasmids

MiR-137 mimics, miR-137 inhibitor and their relative control miRNAs (mimics control and

inhibitor control) were purchased from Ribobio (Guangzhou, China). The empty vector,

pcDNA3.1, and the IGFBP-5 overexpressing vector, pcDNA3.1-IGFBP-5 were also purchased

from Ribobio company.
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Transfection, platelet-derived growth factor-bb (PDGF-bb) treatment

The miRNAs and plasmids transfections were performed by using the Lipofectamine 2000

(Invitrogen, Carlsbad, USA) according to the manufacturer’s instructions. PDGF-bb (Sigma,

St. Louis, USA) treatment was performed at a concentration of 30 ng/ml, 24 h, 48 h or 72 h

after transfection, the VSMCs were subjected to CCK-8 assay or quantitative real-time PCR

(qRT-PCR) assay.

RNA preparation and qRT-PCR analysis

Total RNAs were isolated from VSMCs by using TRIzol reagent (Invitrogen). The PrimeScript

RT Master Mix Kit (Takara, Dalian, China) was used to obtain cDNA for mRNA detection,

whereas PrimeScript II 1st Strand cDNA Synthesis Kit (Takara) was applied to reverse tran-

scribe RNA for miRNA detection. For miR-137 and other mRNAs, qRT-PCR was performed

using SYBR Green PCR Kit (Takara) according to the manufacturer’s instructions, respec-

tively. U6 was used as an internal control for miR-137, and GAPDH was used as an internal

control for other genes including proteoglycan, type I collagen, type V collagen and IGFBP-5.

Data were expressed as fold changes relative to U6 or GAPDH, and were calculated based on

the following formula: RQ = 2-ΔΔCt.

Cell proliferation assay

For the CCK-8 assay, cells were seeded in 96-well plates (5 x 103 cells/well) and incubated for

24 h, and then treated with PDGF-bb; or transfected with miR-137 mimics, miR-137 inhibitor

or their relative controls (mimics control or inhibitor control); or co-transfected with mimics

control + pcDNA3.1, miR-137 mimics + pcDNA3.1, or miR-137 mimics + pcDNA3.1-IGFBP-

5. At 0 h, 24 h, 48 h, and 72 h after PDGF-bb treatment, or at 48 h after transfection, CCK-8 kit

(Beyotime, Beijing, China) was used to detect cell proliferation index according to manufac-

turer’s instructions.

Wound healing assay

For the wound healing assay, cells were seeded in 6-well plates (5 x 105 cells/well), 48 h after

transfection, a pipette tip was used to create a wound. The cells were then cultured in serum-

free medium. Cells migrated into wound surface and the average distance of migrating cells

was determined under an inverted microscope at 0 h and 24 h. Area of wound healed (%) =

(Wound area at 24 h—Wound are at 0 h)/Wound area at 0 h x 100%.

Transwell migration assay

For the transwell migration assay, transfected cells were seeded on the upper transwell insert

with 8 μm-pore membrane (Corning, Lowell, USA) containing serum-free medium, and the

lower chamber was filled with DMEM medium supplemented with 10% FBS. After 24 h incu-

bation, the cells on the upper surface of the insert were removed, and the cells on the lower sur-

face of the insert were fixed with 4% paraformaldehyde and stained with 0.1% crystal violet.

The number of migrated cells were counted under a light microscope (Zeiss, Oberkochen,

Germany)

Luciferase reporter assay

The pmirGLO vectors containing wild type or mutant miR-137 binding site in IGFBP-5

3’UTR were synthesized by Ribobio. VSMCs were seeded into 24-well plates 24 h before trans-

fection and then co-transfected with 50 ng of wild type or mutant luciferase vector containing
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IGFBP-5 3’UTR and 20 μM miR-137 mimics, miR-137 inhibitor or their relative controls.

After 48 h, luciferase activity was assayed by using the Dual-luciferase Reporter Assay System

(Promega, Madison, USA).

Western blot

Proteins were extracted from whole cell lysates and separated by sodium dodecyl sulfate-poly-

acrylamide gel electrophoresis, then transferred to a polyvinylidene fluoride membrane. The

following primary antibodies were used: rabbit polyclonal anti-IGFBP-5 (1:1500; Abcam,

Cambridge, UK), rabbit polyclonal anti-proteoglycan (1:1200, Abcam), rabbit polyclonal anti-

type I collagen (1:1500, Abcam), rabbit polyclonal anti-type V collagen (1:2000, Abcam), rabbit

monoclonal anti-phosphorylated mTOR (p-mOTR, 1:1000, Cell Signaling Technology, Dan-

vers, USA), rabbit monoclonal anti-mTOR (1:1000, Cell Signaling Technology), rabbit mono-

clonal anti-phosphorylated STAT3 (p-STAT3, 1:2000, Cell signaling Technology), rabbit

monoclonal anti-STAT3 (1:1000, Cell Signaling Technology), and rabbit monoclonal anti-β-

actin (1: 5000; Cell Signaling Technology). Membranes were then incubated with the horserad-

ish peroxidase-conjugated secondary antibodies (1:4000; Abcam). The ECL western blot sub-

strate kit was used to detect the respective bands (Abcam). The membranes were exposed

using a ChemoDoc XRS detection system (Bio-Rad, Milan, Italy).

Statistical analysis

All statistical analysis was carried out using GraphPad Prism version 6 (La Jolla, USA). The dif-

ferences among groups were analyzed by one-way ANOVA followed by Bonferroni’s multiple

comparison tests or t-test. All data are expressed as the mean values of three independent

replicates ± SD; differences were considered to be statistically significant when P<0.05.

Results

PDGF-bb promoted cell proliferation and down-regulated the expression

of miR-137 in VSMCs

The effects of PDGF-bb on the cell proliferation of VSMCs were examined by CCK-8 assay.

PDGF-bb (30 ng/ml) treatment significantly increased the cell proliferation of VSMCs when

compared to the control group (Fig 1A). The effects of PDGF-bb on the expression of miR-137

in VSMCs were also examined by qRT-PCR, and PDGF-bb (30 ng/ml) significantly sup-

pressed the relative expression level of miR-137 and this effect was in a time-dependent man-

ner (Fig 1B).

MiR-137 inhibited cell proliferation and migration of VSMCs

The in vitro function of miR-137 in VSMCs was also explored by the CCK-8 assay, wound

healing assay and transwell migration assay. Firstly, the VSMCs were transiently transfected

with miR-137 mimics, miR-137 inhibitor or their relative controls (mimics control or inhibi-

tor control), and miR-137 mimics transfection significantly increased the miR-137 expression

by more than 30 fold when compared to mimics control group; while transfection with miR-

137 inhibitor significantly suppressed the miR-137 expression level when compared to the

inhibitor control group (Fig 2A). CCK-8 assay showed that compared to the mimics control

group, the cell proliferation of VSMCs was significantly suppressed in the miR-137 mimics

transfection group; and miR-137 inhibitor transfection further promoted the cell proliferation

of VSMCs when compared to inhibitor control group (Fig 2B), suggesting the inhibitory effect

of miR-137 on the cell proliferation of VSMCs. The cell migration of VSMCs after miRNAs
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transfection was examined by the wound healing assay and transwell migration assay, as

shown in Fig 3C, miR-137 mimics transfection significantly reduced the wound closure area

when compared to VSMCs transfected with mimics control (Fig 2C); while miR-137 inhibitor

transfection significantly accelerated the wound closure of VSMCs when compared to inhibi-

tor control group (Fig 2C). Consistently, the transwell migration assay showed that overex-

pression of miR-137 decreased the number of migrated cells of VSMCs (Fig 2D), and knock-

down of miR-137 increased the number of migrated cells of VSMCs (Fig 2D). These results

may imply the inhibitory effects of miR-137 on the cell migration of VSMCs.

MiR-137 suppressed the expression of matrix genes in VSMCs

The effects of miR-137 on the mRNA and protein levels of matrix genes, including proteogly-

can, type I collagen, type V collagen, were determined by qRT-PCR and western blot assays.

For the qRT-PCR assay, miR-137 mimics transfection significantly suppressed the mRNA

expression levels of proteoglycan, type I collagen and type V collagen in VSMCs when com-

pared to the mimics control transfection, and miR-137 inhibitor transfection had the opposite

effects, where the mRNA expression levels of proteoglycan, type I collagen and type V collagen

were significantly higher in the miR-137 inhibitor group than that in inhibitor control group

(Fig 3A). Consistently, western blot assay showed overexpression of miR-137 by miR-137

mimics transfection suppressed the protein levels of proteoglycan, type I collagen, and type V

collagen; while down-regulation of miR-137 by miR-137 inhibitor control transfection signifi-

cantly increased protein levels of proteoglycan, type I collagen and type V collagen (Fig 3B).

These results suggest that miR-137 had inhibitory effects on the expression of matrix genes in

VSMCs.

MiR-137 targets the 3’TUR of IGFBP-5

The downstream targets of miR-137 were predicted by bioinformatics analysis, and among the

predicted targets of miR-137, IGFBP-5 was chosen for further exploration. To validate whether

IGFBP-5 is a target of miR-137, the IGFBP-5 3’UTR fragment containing wild type or mutant

Fig 1. Effects of PDGF-bb on cell proliferation and miR-137 expression in VSMCs. (A) Cell proliferation of VSMCs was determined by the

CCK-8 assay, and PDGF-bb (30 ng/ml) treatment enhances cell proliferation of VSMCs. (B) The relative expression of miR-137 was determined by

qRT-PCR, and PDGF-bb (30 ng/ml) treatment suppresses the miR-137 expression in a time-dependent manner. Data represents the mean values

of three independent replicates; significant differences between groups were shown as *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0186245.g001
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miR-137-binding sequence was sub-cloned to the Firefly luciferase reporter gene (Fig 4A).

When miR-137 mimics were co-transfected with the wild type reporter plasmid, the relative

Fig 2. Effects of miR-137 on cell proliferation and cell migration of VSMCs. (A) The relative expression of miR-137 in VSMCs after miR-137 mimics,

miR-137 inhibitor or their relative controls transfection was determined by qRT-PCR. (B) The cell proliferation of VSMCs after miR-137 mimics, miR-137

inhibitor or their relative controls transfection was assessed by the CCK-8 assay. The cell migration of VSMCs after miR-137 mimics, miR-137 inhibitor or

their relative controls transfection was assessed by (C) the wound healing assay and (D) transwell migration assay. Data represents the mean values of

three independent replicates; significant differences between groups were shown as *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0186245.g002
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luciferase activity of the reporter containing wild type IGFBP-5 3’ UTR was significantly sup-

pressed in VSMCs; and co-transfection of miR-137 inhibitor and the wild type report plasmid

significantly increased the luciferase activity of the reporter containing wild type IGFBP-5 3’

UTR in VSMCs (Fig 4B); while the luciferase activity of the reporter containing mutant 3’UTR

of IGFBP-5 after co-transfection with different miRNAs and mutant reporter plasmids was

unaffected (Fig 4C).

MiR-137 suppressed the expression of IGFBP-5 in VSMCs

The effects of miR-137 on the mRNA and protein expression of IGFBP-5 were examined by

qRT-PCR and western blot assays. As shown in Fig 5A, overexpression of miR-137 by miR-

Fig 3. Effects of miR-137 on the matrix gene expression in VSMCs. (A) The relative mRNA expression levels of proteoglycan, type I collagen

and type V collagen in VSMCs after miR-137 mimics, miR-137 inhibitor or their relative controls transfection were determined by qRT-PCR. (B) The

relative protein levels of proteoglycan, type I collagen and type V collagen in VSMCs after miR-137 mimics, miR-137 inhibitor or their relative

controls transfection were examined by the western blot assay. Data represents the mean values of three independent replicates; significant

differences between groups were shown as *P<0.05, **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0186245.g003
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137 mimics transfection significantly suppressed the mRNA expression level of IGFBP-5 when

compared to mimics control transfection in VSMCs; and down-regulation of miR-137 by

miR-137 inhibitor transfection increased the mRNA expression level of IGFBP-5 when com-

pared to inhibitor control transfection in VSMCs (Fig 5A). In agreement with the qRT-PCR

results, the western blot assay showed that the protein level of IGFBP-5 in the miR-137 mimics

transfection was significantly lower in VSMCs than that from mimics control group, and the

protein level of IGFBP-5 in miR-137 inhibitor group was significantly increased when com-

pared to the inhibitor control group (Fig 5B). PDGF-bb (30 ng/ml) also significantly increased

the IGFBP-5 mRNA expression levels in VSMCs (Fig 5C). The results suggest that miR-137

has an inhibitory effect on the expression of IGFBP-5.

IGFBP-5 reversed the inhibitory effects of miR-137 overexpression on

cell proliferation and migration in VSMCs

In order to further confirm the interaction between miR-137 and IGFBP-5, the VSMCs were co-

transfected with miR-137 mimics and the IGFBP-5-overexpressing vector, pcDNA3.1-IGFBP-5,

Fig 4. MiR-137 targets the 3’UTR of IGFBP-5 in VSMCs. (A) The seed sequence of wild type (WT) 3’UTR or mutant (Mut) 3’UTR of IGFBP-5 that

is targeted miR-137; (B) and (C) VSMCs were co-transfected with miR-137 mimics, miR-137 inhibitor or their relative controls with wild type or

mutant 3’UTR of IGFBP-5, and luciferase activity was detected. Data represents the mean values of three independent replicates; significant

differences between groups were shown as **P<0.01, ***P<0.001.

https://doi.org/10.1371/journal.pone.0186245.g004
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or their relative controls. For the CCK-8 assay, co-transfection with miR-137 mimics and

pcDNA3.1 plasmid significantly suppressed the cell proliferation of VSMCs, and enforced

expression of IGFBP-5 by pcDNA3.1-IGFBP-5 transfection reversed the inhibitory effect of

miR-137 overexpression on the cell proliferation (Fig 6A). For the wound healing assay, the area

of healed wound was significantly larger in VSMCs co-transfected with miR-137 mimics and

pcDNA3.1-IGFBP-5 than that co-transfected with miR-137 mimics and pcDNA3.1 (Fig 6B).

Consistently, for the transwell migration assay, the number of migrated cells was significantly

higher in VSMCs co-transfected with miR-137 mimics and pcDNA3.1-IGFBP-5 than that co-

transfected with miR-137 mimics and pcDNA3.1 (Fig 6C). The results suggest that IGFBP-5

reversed the inhibitory effects of miR-137 overexpression on cell proliferation and migration of

VSMCs.

MiR-137 suppressed the mTOR/STAT3 signaling in VSMCs

The effects of miR-137 on the mTOR/STAT3 signaling in VSMCs were examined by the west-

ern blot assay, and the protein levels of p-STAT3, total STAT3, p-mOTR and total mTOR were

assessed. As shown in Fig 7, miR-137 mimics transfection significantly suppressed the protein

levels of p-STAT3 and p-mTOR when compared to the mimics control group, and miR-137

mimics transfection had no effect on the protein levels of total STAT3 and total mTOR, sug-

gesting the miR-137 suppresses the activity of mTOR/STAT3 signaling in VSMCs.

Discussion

Aberrant proliferation of VSMCs has been shown to contribute to the development of vascular

diseases, and understanding of molecular mechanisms underlying the abnormal proliferation

of VSMCs may be essential for us to identify new therapeutic targets for the management of

cardiovascular diseases. In this study, our results showed that PDGF-bb treatment enhanced

the cell proliferation and suppressed the expression of miR-137 in VSMCs. The gain-of-func-

tion and loss-of-function assays showed that overexpression of miR-137 suppressed the cell

proliferation and migration, and also inhibited the expression of matrix genes of VSMCs;

down-regulation of miR-137 enhanced cell proliferation and migration, and increased the

expression of matrix genes of VSMCs. Bioinformatics analysis and luciferase report results

showed that IGFBP-5 was a direct target of miR-137, and miR-137 overexpression suppressed

the IGFBP-5 expression and down-regulation of miR-137 increased IGFBP-5 expression in

VSMCs. In addition, enforced expression of IGFBP-5 reversed the inhibitory effects of miR-

137 on cell proliferation and migration of VSMCs. More importantly, overexpression of miR-

137 also suppressed the activity of mTOR/STAT3 signaling in VSMCs. These results suggest

that miR-137 suppressed cell proliferation and migration of VSMCs via targeting IGFBP-5

and modulating mTOR/STAT3 signaling pathway.

PDGF-bb is primarily released by the vascular endothelial cells and platelets at the vascular

injury sites, and PDGF-bb promotes VSMCs proliferation and migration via regulating the

transcriptional factors and critical molecular signaling pathways [5, 21]. Recently, studies have

demonstrated that PDGF-bb treatment differentially regulated the expression of miRNAs in

Fig 5. Effects of miR-137 on the IGFBP-5 expression in VSMCs. (A) The relative mRNA expression levels

of IGFBP-5 in VSMCs after miR-137 mimics, miR-137 inhibitor or their relative controls transfection were

determined by qRT-PCR. (B) The relative protein expression levels of IGFBP-5 in VSMCs after miR-137

mimics, miR-137 inhibitor or their relative controls transfection were determined by the western blot assay. (C)

The relative mRNA expression levels of IGFBP-5 in VSMCs after PDGF-bb (30 ng/ml) treatment were

determined by qRT-PCR. Data represents the mean values of three independent replicates; significant

differences between groups were shown as *P<0.05, ***P<0.001.

https://doi.org/10.1371/journal.pone.0186245.g005
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VSMCs. In some studies, PDGF-bb treatment induced the up-regulation of miRNAs such as

miR-15b, miR-541 and miR-146b-5p [22–24]; while in other experiments, PDGF-bb treatment

suppressed the expression of miRNAs such as miR-599, miR-21 and miR-145 [14, 25, 26]. In

the present study, we showed that PDGF-bb treatment suppressed the expression of miR-137.

The role of miR-137 has been demonstrated in various cancer studies. MiR-137 promoted apo-

ptosis in ovarian cancer cells via targeting the X-linked inhibitor of apoptosis protein [19].

MiR-137 was also found to play a tumor-suppressive role in gastric cancer cell lines via inter-

acting with Kruppel like factor 12 and myosin IC [27]. MiR-137 inhibited proliferation and

angiogenesis of human glioblastoma cells by targeting enhancer of zeste homolog 2 [28]. These

Fig 6. Effects of IGFBP-5 on the miR-137 mimics-induced changes in cell proliferation and cell migration of VSMCs. (A) The cell proliferation

of VSMCs after co-transfection with mimics control + pcDNA3.1, miR-137 mimics + pcDNA3.1, or miR-137 mimics + pcDNA3.1-IGFBP-5 was

determined by the CCK-8 assay. The cell migration of VSMCs after co-transfection with mimics control + pcDNA3.1, miR-137 mimics + pcDNA3.1, or

miR-137 mimics + pcDNA3.1-IGFBP-5 was determined by (B) the wound healing assay and (C) transwell migration assay. Data represents the mean

values of three independent replicates; significant differences between groups were shown as *P<0.01.

https://doi.org/10.1371/journal.pone.0186245.g006

Fig 7. Effects of miR-137 on the mTOR/STAT3 signaling pathway in VSMCs. The relative protein expression levels of p-STAT3, total STAT3,

p-mTOR and total mTOR in VSMCs after miR-137 mimics, miR-137 inhibitor or their relative controls transfection were determined by the western

blot assay. Data represents the mean values of three independent replicates; significant differences between groups were shown as *P<0.05.

https://doi.org/10.1371/journal.pone.0186245.g007
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results suggest that miR-137 may have a suppressive role in the cell proliferation of cancer

cells. Similarly, our data showed that overexpression of miR-137 inhibited cell proliferation

and migration, and the expression of matrix genes of VSMCs, and down-regulation of miR-

137 enhanced the cell proliferation and migration, and the expression of matrix genes of

VSMCs, suggesting that miR-137 had an inhibitory effect on the cell proliferation and migra-

tion of VSMCs.

IGFBP-5 belongs to the IGF-BPs family, which binds IGFs and modulates IGF distribution,

stability and biological activities [29–31]. Studies have shown that VSMCs can synthesize and

secrete IGFBP-5, and IGFBP-5 was found to be a nuclear protein and promoted cell prolifera-

tion and migration of VSMCs independent of IGF [31, 32]. In the present study, bioinformat-

ics prediction and luciferase reporter assay showed that miR-137 can target the 3’TUR of

IGFBP-5, and overexpression of miR-137 suppressed the expression of IGFBP-5, while down-

regulation of miR-137 increased the expression of IGFBP-5 in VSMCs. Consistently, the

enforced expression of IGFBP-5 reversed the inhibitory effects of miR-137 on the cell prolifer-

ation and migration of VSMCs. These results suggested that miR-137 suppressed the cell pro-

liferation and migration of VSMCs via down-regulation of IGFBP-5.

The role of mTOR/STAT3 signaling in cell proliferation and migration has been implicated

in various studies [33, 34]. Activation of mTOR/STAT3 signaling has been linked to the devel-

opment and progression of cancers such as breast cancer, gastric cancer and liver cancer [33,

35, 36]. Li et al., showed that activated monocytes stimulated the cell proliferation of VSMCs

via activating the mTOR/STAT3 signaling pathway [37]. In the cancer studies, miR-137 was

found to exert its anti-tumor activity via inhibiting the AKT2/mTOR signaling pathway in the

liver cancer [38]. In the gastric cancer, miR-137 functioned as a tumor suppressor via targeting

Cox-2-activiated PI3K/AKT signaling pathway [39]. In the present study, we found that miR-

137 overexpression suppressed the expression of p-STAT3 and p-mTOR, suggesting that miR-

137 suppresses the cell proliferation and migration of VSMCs via targeting the mTOR/STAT3

signaling.

Taken together, our results establish a functional link between miR-137 and IGFBP-5

expression in VSMCs, demonstrating that IGFBP-5 is directly suppressed by miR-137, which

suppressed the cell proliferation and migration. The present study advances our knowledge

into understanding the molecular mechanisms underlying the miR-137-regulated VSMCs

proliferation.
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